

ISSN 2414-3146

Received 16 February 2016 Accepted 8 March 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; hexaethylguanidinium salt; iodidobismuthate.

CCDC reference: 1459096

Structural data: full structural data are available from iucrdata.iucr.org

Tris(N,N,N',N',N'',N''-hexaethylguanidinium)dodecaiodidotribismuthate(III)

Ioannis Tiritiris, Georg Knobloch, Stefan Saur and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

The asymmetric unit of title compound, $(C_{13}H_{30}N_3)_3[Bi_3I_{12}]$, comprises one cation and two independent (1/6) fragments of the $[Bi_3I_{12}]^{3-}$ ions. The C–N bond lengths in the guanidinium ion range from 1.340 (4) to 1.345 (4) Å, indicating partial double-bond character pointing towards charge delocalization within the NCN planes. The Bi^{III} ions are distorted octahedrally coordinated by six iodide ions, with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three $[BiI_6]^{3-}$ octahedra are fused together through face-sharing, forming a trinuclear $[Bi_3I_{12}]^{3-}$ unit.

Structure description

Peralkylated guanidinium ions with complex inorganic anions are considered to be organic-inorganic hybrid compounds. Their physical properties make them interesting for application in scanning electron microscopy (SEM), where the contrast and the brightness of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found that guanidinium iodidobismuthates are very suitable candidates for this purpose (Knobloch *et al.*, 2016). One of them is the here presented title compound. The asymmetric unit comprises one N,N,N',N',N'', N''-hexaethylguanidinium ion and two independent (1/6) fragments of the $[Bi_3I_{12}]^{3-}$ ions (Fig. 1). Both entire anions are constructed by the symmetry operators required to generate all equivalent positions, leading to two molecules with point group symmetry $\overline{3}$ (Fig. 2). Prominent bond parameters in the guanidinium ion are: C1-N1 = 1.342 (4) Å, C1-N2 = 1.340 (4) Å and C1-N3 = 1.345 (4) Å, indicating partial double-bond character. The N-C1-N angles are: 120.5 (3)° (N1-C1-N2), 120.5 (3)° (N2-C1-N3) and 119.0 (3)° (N1-C1-N3), indicating a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms (r.m.s.

Figure 1

An ellipsoid plot (50% probability level) of the title compound with atom labels for the asymmetric unit. H atoms have been omitted to enhance clarity.

deviation from the mean plane: 0.0009 Å). The positive charge is completely delocalized on the CN₃ plane.

The C–N and C–C bond lengths in the cation are in very good agreement with the data from the crystal structure analysis of known N,N,N',N',N'',N''-hexaethylguanidinium salts (Salchner *et al.*, 2014). The Bi^{III} ions are distorted octahedrally coordinated by six iodide ions with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three $[BiI_6]^{3-}$ octahedra are fused together through face-sharing, forming trinuclear $[Bi_3I_{12}]^{3-}$ units (Fig. 2). The bond lengths of bismuth to the terminal iodides [2.9206 (3)–2.9208 (3) Å] are shorter than the bridging ones [3.0504 (2)–3.3507 (3) Å]. The

12(iv) 12(iv) 12(iv) 12(iv) 11(ii) 11(ii) 11(ii) 11(ii) 11(ii) 12(iv) 11(ii) 12(ii) 12(ii) 12(ii) 13(ix) 13(ix)

Figure 2

Two independent $[Bi_3I_{12}]^{3-}$ ions in the crystal structure of the title compound [symmetry operators: (i) -y, x - y, z; (ii) -x + y, -x, z; (iii) -x, -y, -z; (iv) y, -x + y, -z; (v) x - y, x, -z; (vi) -x + y, -x + 1, z; (vii) -y + 1, x - y + 1, z; (viii) $-x + \frac{2}{3}, -y + \frac{4}{3}, -z + \frac{1}{3}$; (ix) $y - \frac{1}{3}, -x + y + \frac{1}{3}, -z + \frac{1}{3}$; (x) $x - y + \frac{2}{3}, x + \frac{1}{3}, -z + \frac{1}{3}$].

