Received 21 February 2016
Accepted 25 February 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; $\mathrm{Br} \cdots \mathrm{Br}$ contacts; $R_{2}^{2}(8)$ dimers.

CCDC reference: 1455826

Structural data: full structural data are available from iucrdata.iucr.org

4-Bromo-2-hydroxybenzoic acid

P. A. Suchetan, ${ }^{\text {a }}$ V. Suneetha, ${ }^{\text {b }}$ S. Naveen, ${ }^{\text {c }}$ N. K. Lokanath ${ }^{\text {d }}$ and P. Krishna Murthy ${ }^{\text {b }}$ *
${ }^{\mathbf{a}}$ Department of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Bapatla Engineering College (Autonomous), Bapatla 522 101, A.P., India, ${ }^{\text {c }}$ Institution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, and dDepartment of Physics, University of Mysore, Manasagangotri, Mysuru-6, India. *Correspondence e-mail: krishnamurthypotla@gmail.com

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$, the dihedral angle between the aromatic ring and the carboxylic acid group is $4.8(4)^{\circ}$, and an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond closes an $S(6)$ ring. In the crystal, carboxylic acid inversion dimers linked by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate $R_{2}^{2}(8)$ loops. Short $\mathrm{Br} \cdots \mathrm{Br}$ contacts [3.4442 (5) Å] between the molecules of the adjacent dimers leads to a one-dimensional architecture.

Chemical scheme

Structure description

Derivatives of salicylic acid have many biological effects, such as anti-malarial (Fritzson et al., 2011), antifungal (Bassoli et al., 2008) and herbicidal activities (Silverman et al., 2005). As part of our studies in this area, the crystal structure of the title compound was studied.

The title molecule (I) is almost planar (r.m.s. deviation for the non-H atoms $=0.035 \AA$) and an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond closes an $\mathrm{S}(6)$ ring (Fig. 1 and Table 1). The plane defined by the non-H atoms of the carboxyl group is twisted slightly by 4.8 (4) ${ }^{\circ}$ to the mean plane of the phenyl ring. In the crystal, inversion dimers linked by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate $R_{2}^{2}(8)$ loops. Short $\mathrm{Br} \cdots \mathrm{Br}$ contacts [3.4442 (5) Å] between the molecules of the adjacent $R_{2}^{2}(8)$ dimers leads to a one-dimensional architecture (Fig. 2).

The crystal structure of an isomer of the title molecule, 3-bromo-2-hydroxybenzoic acid (II) has been reported recently (Laus et al., 2015). The molecule of (II) is essentially planar and exhibits an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the graph set motif $S(6)$, similar to that observed in (I). Furthermore, in (II) the plane defined by the non-H atoms of the carboxyl group is twisted by an angle of $4.7(4)^{\circ}$ to the mean plane of the phenyl ring, which is almost same as that in (I). However, the crystal structures of the two

Figure 1
A view of the molecular structure of the compound, showing displacement ellipsoids drawn at the 50% probability level. The intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown as a thin dashed line.
compounds are very different in terms of the weak interactions displayed in them. Both the structures feature a pair of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generating $R_{2}^{2}(8)$ loops in the initial stage of packing, but both differ in the second stage of packing. In (I), short $\mathrm{Br} \cdots \mathrm{Br}$ contacts between the $R_{2}^{2}(8)$ loops leads to a one-dimensional architecture, whereas in (II), $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between the $R_{2}^{2}(8)$ loops leads into corrugated sheets which lie parallel to the (10 $\overline{3})$ plane.

Synthesis and crystallization

The title compound was purchased from Sigma Aldrich. Colourless prisms were recrystallized from a methanol: chloroform (2:1) solvent mixture.

Figure 2
Crystal packing of the title compound, displaying $R_{2}^{2}(8) \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ dimers and short $\mathrm{Br} \cdots \mathrm{Br}$ contacts.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H1O3 $\cdots \mathrm{O} 1$	$0.84(3)$	$1.80(4)$	$2.572(3)$	$152(3)$
O2-H1O2 $\cdots 1^{\mathrm{i}}$	$0.83(3)$	$1.88(3)$	$2.697(3)$	$170(5)$

Symmetry code: (i) $-x,-y+3,-z+2$.

