

ISSN 2414-3146

Received 11 March 2016 Accepted 16 March 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; phenyltriazole; thiotriazole.

CCDC reference: 1468941

Structural data: full structural data are available from iucrdata.iucr.org

2-{[5-(4-Chlorophenoxymethyl)-4-phenyl-4*H*-1,2,4-triazol-3-yl]sulfanyl}-*N*-(4-nitrophenyl)acetamide

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Gamal A.-W. Ahmed,^e Etify A. Bakhite^e and Mustafa R. Albayati^{f*}

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

The title molecule, $C_{23}H_{18}ClN_5O_4S$, is in an 'extended' conformation. The central triazole ring makes dihedral angles of 58.14 (6), 86.29 (6) and 41.99 (6)°, respectively, with the adjacent phenyl, chlorophenyl and nitrophenyl rings. In the crystal, molecules are linked *via* a pair of N-H···N hydrogen bonds with an $R_2^2(16)$ ring motif, forming an inversion dimer. The dimers are connected by C-H···O hydrogen bonds into a tape structure along [011]. C-H··· π interactions between the tapes are also observed.

Structure description

1,2,4-Triazole and its derivatives represent one of the most biologically active class of heterocyclic compounds. There are a large number of drugs containing a 1,2,4-triazole nucleus in their structures. These include Ribavirin (antiviral), Rizatriptan (antimigraine), Estazolam and Alprazolam (anxiolytic), Letrozole and Anastrozole (breast cancer) (Godhani *et al.*, 2015). Others such as Itraconazole, Fluconazole and Posaconazole have been used for the treatment of fungal infection diseases (Godhani *et al.*, 2015). In view of the above facts, we report in this context the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal, molecules form a tape structure through $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2). $C-H\cdots \pi$ interactions between the tapes contribute to the stabilization of the molecular packing.

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme and 50% probability ellipsoids.

Synthesis and crystallization

A suspension of 5-(4-chlorphenoxy)methyl-4-phenyl-1,2,4triazoline-3-thione (10 mmol), chloro-*N*-(*p*-nitrophenyl)acetamide (10 mol) and anhydrous K_2CO_3 (2.0 g) in dry acetone (50 ml) was heated under reflux with stirring for 3 h. The hot reaction mixture was filtered to remove K_2CO_3 and the clear filtrate was evaporated until dryness. The solid residue was crystallized from ethanol to give the title compound. Yield: 93%; m.p. 207°C. IR (cm⁻¹): 3300 (NH), 1660 (C=O). ¹H NMR (CDCl₃, p.p.m.): δ 9.2 (*s*, 1H, NH), 6.7– 8.0 (*m*, 13H, ArH), 4.9 (*s*, 2H, OCH₂), 4.0 (*s*, 2H,SCH₂).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the

Figure 2

A packing diagram of the title compound, showing the tapes formed by $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds (blue and black dotted lines, respectively).

Table 1Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the 1,2,4-triazole (N1/N2/C9/N3/C8), benzene (C1–C6) and phenyl (C10–C15) rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N4-H4\cdots N1^{i}$	0.91	2.08	2.9934 (17)	176
$C15-H15\cdots O4^{ii}$	0.95	2.44	3.2324 (19)	140
$C5-H5\cdots Cg1^{iii}$	0.95	2.97	3.757 (2)	141
$C16-H16A\cdots Cg3^{iv}$	0.99	2.82	3.6284 (18)	139
$C22 - H22 \cdots Cg2^{v}$	0.95	2.69	3.5883 (16)	158

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 2, -y, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x + 1, y - 1, z - 1.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{23}H_{18}CIN_5O_4S$
M _r	495.93
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	8.1828 (2), 12.1541 (3), 12.3654 (3)
α, β, γ (°)	114.474 (1), 93.681 (1), 96.949 (1)
$V(Å^3)$	1102.14 (5)
Z	2
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.79
Crystal size (mm)	$0.21 \times 0.18 \times 0.03$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.80, 0.93
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8470, 4084, 3709
R _{int}	0.023
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.089, 1.04
No. of reflections	4084
No. of parameters	307
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.17, -0.35

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015b), SHELXL2014 (Sheldrick, 2015a), DIAMOND (Brandenburg & Putz, 2012).

Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.
- Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2015). *Indian J. Chem. Section B*, 54, 556–564.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160452 [doi:10.1107/S2414314616004521]

2-{[5-(4-Chlorophenoxymethyl)-4-phenyl-4*H*-1,2,4-triazol-3-yl]sulfanyl}-*N*-(4-nitrophenyl)acetamide

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Gamal A.-W. Ahmed, Etify A. Bakhite and Mustafa R. Albayati

2-{[5-(4-Chlorophenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N-(4-nitrophenyl)acetamide

Crystal data

 $C_{23}H_{18}CIN_5O_4S$ $M_r = 495.93$ Triclinic, *P*1 *a* = 8.1828 (2) Å *b* = 12.1541 (3) Å *c* = 12.3654 (3) Å *a* = 114.474 (1)° *β* = 93.681 (1)° *γ* = 96.949 (1)° *V* = 1102.14 (5) Å³

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (*SADABS*; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.089$ S = 1.044084 reflections 307 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 512 $D_x = 1.494 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathcal{A} Cell parameters from 6886 reflections $\theta = 4.0-72.3^{\circ}$ $\mu = 2.79 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.21 \times 0.18 \times 0.03 \text{ mm}$

 $T_{\min} = 0.80, T_{\max} = 0.93$ 8470 measured reflections
4084 independent reflections
3709 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 72.3^{\circ}, \theta_{min} = 4.0^{\circ}$ $h = -9 \rightarrow 10$ $k = -14 \rightarrow 13$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.4011P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv C11 0.04449 (14) -0.09452(6)1.08937 (5) 1.17426 (5) 0.02790 (12) **S**1 0.85499(5)0.52367 (4) 0.73580(3)01 0.45177 (13) 0.80389(9)1.06669 (9) 0.0230(2)02 0.56493 (9) 0.0260(2) 0.96933 (13) 0.31268 (10) O3 1.30812 (16) -0.22278(10)0.30629 (10) 0.0333(3)04 1.43386(15) -0.21478(10)0.46972 (11) 0.0335(3)N1 0.70644(15)0.61703 (11) 1.04995 (11) 0.0215 (3) N2 0.0219(3)0.82617(15) 0.57622 (11) 0.97273 (11) N3 0.60856 (14) 0.59829(11) 0.87198 (10) 0.0184(2)N4 1.14142 (15) 0.27311 (11) 0.69377 (11) 0.0215(3)H4 0.026* 1.1865 0.3031 0.7717 N5 1.34798 (16) -0.17258(12)0.41598 (12) 0.0253(3)C1 0.0218(3)0.31563 (19) 0.86299 (14) 1.08991 (13) C2 0.0289(3) 0.3516(2) 0.98921 (15) 1.13020 (15) H2 1.1399 0.035* 0.4630 1.0278 C3 0.2256(2)1.05892 (16) 1.15629 (16) 0.0335(4)H3 0.2500 0.040* 1.1454 1.1848 C4 0.0633(2)1.00125 (16) 1.14047 (15) 0.0300(4)C5 0.87596 (16) 0.0266(2)1.09983 (14) 0.0281(3)H5 0.034* -0.08540.8376 1.0887 C6 0.15317 (19) 0.80536(14) 1.07504 (13) 0.0241(3)0.029* H6 0.1287 0.7191 1.0484 C7 0.42651 (18) 0.67518 (13) 1.03645 (13) 0.0208(3)H7A 0.9753 0.025* 0.3285 0.6324 H7B 0.4086 0.6607 1.1083 0.025* C8 0.57961 (18) 0.63017 (12) 0.98852 (12) 0.0189(3)C9 0.0197 (3) 0.76419 (17) 0.56569 (13) 0.86746 (13) C10 0.49571 (17) 0.58946 (13) 0.77336(12)0.0188(3)0.4338(2)C11 0.69254 (14) 0.77869 (14) 0.0255(3)0.031* H11 0.4648 0.7689 0.8467 C12 0.3251(2)0.0344(4)0.68181 (18) 0.68222 (15) H12 0.2811 0.041* 0.7514 0.6844 C13 0.2809(2)0.57079 (19) 0.58354 (15) 0.0354 (4) H13 0.2066 0.5643 0.5181 0.043* C14 0.3442(2)0.46872 (17) 0.57942 (14) 0.0299(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14	0.3138	0.3926	0.5109	0.036*	