Table 1 Experimental details.	
Crystal data	
Chemical formula	$(C_{13}H_{30}N_3)_3[Bi_3I_{12}]$
M _r	2834.94
Crystal system, space group	Trigonal, $R\overline{3}$
Temperature (K)	100
a, c (Å)	18.7962 (11), 36.666 (2)
$V(\text{\AA}^3)$	11218.5 (17)
Ζ	6
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	12.03
Crystal size (mm)	$0.22 \times 0.15 \times 0.09$
Data collection	
Diffractometer	Bruker Kappa APEXII DUO
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.110, 0.288
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	67733, 7602, 6037
R _{int}	0.051
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.042, 1.05
No. of reflections	7602
No. of parameters	197
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.82, -1.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

same anionic arrangement was observed in the crystal structure of the complex $[Co(C_{12}H_8N_2)_3][CoI(C_{12}H_8N_2)_2(-H_2O)][Bi_3I_{12}]$ where the Bi-I bond lengths range from 2.853 (1) to 3.419 (1) Å (Chen *et al.*, 2011). Since no significant hydrogen bonding in the title compound exists, crystal packing is caused by electrostatic interactions between cations and anions.

Synthesis and crystallization

The title compound was obtained by mixing an ethanolic solution of N,N,N',N',N''-hexaethylguanidinium iodide with BiI₃/KI dissolved in aqueous ethanol at room temperature. The orange-colored precipitate was removed by filtration and washed with water and ethanol. The product was recrystallized from an acetonitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, D-53002 Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J., Chai, W., Song, L., Yang, Y. & Niu, F. (2011). Acta Cryst. E67, m1284–m1285.
- Knobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Salchner, R., Kahlenberg, V., Gelbrich, T., Wurst, K., Rauch, M., Laus, G. & Schottenberger, H. (2014). *Crystals*, **4**, 404–416.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160391 [doi:10.1107/S2414314616003916]

Tris(N,N,N',N',N'',N''-hexaethylguanidinium) dodecaiodidotribismuthate(III)

Ioannis Tiritiris, Georg Knobloch, Stefan Saur and Willi Kantlehner

Tris(N,N,N',N',N'',N''-hexaethylguanidinium) dodecaiodidotribismuthate(III)

