ISSN 2414-3146

Received 15 March 2016 Accepted 21 March 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; indazole derivative; synthesis; C—H···Cl interactions.

CCDC reference: 1469641

Structural data: full structural data are available from iucrdata.iucr.org

1-[(7*E*)-7-(2-Chlorobenzylidene)-3-(2-chlorophenyl)-3,3a,4,5,6,7-hexahydro-2*H*-indazol-2-yl]ethanone

Farook Adam,^a* Nadiah Ameram,^b Seranthimata Samshuddin,^c Kurady Akhilesh Bairy^d and Madhugiri Shivashankarappa Sunil^d

^aSchool of Chemical Sciences, Unibersiti Science Malaysia, 11800, Minden, Pulau Pinang., Malaysia, ^bSchool of Chemical Sciences, Universiti Science Malaysia, 11800, Minden, Pulau Pinang., Malaysia, ^cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and ^dDepartment of Chemistry, SDM Institute of Technology, Ujire, Karnataka 574 240, India. *Correspondence e-mail: farook@usm.my

In the title compound, $C_{22}H_{20}Cl_2N_2O$, the diazole ring adopts a shallow envelope conformation with the methine C atom bonded to the adjacent chlorobenzene ring as the flap. The dihedral angles between the heterocyclic ring and the pendant chlorobenzene rings are 61.4 (2) and 80.3 (2)°. In the crystal, weak C-H···Cl interactions connect the molecules into [001] chains.

Structure description

Heterocycles containing 1,2-diazole systems such as indazole have attracted much attention for the design and synthesis of novel biologically active agents. They display various biological activities such as analgesic, anti inflammatory, anti-depressant, anti-tumor, anti-hypertensive, anti-viral and anti-cancer activities (Jain *et al.*, 1987; Palazzo *et al.*, 1966; Popat *et al.*, 2003).

The crystal structure of an indazole derivative, viz., 4,6-bis(4-fluorophenyl)-2-phenyl-1*H*-indazol-3(2*H*)-one (Butcher *et al.*, 2011) has been reported. As part of our studies in this area, the title compound (I) was synthesized and its crystal structure is reported here (Fig. 1). The 1,2-diazole ring adopts a shallow envelope conformation, with C14 as the flap; the dihedral angles between this ring (all atoms) and the C6 and C15 chlorobenzene rings are 61.4 (2) and 80.3 (2)°, respectively. The cyclohexyl ring adopts a distorted chair conformation. In the crystal, weak C–H···Cl interactions (Table 1 and (Fig. 2)) connect the molecules into [001] chains.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Synthesis and crystallization

A mixture of 2,6-bis(2-chlorobenzylidene)cyclohexanone (3.43 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless plates were grown from DMF solution by slow evaporation; Yield: 72% (m.p. 458 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Alva's Education Foundation, Moodbidri for provision of research facilities. The authors also thank Universiti Malaysia Kelantan, SLAI, the Malaysian Ministry of Higher Education and the Universiti Sains Malaysia for RU research grants (Nos. PKIMIA/846017 and 1001/PKIMIA/ 811269), which partly supported this work.

Figure 2

The crystal packing of (I), viewed down the *b* axis, showing the formation of [001] chains linked by C-H···Cl interactions (dashed lines).

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10−H10A···Cl1 ⁱ	1.00	2.85	3.677 (4)	140

 $C_{22}H_{20}Cl_2N_2O$

9.0493 (7)

 $0.64 \times 0.25 \times 0.09$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker,

1932.4 (3)

2009)

0.058

0.605

0.653, 0.855

38855, 3549, 2966

Μο Κα

0.35

Orthorhombic, Pca21

20.9334 (17), 10.2009 (8),

399.30

100

4

Symmetry code: (i) $-x + 1, -y + 1, z - \frac{1}{2}$.

Table 2 Experimental details.

