

ISSN 2414-3146

Received 24 February 2016 Accepted 9 March 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; aryl ether; synthesis.

CCDC reference: 1460794

Structural data: full structural data are available from iucrdata.iucr.org

4-Benzyloxy-1,1'-biphenyl

Farook Adam,^a* Nadiah Ameram,^a Shevgoor Dhiraj Kamath,^b Pallavi^c and Seranthimata Samshuddin^c

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia, ^bDepartment of P.G. Studies in Analytical Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and ^cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India. *Correspondence e-mail: farook@usm.my

In the title compound, $C_{19}H_{16}O$, the dihedral angle between the benzene rings of the biphenyl unit is 1.54 (13)° and the C–O–C–C torsion angle is 174.4 (2)°. In the crystal, very weak C–H··· π interactions link the molecules into a three-dimensional network.

Structure description

Many diaryl ethers exhibit various pharmacological properties including anti-bacterial, anti-inflammatory, antifungal and herbicidal activities (Ley & Thomas, 2003; Frlan & Kikelj, 2006). The crystal structures of some aryl ethers *viz.*, 2,4-dichloro-1-[1-(2,4 dichlorobenzyloxy)ethyl]benzene (Jasinski *et al.*, 2010) and 2,6-bis[2-(4-benzyloxyphen-yl)ethyl]biphenyl (Moratti *et al.*, 2007) have been reported. As part of our studies in this area, the synthesis and structure of the title compound are reported.

The title molecule (Fig. 1) consists of three benzene rings, C1–C6 (*A*), C7–C12 (*B*) and C14–C19 (*C*). The dihedral angles A/B, A/C and B/C are 1.54 (13), 61.50 (14) and 62.80 (14)°, respectively. Five weak C–H··· π interactions are observed in the crystal structure (Table 1). The crystal packing is illustrated in Fig. 2.

Synthesis and crystallization

A mixture of (1,1'-biphenyl)-4-ol (1.70 g, 0.01 mol) and benzyl chloride (5 ml) was refluxed for 30 min. The reaction mixture was cooled and poured into 25 ml hexane. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from 1,4-dioxane solution by the slow evaporation method; m.p. 421–425 K, yield 85%.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2 The crystal packing, viewed along the *b* axis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

SS and SDK thank Alva's Education Foundation, Moodbidri, for providing research facilities. FA is grateful for USM research grants 1001/PKIMIA/846017 and 1001/PKIMIA/811269, which partially supported this research.

References

Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 1 Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C14–C19 benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots Cg1^{i}$	0.93	2.99	3.700 (3)	134
$C4-H4A\cdots Cg1^{ii}$	0.93	2.97	3.700 (3)	134
$C8-H8A\cdots Cg2^{ii}$	0.93	2.96	3.687 (3)	137
$C11 - H11A \cdot \cdot \cdot Cg2^{i}$	0.93	2.93	3.650 (3)	135
$C19-H19A\cdots Cg3^{iii}$	0.93	2.90	3.591 (3)	133

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $x, -y, z - \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$.

Table 2Experimental details.

C ₁₉ H ₁₆ O
260.32
Monoclinic, Cc
296
31.270 (2), 5.6720 (4), 7.8812 (5)
99.271 (3)
1379.58 (16)
4
Μο Κα
0.08
$0.39 \times 0.31 \times 0.09$
Bruker APEXII CCD
Multi-scan (<i>SADABS</i> ; Bruker, 2010)
0.891, 0.969
18200, 2435, 2218
0.027
0.595
0.034, 0.104, 0.87
2435
181
2
H-atom parameters constrained
0.12, -0.12

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick 2008).

Frlan, R. & Kikelj, D. (2006). Synthesis, pp. 2271-2285.

- Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, 0165–0166.
- Ley, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400–5449.
- Moratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, 03954.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). 1, x160398 [doi:10.1107/S2414314616003989]

4-Benzyloxy-1,1'-biphenyl

Farook Adam, Nadiah Ameram, Shevgoor Dhiraj Kamath, Pallavi and Seranthimata Samshuddin