Crystal data $D_{\rm x} = 2.518 {\rm Mg} {\rm m}^{-3}$ $(C_{13}H_{30}N_3)_3[Bi_3I_{12}]$ $M_r = 2834.94$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 67733 reflections Trigonal, R3 $\theta = 1.4 - 30.5^{\circ}$ a = 18.7962 (11) Åc = 36.666 (2) Å $\mu = 12.03 \text{ mm}^{-1}$ $V = 11218.5 (17) \text{ Å}^3$ T = 100 KZ = 6Block, red F(000) = 7632 $0.22 \times 0.15 \times 0.09 \text{ mm}$ Data collection Bruker Kappa APEXII DUO 67733 measured reflections diffractometer 7602 independent reflections Radiation source: fine-focus sealed tube 6037 reflections with $I > 2\sigma(I)$ Triumph monochromator $R_{\rm int} = 0.051$ φ scans, and ω scans $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ Absorption correction: multi-scan $h = -26 \rightarrow 26$ (SADABS; Krause et al., 2015) $k = -22 \rightarrow 26$ $T_{\min} = 0.110, \ T_{\max} = 0.288$ $l = -52 \rightarrow 52$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.024$ Hydrogen site location: inferred from $wR(F^2) = 0.042$ neighbouring sites S = 1.05H-atom parameters constrained 7602 reflections $w = 1/[\sigma^2(F_0^2) + (0.0142P)^2 + 2.3873P]$ where $P = (F_0^2 + 2F_c^2)/3$ 197 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -1.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bil	0.0000	0.0000	0.0000	0.01335 (6)	
Bi2	0.0000	0.0000	0.10942 (2)	0.01406 (5)	
I1	-0.11584 (2)	0.02617 (2)	0.04918 (2)	0.01666 (5)	
I2	0.11983 (2)	-0.02533 (2)	0.14950 (2)	0.02233 (5)	
Bi3	0.3333	0.6667	0.05163 (2)	0.01649 (5)	
Bi4	0.3333	0.6667	0.1667	0.01538 (6)	
I3	0.40727 (2)	0.58833 (2)	0.00951 (2)	0.02337 (5)	
I4	0.24421 (2)	0.72553 (2)	0.11467 (2)	0.02108 (5)	
C1	0.38631 (18)	0.05544 (18)	0.08341 (9)	0.0173 (7)	
N1	0.41659 (15)	0.02118 (15)	0.10615 (8)	0.0197 (6)	
C2	0.44533 (19)	-0.03422 (18)	0.09284 (10)	0.0230 (8)	
H2A	0.4232	-0.0538	0.0681	0.028*	
H2B	0.4244	-0.0827	0.1091	0.028*	
N2	0.33831 (15)	0.01246 (15)	0.05538 (7)	0.0174 (6)	
C3	0.5380 (2)	0.0089 (2)	0.09172 (11)	0.0335 (9)	
H3A	0.5587	0.0555	0.0748	0.050*	
H3B	0.5554	-0.0296	0.0834	0.050*	
H3C	0.5600	0.0289	0.1162	0.050*	
N3	0.40455 (15)	0.13338 (15)	0.08929 (8)	0.0193 (6)	
C4	0.4176 (2)	0.0326 (2)	0.14611 (10)	0.0256 (8)	
H4A	0.4237	0.0870	0.1514	0.031*	
H4B	0.4655	0.0315	0.1567	0.031*	
C5	0.3401 (2)	-0.0333 (2)	0.16385 (11)	0.0373 (10)	
H5A	0.2931	-0.0288	0.1554	0.056*	
H5B	0.3449	-0.0266	0.1904	0.056*	
H5C	0.3319	-0.0875	0.1573	0.056*	
C6	0.28081 (18)	-0.07622 (18)	0.05865 (10)	0.0219 (7)	
H6A	0.2850	-0.0946	0.0835	0.026*	
H6B	0.2964	-0.1059	0.0410	0.026*	
C7	0.19188 (19)	-0.0981 (2)	0.05155 (11)	0.0305 (9)	
H7A	0.1783	-0.0640	0.0670	0.046*	
H7B	0.1549	-0.1561	0.0573	0.046*	
H7C	0.1855	-0.0881	0.0258	0.046*	