Crystal data Chemical formula Μ. Crystal system, space group Temperature (K) a, b, c (Å)

 $V(Å^3)$ Ζ

Radiation type $\mu \,({\rm mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ ² -1
 ¹

$(\sin \theta / \lambda)_{\max} (A^{-1})$	
---	--

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.094, 1.05
No. of reflections	3549
No. of parameters	245
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.14, -0.16
Absolute structure	Flack x determined using 1138 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons et al., 2013)
Absolute structure parameter	0.05 (3)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick 2008) and SHELXL2014 (Sheldrick, 2015).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346-o1347.
- Jain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150-153.
- Palazzo, G., Corsi, G., Baiocchi, L. & Silvestrini, B. (1966). J. Med. Chem. 9, 38-41.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160474 [doi:10.1107/S2414314616004740]

1-[(7*E*)-7-(2-Chlorobenzylidene)-3-(2-chlorophenyl)-3,3a,4,5,6,7-hexahydro-2*H*-indazol-2-yl]ethanone

Farook Adam, Nadiah Ameram, Seranthimata Samshuddin, Kurady Akhilesh Bairy and Madhugiri Shivashankarappa Sunil

1-[(7*E*)-7-(2-Chlorobenzylidene)-3-(2-chlorophenyl)-3,3a,4,5,6,7-hexahydro-2*H*-indazol-2-yl]ethanone

Crystal data

 $C_{22}H_{20}Cl_2N_2O$ $M_r = 399.30$ Orthorhombic, $Pca2_1$ a = 20.9334 (17) Å b = 10.2009 (8) Å c = 9.0493 (7) Å V = 1932.4 (3) Å³ Z = 4F(000) = 832

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.653, \ T_{\max} = 0.855$
38855 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.094$ S = 1.053549 reflections 245 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites $D_x = 1.373 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9969 reflections $\theta = 2.2-30.1^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.64 \times 0.25 \times 0.09 \text{ mm}$

3549 independent reflections 2966 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -25 \rightarrow 25$ $k = -11 \rightarrow 12$ $l = -10 \rightarrow 10$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.3258P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Absolute structure: Flack *x* determined using 1138 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.48134 (5)	0.51064 (11)	0.96839 (15)	0.0795 (3)	