C15	0.45185 (19)	0.47706 (14)	0.67500 (13)	0.0230 (3)	
H15	0.4946	0.4071	0.6730	0.028*	
C16	1.02531 (19)	0.45839 (14)	0.77244 (13)	0.0244 (3)	
H16A	1.1299	0.5171	0.7933	0.029*	
H16B	1.0057	0.4410	0.8424	0.029*	
C17	1.03937 (17)	0.34014 (13)	0.66470 (13)	0.0203 (3)	
C18	1.18868 (18)	0.16229 (13)	0.61799 (13)	0.0202 (3)	
C19	1.27723 (18)	0.10494 (14)	0.67439 (13)	0.0227 (3)	
H19	1.3019	0.1421	0.7592	0.027*	
C20	1.32914 (19)	-0.00431 (14)	0.60902 (13)	0.0237 (3)	
H20	1.3893	-0.0429	0.6477	0.028*	
C21	1.29176 (18)	-0.05704 (13)	0.48524 (13)	0.0222 (3)	
C22	1.20524 (19)	-0.00199 (14)	0.42706 (13)	0.0232 (3)	
H22	1.1816	-0.0396	0.3422	0.028*	
C23	1.15320 (19)	0.10814 (14)	0.49296 (13)	0.0231 (3)	
H23	1.0939	0.1466	0.4537	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0467 (3)	0.0525 (3)	0.0530 (3)	0.0368 (2)	0.0247 (2)	0.0304 (2)
S 1	0.0279 (2)	0.0415 (2)	0.02153 (19)	0.02142 (17)	0.00882 (15)	0.01553 (16)
01	0.0191 (5)	0.0182 (5)	0.0288 (5)	0.0078 (4)	0.0043 (4)	0.0056 (4)
O2	0.0258 (5)	0.0308 (6)	0.0187 (5)	0.0112 (5)	-0.0004 (4)	0.0067 (4)
O3	0.0445 (7)	0.0286 (6)	0.0223 (6)	0.0105 (5)	0.0096 (5)	0.0045 (5)
O4	0.0361 (6)	0.0279 (6)	0.0365 (6)	0.0152 (5)	0.0051 (5)	0.0111 (5)
N1	0.0220 (6)	0.0234 (6)	0.0170 (6)	0.0089 (5)	0.0021 (5)	0.0053 (5)
N2	0.0206 (6)	0.0253 (6)	0.0186 (6)	0.0098 (5)	0.0030 (5)	0.0063 (5)
N3	0.0177 (6)	0.0205 (6)	0.0169 (6)	0.0092 (5)	0.0023 (5)	0.0061 (4)
N4	0.0226 (6)	0.0235 (6)	0.0160 (6)	0.0089 (5)	0.0011 (5)	0.0049 (5)
N5	0.0260 (7)	0.0227 (6)	0.0256 (7)	0.0058 (5)	0.0083 (5)	0.0076 (5)
C1	0.0220 (7)	0.0243 (7)	0.0203 (7)	0.0107 (6)	0.0047 (6)	0.0085 (6)
C2	0.0275 (8)	0.0237 (8)	0.0349 (8)	0.0074 (7)	0.0060 (7)	0.0108 (6)
C3	0.0397 (9)	0.0246 (8)	0.0398 (9)	0.0144 (7)	0.0108 (8)	0.0138 (7)
C4	0.0320 (9)	0.0357 (9)	0.0312 (8)	0.0214 (7)	0.0122 (7)	0.0175 (7)
C5	0.0231 (7)	0.0354 (9)	0.0291 (8)	0.0102 (7)	0.0067 (6)	0.0151 (7)
C6	0.0238 (7)	0.0254 (7)	0.0235 (7)	0.0086 (6)	0.0055 (6)	0.0091 (6)
C7	0.0206 (7)	0.0190 (7)	0.0208 (7)	0.0064 (6)	0.0038 (6)	0.0055 (5)
C8	0.0205 (7)	0.0171 (6)	0.0173 (6)	0.0058 (6)	0.0025 (5)	0.0048 (5)
C9	0.0177 (7)	0.0201 (7)	0.0202 (7)	0.0077 (6)	0.0023 (5)	0.0064 (5)
C10	0.0164 (6)	0.0244 (7)	0.0174 (7)	0.0074 (6)	0.0021 (5)	0.0095 (5)
C11	0.0296 (8)	0.0262 (8)	0.0250 (7)	0.0129 (6)	0.0065 (6)	0.0125 (6)
C12	0.0390 (9)	0.0474 (10)	0.0313 (9)	0.0273 (8)	0.0115 (8)	0.0246 (8)
C13	0.0283 (8)	0.0634 (12)	0.0216 (8)	0.0206 (8)	0.0050 (7)	0.0211 (8)
C14	0.0237 (7)	0.0418 (9)	0.0187 (7)	0.0062 (7)	0.0020 (6)	0.0073 (6)
C15	0.0220 (7)	0.0252 (7)	0.0205 (7)	0.0077 (6)	0.0037 (6)	0.0074 (6)
C16	0.0206 (7)	0.0287 (8)	0.0201 (7)	0.0113 (6)	0.0014 (6)	0.0049 (6)