C8	0.3391 (2)	0.0528 (2)	0.02067 (9)	0.0224 (7)	
H8A	0.3847	0.1104	0.0211	0.027*	
H8B	0.2870	0.0535	0.0182	0.027*	
C9	0.3494 (2)	0.0093 (2)	-0.01206 (10)	0.0295 (8)	
H9A	0.3984	0.0041	-0.0087	0.044*	
H9B	0.3556	0.0412	-0.0342	0.044*	
H9C	0.3009	-0.0455	-0.0144	0.044*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C10	0.48544 (18)	0.19572 (18)	0.10388 (10)	0.0213 (7)
H10A	0.5220	0.1719	0.1050	0.026*
H10B	0.4783	0.2103	0.1290	0.026*
C11	0.5259 (2)	0.2729 (2)	0.08076 (11)	0.0307 (9)
H11A	0.5345	0.2590	0.0560	0.046*
H11B	0.5789	0.3124	0.0915	0.046*
H11C	0.4903	0.2972	0.0798	0.046*
C12	0.3444 (2)	0.1600 (2)	0.08205 (10)	0.0266 (8)
H12A	0.2920	0.1121	0.0740	0.032*
H12B	0.3649	0.2007	0.0620	0.032*
C13	0.3285 (2)	0.1980 (2)	0.11561 (11)	0.0320 (9)
H13A	0.3080	0.1578	0.1355	0.048*
H13B	0.2874	0.2138	0.1097	0.048*
H13C	0.3797	0.2467	0.1231	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	0.01312 (8)	0.01312 (8)	0.01381 (15)	0.00656 (4)	0.000	0.000
Bi2	0.01439 (6)	0.01439 (6)	0.01338 (11)	0.00720 (3)	0.000	0.000
I1	0.01568 (9)	0.01750 (10)	0.01937 (12)	0.01022 (8)	0.00063 (8)	-0.00090 (9)
I2	0.02293 (11)	0.02274 (11)	0.02346 (13)	0.01303 (9)	-0.00595 (9)	0.00027 (9)
Bi3	0.01604 (6)	0.01604 (6)	0.01740 (12)	0.00802 (3)	0.000	0.000
Bi4	0.01445 (8)	0.01445 (8)	0.01723 (16)	0.00723 (4)	0.000	0.000
13	0.02558 (11)	0.02681 (11)	0.02443 (13)	0.01812 (10)	-0.00357 (10)	-0.00410 (10)
[4	0.02045 (10)	0.02005 (10)	0.02619 (13)	0.01272 (9)	-0.00040 (9)	0.00197 (9)
C1	0.0141 (14)	0.0174 (15)	0.0196 (18)	0.0072 (12)	0.0007 (13)	-0.0056 (14)
N1	0.0217 (14)	0.0149 (13)	0.0213 (17)	0.0083 (11)	-0.0047 (12)	-0.0033 (12)
C2	0.0259 (17)	0.0153 (15)	0.029 (2)	0.0116 (14)	-0.0049 (16)	-0.0060 (15)
N2	0.0145 (12)	0.0143 (12)	0.0208 (16)	0.0051 (10)	-0.0032 (11)	-0.0048 (11)
С3	0.029 (2)	0.039 (2)	0.038 (3)	0.0208 (17)	-0.0048 (18)	-0.0092 (19)
N3	0.0184 (13)	0.0186 (13)	0.0229 (16)	0.0107 (11)	-0.0063 (12)	-0.0057 (12)
C4	0.0302 (19)	0.0288 (18)	0.018 (2)	0.0149 (16)	-0.0057 (16)	-0.0037 (16)
C5	0.042 (2)	0.035 (2)	0.033 (3)	0.0183 (19)	0.009 (2)	0.0017 (19)
C6	0.0176 (15)	0.0164 (15)	0.026 (2)	0.0044 (13)	-0.0021 (15)	-0.0044 (14)
C7	0.0187 (17)	0.0304 (19)	0.038 (3)	0.0087 (15)	-0.0030 (16)	-0.0046 (18)
C8	0.0260 (17)	0.0268 (17)	0.0191 (19)	0.0166 (15)	-0.0024 (15)	-0.0007 (15)
C9	0.032 (2)	0.0320 (19)	0.026 (2)	0.0178 (17)	0.0009 (17)	-0.0028 (17)
C10	0.0186 (16)	0.0162 (15)	0.028 (2)	0.0080 (13)	-0.0070 (15)	-0.0067 (15)
C11	0.032 (2)	0.0207 (17)	0.036 (2)	0.0109 (15)	0.0021 (18)	-0.0031 (17)
C12	0.0247 (17)	0.0298 (18)	0.033 (2)	0.0196 (15)	-0.0132 (16)	-0.0129 (17)
C13	0.0287 (19)	0.033 (2)	0.040 (3)	0.0195 (17)	-0.0111 (18)	-0.0190 (18)