Cl2	0.31606 (5)	0.76773 (13)	-0.03357 (12)	0.0821 (4)	
01	0.31810 (15)	1.0071 (3)	0.3493 (3)	0.0653 (7)	
N1	0.34670 (14)	0.7266 (3)	0.5626 (3)	0.0459 (7)	
N2	0.34748 (13)	0.8138 (2)	0.4423 (3)	0.0472 (7)	
C1	0.3342 (2)	0.2839 (4)	0.8519 (5)	0.0616 (10)	
H1A	0.2995	0.2839	0.7840	0.074*	
C2	0.3395 (3)	0.1818 (4)	0.9532 (6)	0.0805 (14)	
H2A	0.3086	0.1137	0.9540	0.097*	
C3	0.3891 (3)	0.1791 (5)	1.0515 (5)	0.0892 (17)	
H3A	0.3933	0.1078	1.1184	0.107*	
C4	0.4327 (3)	0.2793 (5)	1.0535 (4)	0.0763 (13)	
H4A	0.4670	0.2783	1.1223	0.092*	
C5	0.42650 (17)	0.3825 (3)	0.9541 (4)	0.0556 (9)	
C6	0.37857 (17)	0.3867 (3)	0.8475 (4)	0.0477 (8)	
C7	0.37465 (17)	0.4943 (3)	0.7390 (4)	0.0455 (8)	
H7A	0.3896	0.5772	0.7722	0.055*	
C8	0.35296 (17)	0.4906 (3)	0.6007 (4)	0.0442 (8)	
C9	0.35321 (16)	0.6102 (3)	0.5097 (3)	0.0421 (8)	
C10	0.36092 (17)	0.6037 (3)	0.3445 (4)	0.0482 (8)	
H10A	0.4069	0.5846	0.3235	0.058*	
C11	0.3220 (2)	0.4941 (4)	0.2782 (4)	0.0621 (10)	
H11A	0.3306	0.4870	0.1710	0.074*	
H11B	0.2758	0.5113	0.2922	0.074*	
C12	0.3409 (2)	0.3679 (4)	0.3562 (5)	0.0616 (11)	
H12A	0.3871	0.3521	0.3403	0.074*	
H12B	0.3172	0.2939	0.3114	0.074*	
C13	0.3275 (2)	0.3709 (4)	0.5217 (4)	0.0609 (11)	
H13A	0.2807	0.3664	0.5371	0.073*	
H13B	0.3466	0.2918	0.5673	0.073*	
C14	0.34787 (17)	0.7469 (3)	0.2968 (3)	0.0448 (8)	
H14A	0.3049	0.7538	0.2490	0.054*	
C15	0.39886 (17)	0.7980 (3)	0.1944 (4)	0.0452 (8)	
C16	0.4588 (2)	0.8303 (4)	0.2481 (5)	0.0662 (11)	
H16A	0.4665	0.8261	0.3514	0.079*	
C17	0.5079 (2)	0.8686 (5)	0.1552 (7)	0.0863 (15)	
H17A	0.5487	0.8896	0.1944	0.104*	
C18	0.4970 (3)	0.8760 (5)	0.0047 (6)	0.0880 (17)	
H18A	0.5305	0.9017	-0.0599	0.106*	
C19	0.4382 (2)	0.8463 (4)	-0.0511 (5)	0.0725 (12)	
H19A	0.4307	0.8521	-0.1544	0.087*	
C20	0.38947 (19)	0.8077 (3)	0.0429 (4)	0.0534 (9)	
C21	0.32633 (15)	0.9393 (3)	0.4583 (4)	0.0478 (7)	
C22	0.3155 (2)	0.9878 (3)	0.6132 (4)	0.0566 (10)	
H22A	0.3542	0.9736	0.6721	0.085*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