4-Benzyloxy-1,1'-biphenyl

Crystal data	
$C_{19}H_{16}O$ $M_r = 260.32$ Monoclinic, <i>Cc</i> a = 31.270 (2) Å b = 5.6720 (4) Å c = 7.8812 (5) Å $\beta = 99.271$ (3)° V = 1379.58 (16) Å ³ Z = 4	F(000) = 552 $D_x = 1.253 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7054 reflections $\theta = 2.6-31.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K Plate, colourless $0.39 \times 0.31 \times 0.09 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2010) $T_{\min} = 0.891, T_{\max} = 0.969$ 18200 measured reflections	2435 independent reflections 2218 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -36 \rightarrow 36$ $k = -6 \rightarrow 6$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.104$ S = 0.87 2435 reflections 181 parameters 2 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0802P)^2 + 0.3664P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.12$ e Å ⁻³ $\Delta\rho_{min} = -0.12$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.44220 (6)	0.2333 (3)	1.0798 (2)	0.0538 (5)

C1	0.23730 (9)	0.4280 (5)	0.7983 (4)	0.0517 (7)
H1A	0.2475	0.5521	0.8709	0.062*
C2	0.19447 (9)	0.4248 (5)	0.7236 (4)	0.0579 (8)
H2A	0.1761	0.5458	0.7463	0.069*
C3	0.17851 (9)	0.2446 (5)	0.6158 (4)	0.0538 (7)
H3A	0.1495	0.2416	0.5659	0.065*
C4	0.20609 (9)	0.0691 (5)	0.5831 (4)	0.0588 (8)
H4A	0.1958	-0.0529	0.5088	0.071*
C5	0.24892 (9)	0.0712 (5)	0.6590 (4)	0.0515 (7)
H5A	0.2670	-0.0512	0.6362	0.062*
C6	0.26585 (8)	0.2510 (4)	0.7683 (3)	0.0377 (6)
C7	0.31216 (8)	0.2517 (4)	0.8516(3)	0.0366 (6)
C8	0.34084 (9)	0.0771 (5)	0.8203 (4)	0.0523 (8)
H8A	0.3309	-0.0435	0.7442	0.063*
C9	0.38322 (9)	0.0756 (5)	0.8973 (4)	0.0553 (8)
H9A	0.4013	-0.0461	0.8738	0.066*
C10	0.39943 (8)	0.2524 (4)	1.0094 (3)	0.0408 (6)
C11	0.37210 (8)	0.4295 (5)	1.0437 (3)	0.0491 (7)
H11A	0.3823	0.5502	1.1194	0.059*
C12	0.32920 (8)	0.4267 (5)	0.9646 (3)	0.0476 (7)
H12A	0.3111	0.5479	0.9886	0.057*
C13	0.45998 (9)	0.4022 (5)	1.2055 (4)	0.0512 (7)
H13A	0.4429	0.4080	1.2977	0.061*
H13B	0.4598	0.5575	1.1539	0.061*
C14	0.50538 (8)	0.3302 (5)	1.2746 (3)	0.0434 (6)
C15	0.51377 (9)	0.1223 (5)	1.3677 (4)	0.0527 (7)
H15A	0.4909	0.0250	1.3852	0.063*
C16	0.55562 (10)	0.0597 (5)	1.4339 (4)	0.0595 (8)
H16A	0.5611	-0.0792	1.4963	0.071*
C17	0.58958 (10)	0.2035 (6)	1.4075 (4)	0.0612 (8)
H17A	0.6179	0.1610	1.4516	0.073*
C18	0.58158 (9)	0.4071 (6)	1.3169 (4)	0.0587 (7)
H18A	0.6045	0.5045	1.3004	0.070*
C19	0.53974 (9)	0.4697 (5)	1.2493 (4)	0.0503 (7)
H19A	0.5347	0.6079	1.1858	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0395 (10)	0.0632 (12)	0.0561 (11)	0.0062 (8)	-0.0001 (8)	-0.0172 (9)
C1	0.0494 (17)	0.0478 (16)	0.0544 (17)	0.0041 (11)	-0.0016 (13)	-0.0105 (12)
C2	0.0472 (16)	0.0626 (18)	0.0615 (19)	0.0129 (13)	0.0016 (14)	-0.0039 (14)
C3	0.0393 (14)	0.0658 (19)	0.0537 (16)	-0.0012 (12)	-0.0006 (12)	0.0044 (13)
C4	0.0514 (18)	0.0628 (18)	0.0591 (19)	-0.0092 (14)	-0.0009 (14)	-0.0135 (14)
C5	0.0452 (16)	0.0525 (16)	0.0556 (17)	0.0035 (12)	0.0049 (13)	-0.0130 (12)
C6	0.0388 (14)	0.0411 (13)	0.0338 (13)	-0.0009 (9)	0.0077 (10)	0.0044 (9)
C7	0.0416 (14)	0.0372 (13)	0.0317 (12)	-0.0009 (9)	0.0081 (10)	0.0024 (9)
C8	0.0480 (17)	0.0464 (15)	0.0590 (18)	0.0032 (11)	-0.0024 (14)	-0.0199 (12)