Table 2
Experimental details.
Crystal data
Chemical formula $\quad \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$
M_{r}
Crystal system, space group
217.02

Triclinic, $P \overline{1}$
Temperature (K)
173
a, b, c (\AA)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
3.9283 (4), 5.9578 (6), 15.1246 (14)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
92.925 (3), 90.620 (4), 94.710 (4)
352.28 (6)

2
$\mathrm{Cu} K \alpha$
7.58

Data collection
Diffractometer
Absorption correction

Bruker APEXII

Multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
0.180, 0.237

3366, 1149, 1119
$\begin{array}{ll}(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) & 0.037 \\ & 0.586\end{array}$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.032,0.081,1.09$
No. of reflections 1149
No. of parameters
108
No. of restraints
2
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$

H atoms treated by a mixture of independent and constrained refinement
$0.70,-0.60$

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015), Mercury (Macrae et al., 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

Bassoli, A., Borgonovo, G., Caimi, S., Farina, G. \& Moretti, M. (2008). Open Nat. Prod. J. 1, 14-19.
Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Fritzson, I., Bedingfield, P. T. P., Sundin, A. P., McConkey, G. \& Nilsson, U. J. (2011). Med. Chem. Commun. 2, 895-898.
Laus, G., Kahlenberg, V., Gelbrich, T., Nerdinger, S. \& Schottenberger, H. (2015). Acta Cryst. E71, 531-535.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe,
P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \&

Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
Silverman, F. P., Petracek, P. D., Heiman, D. F., Ju, Z., Fledderman, C. M. \& Warrior, P. (2005). J. Agric. Food Chem. 53, 9769-9774.

full crystallographic data

IUCrData (2016). 1, x160325 [doi:10.1107/S2414314616003254]

4-Bromo-2-hydroxybenzoic acid

P. A. Suchetan, V. Suneetha, S. Naveen, N. K. Lokanath and P. Krishna Murthy

4-Bromo-2-hydroxybenzoic acid

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$
$M_{r}=217.02$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=3.9283$ (4) A
$b=5.9578$ (6) \AA
$c=15.1246(14) \AA$
$\alpha=92.925(3)^{\circ}$
$\beta=90.620(4)^{\circ}$
$\gamma=94.710(4)^{\circ}$
$V=352.28(6) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.180, T_{\text {max }}=0.237$
3366 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
1149 reflections
108 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=212$
Prism
$D_{\mathrm{x}}=2.046 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 490 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 112 reflections
$\theta=5.9-64.6^{\circ}$
$\mu=7.58 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.28 \times 0.24 \times 0.19 \mathrm{~mm}$

1149 independent reflections
1119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=64.6^{\circ}, \theta_{\text {min }}=5.9^{\circ}$
$h=-4 \rightarrow 4$
$k=-6 \rightarrow 6$
$l=-17 \rightarrow 17$
1 standard reflections every 1 reflections
intensity decay: 0.1%