H22B	0.2798	0.9399	0.6578	0.085*
H22C	0.3055	1.0817	0.6109	0.085*

Atomic	displac	cement	parameters	(Å	?)
--------	---------	--------	------------	----	----

Cl1 Cl2 O1 N1 N2	0.0679 (6) 0.0839 (7) 0.094 (2) 0.0627 (18) 0.0714 (18) 0.082 (3)	0.0959 (8) 0.1218 (9) 0.0515 (15) 0.0390 (16) 0.0385 (14)	0.0747 (7) 0.0406 (5) 0.0506 (15) 0.0360 (14)	0.0049 (5) 0.0197 (6) 0.0111 (14) 0.0033 (14)	-0.0093 (6) -0.0111 (5) 0.0028 (15)	-0.0008(7) -0.0060(6) 0.0149(13)
Cl2 O1 N1 N2	0.0839 (7) 0.094 (2) 0.0627 (18) 0.0714 (18) 0.082 (3)	0.1218 (9) 0.0515 (15) 0.0390 (16) 0.0385 (14)	0.0406 (5) 0.0506 (15) 0.0360 (14)	0.0197 (6) 0.0111 (14) 0.0033 (14)	-0.0111 (5) 0.0028 (15)	-0.0060(6) 0.0149(13)
O1 N1 N2	0.094 (2) 0.0627 (18) 0.0714 (18) 0.082 (3)	0.0515 (15) 0.0390 (16) 0.0385 (14)	0.0506 (15) 0.0360 (14)	0.0111 (14)	0.0028 (15)	0.0149 (13)
N1 N2	0.0627 (18) 0.0714 (18) 0.082 (3)	0.0390 (16) 0.0385 (14)	0.0360 (14)	0.0033(14)		
N2	0.0714 (18) 0.082 (3)	0.0385 (14)		0.0033 (17)	0.0002 (13)	0.0064 (13)
112	0.082 (3)		0.0317 (14)	0.0053 (12)	0.0014 (14)	0.0054 (12)
C1		0.049 (2)	0.054 (2)	-0.004(2)	0.021 (2)	0.0027 (19)
C2	0.133 (4)	0.047 (2)	0.061 (3)	-0.005(2)	0.039 (3)	0.004 (2)
C3	0.161 (5)	0.052 (3)	0.055 (3)	0.023 (3)	0.032 (3)	0.015 (2)
C4	0.112 (4)	0.075 (3)	0.042 (2)	0.040 (3)	0.007 (2)	0.007 (2)
C5	0.070 (2)	0.054 (2)	0.0430 (18)	0.0180 (16)	0.011 (2)	0.0028 (19)
C6	0.061 (2)	0.0409 (19)	0.0413 (18)	0.0114 (16)	0.0148 (18)	0.0039 (15)
C7	0.053 (2)	0.0350 (17)	0.0482 (18)	0.0012 (15)	0.0052 (16)	0.0012 (15)
C8	0.053 (2)	0.0371 (18)	0.043 (2)	0.0014 (15)	0.0071 (16)	0.0004 (15)
C9	0.0513 (19)	0.0380 (19)	0.0370 (17)	0.0011 (15)	0.0018 (14)	-0.0011 (14)
C10	0.056 (2)	0.050(2)	0.0391 (17)	0.0023 (16)	0.0019 (16)	-0.0013 (15)
C11	0.083 (3)	0.059 (2)	0.0438 (19)	-0.004 (2)	0.0000 (19)	-0.0081 (19)
C12	0.083 (3)	0.048 (2)	0.053 (2)	-0.004(2)	0.005 (2)	-0.0122 (18)
C13	0.087 (3)	0.039 (2)	0.057 (2)	-0.0069 (19)	0.007 (2)	-0.0037 (17)
C14	0.057 (2)	0.046 (2)	0.0321 (17)	0.0020 (15)	0.0006 (16)	0.0020 (15)
C15	0.053 (2)	0.0418 (18)	0.0402 (17)	0.0076 (16)	0.0014 (16)	0.0065 (15)
C16	0.068 (3)	0.070 (3)	0.060 (2)	-0.001 (2)	0.001 (2)	0.009 (2)
C17	0.062 (3)	0.080(3)	0.117 (5)	-0.008(2)	0.015 (3)	0.009 (3)
C18	0.089 (4)	0.070 (3)	0.105 (4)	0.007 (3)	0.047 (3)	0.026 (3)
C19	0.094 (3)	0.069 (3)	0.054 (2)	0.018 (2)	0.029 (2)	0.018 (2)
C20	0.068 (2)	0.049 (2)	0.0424 (19)	0.0176 (18)	0.0053 (18)	0.0045 (16)
C21	0.0599 (19)	0.0390 (17)	0.0445 (18)	-0.0028 (15)	-0.0008 (19)	0.0078 (18)
C22	0.084 (3)	0.0365 (18)	0.049 (2)	0.0012 (18)	0.000(2)	-0.0046 (17)

Geometric parameters (Å, °)

Cl1—C5	1.744 (4)	C10—H10A	1.0000
Cl2—C20	1.734 (4)	C11—C12	1.521 (6)
O1—C21	1.218 (4)	C11—H11A	0.9900
N1—C9	1.287 (4)	C11—H11B	0.9900
N1—N2	1.406 (4)	C12—C13	1.525 (5)
N2-C21	1.363 (4)	C12—H12A	0.9900
N2—C14	1.483 (4)	C12—H12B	0.9900
C1—C2	1.392 (6)	C13—H13A	0.9900
C1—C6	1.402 (5)	C13—H13B	0.9900
C1—H1A	0.9500	C14—C15	1.506 (5)
С2—С3	1.368 (7)	C14—H14A	1.0000
C2—H2A	0.9500	C15—C16	1.386 (5)