C9	0.0491 (17)	0.0514 (16)	0.0630 (19)	0.0128 (12)	0.0019 (14)	-0.0180 (13)
C10	0.0373 (14)	0.0476 (14)	0.0369 (14)	0.0018 (10)	0.0043 (11)	-0.0021 (10)
C11	0.0476 (18)	0.0465 (16)	0.0510 (17)	0.0005 (11)	0.0015 (13)	-0.0140 (12)
C12	0.0429 (16)	0.0441 (14)	0.0547 (17)	0.0073 (11)	0.0041 (13)	-0.0124 (12)
C13	0.0446 (15)	0.0550 (16)	0.0513 (16)	-0.0010 (12)	0.0000 (12)	-0.0087 (12)
C14	0.0415 (14)	0.0481 (13)	0.0384 (13)	0.0008 (11)	-0.0002 (11)	-0.0059 (11)
C15	0.0520 (16)	0.0490 (14)	0.0557 (17)	-0.0058 (12)	0.0045 (13)	0.0000 (13)
C16	0.067 (2)	0.0510 (16)	0.0568 (17)	0.0114 (14)	-0.0022 (15)	0.0046 (13)
C17	0.0471 (16)	0.071 (2)	0.0611 (18)	0.0112 (14)	-0.0058 (13)	-0.0100 (16)
C18	0.0443 (16)	0.0687 (19)	0.0619 (17)	-0.0106 (14)	0.0052 (13)	-0.0074 (15)
C19	0.0522 (17)	0.0509 (14)	0.0464 (14)	-0.0053 (12)	0.0041 (12)	0.0033 (12)

Geometric parameters (Å, °)

O1—C10	1.367 (3)	С9—Н9А	0.9300	
O1—C13	1.425 (3)	C10-C11	1.374 (4)	
C1—C2	1.374 (4)	C11—C12	1.386 (4)	
C1—C6	1.389 (4)	C11—H11A	0.9300	
C1—H1A	0.9300	C12—H12A	0.9300	
С2—С3	1.370 (4)	C13—C14	1.493 (4)	
C2—H2A	0.9300	C13—H13A	0.9700	
C3—C4	1.369 (4)	C13—H13B	0.9700	
С3—НЗА	0.9300	C14—C19	1.374 (4)	
C4—C5	1.376 (4)	C14—C15	1.391 (4)	
C4—H4A	0.9300	C15—C16	1.375 (4)	
С5—С6	1.384 (4)	C15—H15A	0.9300	
C5—H5A	0.9300	C16—C17	1.381 (5)	
С6—С7	1.491 (3)	C16—H16A	0.9300	
C7—C12	1.382 (4)	C17—C18	1.359 (4)	
С7—С8	1.384 (4)	C17—H17A	0.9300	
С8—С9	1.366 (4)	C18—C19	1.378 (4)	
C8—H8A	0.9300	C18—H18A	0.9300	
C9—C10	1.378 (4)	C19—H19A	0.9300	
C10—O1—C13	118.39 (19)	C10-C11-C12	119.4 (2)	
C2—C1—C6	121.7 (3)	C10-C11-H11A	120.3	
C2—C1—H1A	119.1	C12—C11—H11A	120.3	
C6—C1—H1A	119.1	C7—C12—C11	122.9 (2)	
C3—C2—C1	120.6 (3)	C7—C12—H12A	118.6	
C3—C2—H2A	119.7	C11—C12—H12A	118.6	
C1—C2—H2A	119.7	O1—C13—C14	108.1 (2)	
C4—C3—C2	118.8 (3)	O1—C13—H13A	110.1	
С4—С3—Н3А	120.6	C14—C13—H13A	110.1	
С2—С3—Н3А	120.6	O1—C13—H13B	110.1	
C3—C4—C5	120.7 (3)	C14—C13—H13B	110.1	
C3—C4—H4A	119.7	H13A—C13—H13B	108.4	
C5—C4—H4A	119.7	C19—C14—C15	118.6 (2)	
C4—C5—C6	121.7 (2)	C19—C14—C13	120.6 (2)	