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.058 P)^{2}+0.1123 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
H 1 O 3	$0.330(10)$	$1.016(6)$	$0.938(2)$	$0.029(10)^{*}$
H 1 O 2	$-0.148(12)$	$1.569(7)$	$0.923(2)$	$0.036(12)^{*}$
Br1	$0.36435(6)$	$0.71828(4)$	$0.566042(18)$	$0.0210(2)$
O3	$0.4036(6)$	$0.9200(4)$	$0.90163(15)$	$0.0242(5)$
C7	$0.0619(8)$	$1.3240(6)$	$0.8902(2)$	$0.0182(7)$
O1	$0.1583(6)$	$1.2807(4)$	$0.96509(16)$	$0.0230(5)$
O2	$-0.1112(5)$	$1.4975(3)$	$0.87610(14)$	$0.0206(4)$
C5	$0.0491(7)$	$1.2401(5)$	$0.7258(2)$	$0.0170(6)$
H5	-0.0582	1.3752	0.7181	0.020^{*}
C2	$0.3665(7)$	$0.8453(5)$	$0.7487(2)$	$0.0178(6)$
H2	0.4733	0.7098	0.7557	0.021^{*}
C1	$0.2746(7)$	$0.9071(4)$	$0.66562(19)$	$0.0163(6)$
C4	$0.1362(7)$	$1.1832(5)$	$0.8118(2)$	$0.0156(6)$
C3	$0.3011(7)$	$0.9835(5)$	$0.8217(2)$	$0.0166(6)$
C6	$0.1153(7)$	$1.1055(5)$	$0.6529(2)$	$0.0162(6)$
H6	0.0548	1.1456	0.5951	0.019^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0278(3)$	$0.0190(3)$	$0.0160(3)$	$0.00474(15)$	$0.00193(15)$	$-0.00593(15)$
O3	$0.0340(11)$	$0.0260(11)$	$0.0137(11)$	$0.0098(9)$	$-0.0028(9)$	$0.0009(9)$
C7	$0.0187(14)$	$0.0186(14)$	$0.0163(16)$	$-0.0040(11)$	$0.0019(12)$	$-0.0011(12)$
O1	$0.0326(12)$	$0.0250(11)$	$0.0119(12)$	$0.0067(9)$	$-0.0022(9)$	$-0.0017(8)$
O2	$0.0320(11)$	$0.0163(10)$	$0.0133(10)$	$0.0051(8)$	$-0.0009(8)$	$-0.0049(8)$
C5	$0.0194(13)$	$0.0134(13)$	$0.0177(15)$	$-0.0015(10)$	$0.0014(11)$	$-0.0010(11)$
C2	$0.0178(13)$	$0.0166(13)$	$0.0188(15)$	$0.0004(10)$	$-0.0002(11)$	$-0.0009(11)$
C1	$0.0184(13)$	$0.0149(13)$	$0.0148(14)$	$-0.0017(10)$	$0.0015(11)$	$-0.0025(11)$
C4	$0.0171(13)$	$0.0153(13)$	$0.0137(14)$	$-0.0016(10)$	$-0.0014(11)$	$-0.0009(11)$
C3	$0.0165(12)$	$0.0167(13)$	$0.0163(14)$	$-0.0006(10)$	$-0.0002(11)$	$0.0015(11)$
C6	$0.0225(13)$	$0.0161(13)$	$0.0098(13)$	$0.0008(10)$	$-0.0008(11)$	$-0.0011(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 1$	$1.887(3)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.406(4)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.353(4)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500

$\mathrm{O} 3-\mathrm{H1O} 3$	0.85 (2)	C2-C1	1.380 (4)
C7-O1	1.237 (4)	C2-C3	1.382 (5)
$\mathrm{C} 7-\mathrm{O} 2$	1.308 (4)	C2-H2	0.9500
C7-C4	1.464 (5)	C1-C6	1.403 (4)
$\mathrm{O} 2-\mathrm{H1O} 2$	0.83 (2)	C4-C3	1.414 (4)
C5-C6	1.370 (5)	C6-H6	0.9500
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{H1O} 3$	104 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	119.0 (2)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	122.3 (3)	C6- $\mathrm{C} 1-\mathrm{Br} 1$	119.0 (2)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4$	121.7 (3)	C5-C4-C3	118.3 (3)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 4$	116.0 (3)	C5-C4-C7	122.0 (3)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	111 (3)	C3-C4-C7	119.7 (3)
C6-C5-C4	121.6 (3)	O3-C3-C2	117.1 (2)
C6-C5-H5	119.2	O3-C3-C4	122.2 (3)
C4-C5-H5	119.2	C2-C3-C4	120.7 (3)
C1-C2-C3	119.0 (3)	C5-C6-C1	118.4 (3)
C1-C2-H2	120.5	C5-C6-H6	120.8
C3-C2-H2	120.5	C1-C6-H6	120.8
C2-C1-C6	122.0 (3)		
C3-C2-C1-C6	-0.3 (4)	C1-C2-C3-C4	1.3 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	180.0 (2)	C5-C4-C3-O3	177.8 (2)
C6-C5-C4-C3	1.1 (4)	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3$	-2.1 (4)
C6-C5-C4-C7	-179.0 (3)	C5-C4-C3-C2	-1.6 (4)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5$	-175.3 (3)	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	178.5 (3)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5$	4.6 (4)	C4-C5-C6-C1	-0.2 (4)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 3$	4.5 (5)	C2-C1-C6-C5	-0.3 (4)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 3$	-175.6 (3)	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	179.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-178.2 (2)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 O 3 \cdots \mathrm{O} 1$	$0.84(3)$	$1.80(4)$	$2.572(3)$	$152(3)$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(3)$	$1.88(3)$	$2.697(3)$	$170(5)$

Symmetry code: (i) $-x,-y+3,-z+2$.