C3—C4	1.371 (7)	C15—C20	1.389 (5)
С3—НЗА	0.9500	C16—C17	1.383 (6)
C4—C5	1.391 (5)	С16—Н16А	0.9500
C4—H4A	0.9500	C17—C18	1.383 (7)
C5—C6	1 392 (5)	C17—H17A	0.9500
C6—C7	1.372(5) 1 475(5)	C18 - C19	1.365(7)
C7 - C8	1.175(5) 1.332(5)	C18—H18A	0.9500
C7H7A	0.9500	C19-C20	1 385 (5)
C8 - C9	1.472(5)	C19_H19A	0.9500
$C_8 C_{13}$	1.472(5)	C_{1} C_{2}	1.504 (5)
C_{0} C_{10}	1.512(5) 1 505(5)	$C_{21} = C_{22}$	1.304(3)
C_{10}	1.503(5)	C22—1122A C22 H22B	0.9800
$C_{10} = C_{14}$	1.508(5) 1.547(5)	C22 - H22C	0.9800
010-014	1.347 (3)	C22—n22C	0.9800
C9—N1—N2	107.2 (3)	C11—C12—H12A	109.0
C21—N2—N1	120.6 (3)	C13—C12—H12A	109.0
C21—N2—C14	121.9 (3)	C11—C12—H12B	109.0
N1—N2—C14	113.3 (2)	C13—C12—H12B	109.0
C2—C1—C6	121.7 (5)	H12A—C12—H12B	107.8
C2—C1—H1A	119.2	C8—C13—C12	114.6 (3)
С6—С1—Н1А	119.2	C8—C13—H13A	108.6
C3—C2—C1	120.3 (4)	C12—C13—H13A	108.6
C3—C2—H2A	119.8	C8—C13—H13B	108.6
C1—C2—H2A	119.8	C12—C13—H13B	108.6
C2-C3-C4	119.9 (4)	H13A—C13—H13B	107.6
C2-C3-H3A	120.1	N2-C14-C15	113.0 (3)
C4—C3—H3A	120.1	N_{2} C14 C10	100.8(2)
$C_3 - C_4 - C_5$	119.6 (5)	C15-C14-C10	1119(3)
$C_3 - C_4 - H_4 A$	120.2	N2— $C14$ — $H14A$	110.3
C_{5} C_{4} H_{4A}	120.2	C15-C14-H14A	110.3
C4-C5-C6	120.2	C10-C14-H14A	110.3
C4-C5-C11	122.0(1) 117.2(4)	C16-C15-C20	110.3 117.2(3)
C6-C5-C11	117.2(4) 120.2(3)	C16-C15-C14	117.2(3) 120.6(3)
C5-C6-C1	120.2(3) 115 8 (3)	$C_{10} = C_{15} = C_{14}$	120.0(3) 122.1(3)
C_{5}	113.6(3)	$C_{20} = C_{15} = C_{14}$	122.1(3) 121.8(4)
$C_{1} = C_{0} = C_{7}$	121.0(3)	C17 = C16 = U16	121.8 (4)
C^{8} C^{7} C^{6}	122.0(3) 128.6(3)	C17 = C16 = H16A	119.1
$C_8 = C_7 = H_7 \Lambda$	128.0 (5)	C13 - C10 - 1110A	119.1
C_{0} C_{1} H_{1} H_{2}	115.7	$C_{18} - C_{17} - C_{10}$	119.5 (5)
$C_0 = C_1 = \Pi/A$	113.7 120.1 (2)	$C_{16} = C_{17} = H_{17A}$	120.2
$C_{7} = C_{8} = C_{12}$	120.1(3) 126.0(2)	$C10 - C1^{2} - H1^{7}A$	120.2
$C^{-}_{-}C^{0}_{-}C^{13}$	120.0(3) 114.0(3)	C19 - C18 - C17	120.0 (4)
$C_{2} = C_{1} = C_{1}$	114.0(3) 122.8(2)	$C17 - C10 - \Pi10A$	120.0
N1 = C9 = C3	123.0(3) 114.0(2)	$C_1/-C_{10}$ $H_{1\delta A}$	120.0
$\begin{array}{ccc} 1 & 1 \\ 1 & 1$	114.9(3)	$C_{10} = C_{19} = C_{20}$	120.1 (4)
$C_0 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	121.3(3)	C10 - C19 - H19A	120.0
$C_{2} = C_{10} = C_{14}$	111.7(3) 102.5(2)	C_{20} — C_{19} — H_{19} A	120.0
$C_{2} = C_{10} = C_{14}$	102.5 (3)	C19 - C20 - C13	121.5 (4)
CII—CI0—CI4	119.6 (3)	C19 - C20 - C12	118.3 (3)