data reports

C17 0.0	0164 (6) 0	0.0237 (7)	0.0198 (7)	0.0055 (6)	0.0037 (5)	0.0076 (6)
C18 0.0	0174 (6) 0	0.0219 (7)	0.0199 (7)	0.0059 (6)	0.0037 (5)	0.0066 (6)
C19 0.0	0228 (7) 0	0.0260 (7)	0.0176 (7)	0.0063 (6)	0.0020 (6)	0.0072 (6)
C20 0.0	0234 (7) 0	0.0258 (7)	0.0237 (7)	0.0082 (6)	0.0029 (6)	0.0113 (6)
C21 0.0	0213 (7) 0	0.0210 (7)	0.0222 (7)	0.0058 (6)	0.0068 (6)	0.0061 (6)
C20 0.0	0234 (7)	0.0238 (7)	0.0237 (7)	0.0082 (6)	0.0029 (6)	0.0061 (6)
C21 0.0	0213 (7)	0.0210 (7)	0.0222 (7)	0.0058 (6)	0.0068 (6)	
C22 0.0	0243 (7)	0.0254 (7)	0.0172 (7)	0.0048 (6)	0.0028 (6)	0.0062 (6)
C23 0.0	0241 (7)	0.0261 (8)	0.0189 (7)	0.0081 (6)	0.0019 (6)	0.0084 (6)

Geometric parameters (Å, °)

Cl1—C4	1.7387 (16)	C7—C8	1.487 (2)
S1—C9	1.7383 (15)	C7—H7A	0.9900
S1—C16	1.8061 (15)	С7—Н7В	0.9900
01—C1	1.3796 (18)	C10—C11	1.386 (2)
O1—C7	1.4343 (18)	C10—C15	1.387 (2)
O2—C17	1.2181 (18)	C11—C12	1.392 (2)
O3—N5	1.2360 (17)	C11—H11	0.9500
O4—N5	1.2281 (18)	C12—C13	1.379 (3)
N1—C8	1.3111 (19)	C12—H12	0.9500
N1—N2	1.4010 (18)	C13—C14	1.384 (3)
N2—C9	1.3151 (18)	C13—H13	0.9500
N3—C8	1.3734 (19)	C14—C15	1.389 (2)
N3—C9	1.3765 (18)	C14—H14	0.9500
N3—C10	1.4403 (17)	C15—H15	0.9500
N4—C17	1.3634 (19)	C16—C17	1.525 (2)
N4—C18	1.4031 (18)	C16—H16A	0.9900
N4—H4	0.9098	C16—H16B	0.9900
N5-C21	1.4586 (19)	C18—C19	1.399 (2)
C1—C2	1.388 (2)	C18—C23	1.400 (2)
C1—C6	1.389 (2)	C19—C20	1.374 (2)
C2—C3	1.383 (2)	C19—H19	0.9500
C2—H2	0.9500	C20—C21	1.388 (2)
C3—C4	1.386 (3)	C20—H20	0.9500
С3—Н3	0.9500	C21—C22	1.384 (2)
C4—C5	1.377 (2)	C22—C23	1.384 (2)
C5—C6	1.393 (2)	C22—H22	0.9500
С5—Н5	0.9500	C23—H23	0.9500
С6—Н6	0.9500		
C9—S1—C16	100.00 (7)	C11—C10—N3	119.63 (13)
C1C7	117.68 (12)	C15—C10—N3	118.71 (13)
C8—N1—N2	107.77 (12)	C10—C11—C12	118.59 (15)
C9 - N2 - N1	106.62 (11)	C10—C11—H11	120.7
C8—N3—C9	104.71 (11)	C12—C11—H11	120.7
C8—N3—C10	127.83 (12)	C13—C12—C11	120.44 (15)
C9—N3—C10	127.22 (12)	C13—C12—H12	119.8
C17—N4—C18	128.21 (12)	C11—C12—H12	119.8
C17—N4—H4	117.2	C12—C13—C14	120.28 (15)