119.2	C15—C14—C13	120.8 (2)
119.2	C16—C15—C14	120.4 (3)
116.5 (2)	C16—C15—H15A	119.8
121.5 (2)	C14—C15—H15A	119.8
121.9 (2)	C15—C16—C17	119.9 (3)
115.8 (2)	C15—C16—H16A	120.1
122.1 (2)	C17—C16—H16A	120.1
122.1 (2)	C18—C17—C16	120.0 (3)
122.4 (2)	C18—C17—H17A	120.0
118.8	С16—С17—Н17А	120.0
118.8	C17—C18—C19	120.3 (3)
120.7 (2)	C17—C18—H18A	119.8
119.7	C19—C18—H18A	119.8
119.7	C14—C19—C18	120.8 (3)
125.2 (2)	C14—C19—H19A	119.6
115.9 (2)	C18—C19—H19A	119.6
118.8 (2)		
-0.1 (5)	C8—C9—C10—C11	0.6 (4)
-0.5 (5)	O1—C10—C11—C12	-179.4 (2)
1.0 (5)	C9-C10-C11-C12	-0.3 (4)
-1.0 (5)	C8—C7—C12—C11	-0.4 (4)
0.4 (4)	C6-C7-C12-C11	179.7 (2)
179.4 (2)	C10-C11-C12-C7	0.2 (4)
0.1 (4)	C10-01-C13-C14	174.4 (2)
-178.9 (2)	O1—C13—C14—C19	115.6 (3)
-178.2 (3)	O1—C13—C14—C15	-65.1 (3)
0.7 (3)	C19—C14—C15—C16	0.6 (4)
1.9 (3)	C13—C14—C15—C16	-178.7 (2)
-179.2 (3)	C14-C15-C16-C17	-0.2 (4)
0.7 (4)	C15-C16-C17-C18	0.3 (4)
-179.4 (3)	C16—C17—C18—C19	-0.8 (5)
-0.8 (5)	C15-C14-C19-C18	-1.0 (4)
3.3 (4)	C13—C14—C19—C18	178.2 (3)
-175.8 (3)	C17—C18—C19—C14	1.1 (4)
	119.2 119.2 116.5 (2) 121.5 (2) 121.9 (2) 115.8 (2) 122.1 (2) 122.1 (2) 122.4 (2) 118.8 118.8 120.7 (2) 119.7 119.7 125.2 (2) 115.9 (2) 118.8 (2) -0.1 (5) -0.5 (5) 1.0 (5) -1.0 (5) 0.4 (4) 179.4 (2) 0.1 (4) -178.9 (2) -178.2 (3) 0.7 (3) 1.9 (3) -179.2 (3) 0.7 (4) -0.8 (5) 3.3 (4)	119.2 C15—C14—C13 119.2 C16—C15—C14 116.5 (2) C16—C15—H15A 121.5 (2) C14—C15—H15A 121.9 (2) C15—C16—C17 115.8 (2) C15—C16—H16A 122.1 (2) C18—C17—C16 122.4 (2) C18—C17—H17A 118.8 C16—C17—H17A 118.8 C16—C17—H17A 118.8 C17—C18—H18A 119.7 C14—C19—C18 125.2 (2) C14—C19—H18A 119.7 C14—C19—H19A 115.9 (2) C18—C19—H19A 115.9 (2) C18—C19—H19A 118.8 (2) -0.1 (5) -0.1 (5) C8—C9—C10—C11 -0.5 (5) O1—C10—C11—C12 1.0 (5) C9—C10—C11—C12 -1.0 (5) C8—C7—C12—C11 0.4 (4) C6—C7—C12—C11 0.4 (4) C6—C7—C12—C11 0.4 (4) C6—C7—C12—C11 179.4 (2) C10—C11—C12—C7 0.1 (4) C10—O1—C13—C14 -178.9 (2) O1—C13—C14—C19 -178.2 (3) O1—C13—C14—C15 0.7 (3) C19—C1

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C14–C19 benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1A····Cg1 ⁱ	0.93	2.99	3.700 (3)	134
C4—H4 A ··· $Cg1^{ii}$	0.93	2.97	3.700 (3)	134
$C8$ — $H8A$ ··· $Cg2^{ii}$	0.93	2.96	3.687 (3)	137
C11—H11 A ···Cg2 ⁱ	0.93	2.93	3.650 (3)	135
C19—H19A…Cg3 ⁱⁱⁱ	0.93	2.90	3.591 (3)	133

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) *x*, -*y*, *z*-1/2; (iii) *x*, -*y*+1, *z*-1/2.