C9—C10—H10A	107.5	C15—C20—Cl2	120.2 (3)
C11—C10—H10A	107.5	O1—C21—N2	119.6 (3)
C14—C10—H10A	107.5	O1—C21—C22	123.2 (3)
C10-C11-C12	107.6 (3)	N2—C21—C22	117.2 (3)
C10—C11—H11A	110.2	C21—C22—H22A	109.5
C12—C11—H11A	110.2	C21—C22—H22B	109.5
C10-C11-H11B	110.2	H22A—C22—H22B	109.5
C12—C11—H11B	110.2	C21—C22—H22C	109.5
H11A—C11—H11B	108.5	H22A—C22—H22C	109.5
C11—C12—C13	113.0 (3)	H22B—C22—H22C	109.5
C9—N1—N2—C21	164.0 (3)	C7—C8—C13—C12	-146.9 (4)
C9—N1—N2—C14	6.5 (4)	C9—C8—C13—C12	32.2 (5)
C6—C1—C2—C3	-0.3 (6)	C11—C12—C13—C8	-50.2 (5)
C1—C2—C3—C4	1.9 (6)	C21—N2—C14—C15	72.4 (4)
C2—C3—C4—C5	-0.7 (6)	N1—N2—C14—C15	-130.5 (3)
C3—C4—C5—C6	-2.3 (6)	C21—N2—C14—C10	-168.0 (3)
C3—C4—C5—Cl1	177.0 (3)	N1-N2-C14-C10	-10.9 (3)
C4—C5—C6—C1	3.8 (5)	C9—C10—C14—N2	10.3 (3)
Cl1—C5—C6—C1	-175.6 (3)	C11—C10—C14—N2	134.5 (3)
C4—C5—C6—C7	-177.2 (3)	C9—C10—C14—C15	130.7 (3)
Cl1—C5—C6—C7	3.5 (4)	C11—C10—C14—C15	-105.1 (4)
C2-C1-C6-C5	-2.4 (5)	N2-C14-C15-C16	39.2 (4)
C2-C1-C6-C7	178.6 (4)	C10-C14-C15-C16	-73.8 (4)
C5—C6—C7—C8	148.7 (4)	N2-C14-C15-C20	-144.6 (3)
C1—C6—C7—C8	-32.4 (6)	C10-C14-C15-C20	102.4 (4)
C6—C7—C8—C9	-180.0 (3)	C20-C15-C16-C17	-1.1 (6)
C6—C7—C8—C13	-0.8 (6)	C14—C15—C16—C17	175.4 (4)
N2—N1—C9—C8	-178.2 (3)	C15—C16—C17—C18	0.5 (7)
N2—N1—C9—C10	1.4 (4)	C16—C17—C18—C19	0.3 (7)
C7—C8—C9—N1	-30.8 (5)	C17—C18—C19—C20	-0.6 (7)
C13—C8—C9—N1	150.0 (4)	C18—C19—C20—C15	-0.1 (6)
C7—C8—C9—C10	149.6 (4)	C18—C19—C20—Cl2	-178.7 (3)
C13—C8—C9—C10	-29.7 (5)	C16—C15—C20—C19	0.9 (5)
N1—C9—C10—C11	-137.2 (3)	C14—C15—C20—C19	-175.5 (3)
C8—C9—C10—C11	42.4 (5)	C16—C15—C20—Cl2	179.5 (3)
N1—C9—C10—C14	-8.0 (4)	C14—C15—C20—Cl2	3.1 (5)
C8—C9—C10—C14	171.6 (3)	N1—N2—C21—O1	-168.8 (3)
C9—C10—C11—C12	-55.0 (4)	C14—N2—C21—O1	-13.3 (5)
C14—C10—C11—C12	-174.6 (3)	N1—N2—C21—C22	12.4 (4)
C10-C11-C12-C13	61.1 (5)	C14—N2—C21—C22	167.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10A···Cl1 ⁱ	1.00	2.85	3.677 (4)	140

Symmetry code: (i) –*x*+1, –*y*+1, *z*–1/2.