C18—N4—H4	114.6	C12—C13—H13	119.9
O4—N5—O3	123.20 (13)	C14—C13—H13	119.9
O4—N5—C21	118.18 (13)	C13—C14—C15	120.28 (15)
O3—N5—C21	118.62 (13)	C13—C14—H14	119.9
O1—C1—C2	114.63 (14)	C15—C14—H14	119.9
O1—C1—C6	124.88 (14)	C10—C15—C14	118.74 (15)
C2—C1—C6	120.50 (14)	C10—C15—H15	120.6
C3—C2—C1	120.19 (16)	C14—C15—H15	120.6
C3—C2—H2	119.9	C17—C16—S1	109.03 (10)
C1—C2—H2	119.9	C17—C16—H16A	109.9
$C_{2}-C_{3}-C_{4}$	119 29 (16)	S1—C16—H16A	109.9
C2—C3—H3	120.4	C17—C16—H16B	109.9
C4—C3—H3	120.4	S1—C16—H16B	109.9
$C_{5}-C_{4}-C_{3}$	120.85 (15)	H16A—C16—H16B	108.3
C_{5} C_{4} C_{11}	120.03(13) 120.03(14)	Ω^2 — $C17$ —N4	125 33 (13)
$C_3 - C_4 - C_{11}$	119 12 (13)	02 - C17 - C16	122.55 (13)
C4-C5-C6	120.16(15)	N4-C17-C16	122.09(13)
$C_{4} = C_{5} = C_{0}$	110.0	$C_{10} C_{18} C_{23}$	111.90(12)
C4-C5-H5	119.9	$C_{19} = C_{18} = C_{23}$	119.01(13) 116.02(13)
$C_0 = C_5 = H_5$	119.9	$C_{13} = C_{10} = N_4$	110.02(13) 124.27(13)
C1 = C6 = U6	119.00 (13)	$C_{23} = C_{10} = N_4$	124.37(13) 121.02(12)
$C_1 = C_0 = H_0$	120.5	$C_{20} = C_{19} = C_{18}$	121.02 (13)
C_{3} C_{7} C_{8}	120.3	С18 С10 Ц10	119.5
01 - 07 - 08	106.20 (12)	C18—C19—H19	119.5
OI - C / - H / A	110.5	C19 - C20 - C21	118.54 (14)
C8 - C / - H / A	110.5	C19—C20—H20	120.7
01—C/—H/B	110.5	С21—С20—Н20	120.7
С8—С7—Н7В	110.5	C22—C21—C20	121.67 (14)
Н7А—С7—Н7В	108.7	C22—C21—N5	119.88 (13)
N1—C8—N3	110.23 (13)	C20—C21—N5	118.45 (13)
N1—C8—C7	125.83 (13)	C21—C22—C23	119.76 (14)
N3—C8—C7	123.93 (12)	C21—C22—H22	120.1
N2—C9—N3	110.67 (13)	C23—C22—H22	120.1
N2—C9—S1	128.89 (11)	C22—C23—C18	119.40 (13)
N3—C9—S1	120.39 (10)	С22—С23—Н23	120.3
C11—C10—C15	121.66 (13)	C18—C23—H23	120.3
C8—N1—N2—C9	-0.55 (16)	C8—N3—C10—C15	-118.65 (16)
C7—O1—C1—C2	173.83 (13)	C9—N3—C10—C15	54.9 (2)
C7—O1—C1—C6	-6.6 (2)	C15—C10—C11—C12	-0.1 (2)
O1—C1—C2—C3	179.81 (15)	N3—C10—C11—C12	179.91 (14)
C6—C1—C2—C3	0.2 (2)	C10-C11-C12-C13	-0.2 (3)
C1—C2—C3—C4	-0.7 (3)	C11—C12—C13—C14	0.0 (3)
C2—C3—C4—C5	0.3 (3)	C12—C13—C14—C15	0.5 (3)
C2—C3—C4—Cl1	179.61 (13)	C11—C10—C15—C14	0.6 (2)
C3—C4—C5—C6	0.6 (3)	N3-C10-C15-C14	-179.44 (13)
Cl1—C4—C5—C6	-178.67 (12)	C13—C14—C15—C10	-0.7 (2)
O1—C1—C6—C5	-178.85 (14)	C9—S1—C16—C17	136.78 (11)
C2—C1—C6—C5	0.7 (2)	C18—N4—C17—O2	0.8 (3)
			× /

C4—C5—C6—C1	-1.1 (2)	C18—N4—C17—C16	-177.53 (14)
C1C8	166.87 (12)	S1—C16—C17—O2	14.43 (19)
N2—N1—C8—N3	0.69 (16)	S1—C16—C17—N4	-167.17 (11)
N2—N1—C8—C7	-178.20 (13)	C17—N4—C18—C19	-171.74 (14)
C9—N3—C8—N1	-0.55 (16)	C17—N4—C18—C23	8.4 (2)
C10—N3—C8—N1	174.12 (13)	C23—C18—C19—C20	-0.4 (2)
C9—N3—C8—C7	178.37 (13)	N4-C18-C19-C20	179.69 (14)
C10—N3—C8—C7	-7.0 (2)	C18—C19—C20—C21	0.0 (2)
O1-C7-C8-N1	95.45 (17)	C19—C20—C21—C22	0.4 (2)
O1—C7—C8—N3	-83.30 (16)	C19—C20—C21—N5	179.58 (14)
N1—N2—C9—N3	0.21 (16)	O4—N5—C21—C22	175.23 (14)
N1—N2—C9—S1	177.76 (11)	O3—N5—C21—C22	-4.3 (2)
C8—N3—C9—N2	0.19 (16)	O4—N5—C21—C20	-3.9 (2)
C10—N3—C9—N2	-174.52 (13)	O3—N5—C21—C20	176.57 (14)
C8—N3—C9—S1	-177.60 (10)	C20—C21—C22—C23	-0.3 (2)
C10—N3—C9—S1	7.7 (2)	N5-C21-C22-C23	-179.48 (14)
C16—S1—C9—N2	15.55 (16)	C21—C22—C23—C18	-0.1 (2)
C16—S1—C9—N3	-167.10 (12)	C19—C18—C23—C22	0.5 (2)
C8—N3—C10—C11	61.4 (2)	N4—C18—C23—C22	-179.62 (14)
C9—N3—C10—C11	-125.12 (16)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the 1,2,4-triazole (N1/N2/C9/N3/C8), benzene (C1-C6) and phenyl (C10-C15) rings, respectively.

	D—H	H···A	D···A	D—H···A
N4—H4…N1 ⁱ	0.91	2.08	2.9934 (17)	176
C15—H15…O4 ⁱⁱ	0.95	2.44	3.2324 (19)	140
C5—H5··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.97	3.757 (2)	141
C16—H16 <i>A</i> ··· <i>Cg</i> 3 ^{iv}	0.99	2.82	3.6284 (18)	139
C22—H22···Cg2 ^v	0.95	2.69	3.5883 (16)	158

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x+1, y-1, z-1.