Geometric parameters (Å, °)

Bi1—I1 ⁱ	3.0504 (2)	С3—Н3В	0.9800
Bi1—I1 ⁱⁱ	3.0504 (2)	С3—Н3С	0.9800
Bi1—I1 ⁱⁱⁱ	3.0504 (2)	N3—C12	1.471 (4)

Bi1—I1 ^{iv}	3.0504 (2)	N3—C10	1.480 (4)
Bi1—I1 ^v	3.0504 (2)	C4—C5	1.508 (5)
Bi1—I1	3.0504 (2)	C4—H4A	0.9900
Bi2—I2 ⁱ	2.9208 (3)	C4—H4B	0.9900
Bi2—I2 ⁱⁱ	2.9208 (3)	С5—Н5А	0.9800
Bi2—I2	2.9208 (3)	С5—Н5В	0.9800
Bi2—I1	3.3065 (3)	С5—Н5С	0.9800
Bi2—I1 ⁱ	3.3065 (3)	C6—C7	1.531 (4)
Bi2—I1 ⁱⁱ	3.3065 (3)	C6—H6A	0.9900
Bi3—I3 ^{vi}	2.9206 (3)	C6—H6B	0.9900
Bi3—I3 ^{vii}	2.9206 (3)	С7—Н7А	0.9800
Bi3—I3	2.9206 (3)	C7—H7B	0.9800
Bi3—I4	3.3507 (3)	С7—Н7С	0.9800
Bi3—I4 ^{vi}	3.3507 (3)	C8—C9	1.518 (5)
Bi3—I4 ^{vii}	3.3507 (3)	C8—H8A	0.9900
Bi4—I4 ^{vii}	3.0853 (2)	C8—H8B	0.9900
Bi4—I4 ^{vi}	3.0853 (2)	С9—Н9А	0.9800
Bi4—I4	3.0853 (2)	С9—Н9В	0.9800
Bi4—I4 ^{viii}	3.0853 (2)	С9—Н9С	0.9800
Bi4—I4 ^{ix}	3.0853 (2)	C10—C11	1.516 (5)
Bi4—I4 ^x	3.0853 (2)	C10—H10A	0.9900
C1—N2	1.340 (4)	C10—H10B	0.9900
C1—N1	1.342 (4)	C11—H11A	0.9800
C1—N3	1.345 (4)	C11—H11B	0.9800
N1—C2	1.476 (4)	C11—H11C	0.9800
N1—C4	1.480 (4)	C12—C13	1.526 (5)
C2—C3	1.511 (4)	C12—H12A	0.9900
C2—H2A	0.9900	C12—H12B	0.9900
C2—H2B	0.9900	С13—Н13А	0.9800
N2—C6	1.470 (4)	C13—H13B	0.9800
N2—C8	1.477 (4)	C13—H13C	0.9800
C3—H3A	0.9800		
I1 ⁱ —Bi1—I1 ^{iv}	180.000 (14)	H2A—C2—H2B	108.0
I1—Bi1—I1 ⁱⁱⁱ	180.0	C1 - N2 - C6	120.9 (3)
$I1^{ii}$ —Bi1—I1 ^v	180.0	C1-N2-C8	121.4 (3)
$I1^{i}$ Bi1 $I1^{ii}$	91.384 (7)	C6-N2-C8	117.7 (3)
$I1^{ii}$ —Bi1—I1 ^{iv}	91.384 (7)	C2—C3—H3A	109.5
II—BiI—II iv	91.384 (7)	C2—C3—H3B	109.5
II—BiI—II v	91 384 (7)	H_{3A} $-C_{3}$ $-H_{3B}$	109.5
I1 ⁱⁱ —Bi1—I1 ⁱⁱⁱ	91 384 (7)	$C^2 - C^3 - H^3C$	109.5
Il ⁱ —Bil—Il ^v	91.384 (7)	H3A—C3—H3C	109.5
I1 ⁱⁱⁱ —Bi1—I1 ^{iv}	88.616 (7)	H3B—C3—H3C	109.5
$I1^{iii}$ —Bi1—I1 ^v	88.616 (7)	C1—N3—C12	121.4 (3)
$I1^{iv}$ —Bi1—I1 ^v	88.616 (7)	C1-N3-C10	121.5(3)
$I1 - Bi1 - I1^{i}$	88.616 (7)	C12 - N3 - C10	117.2 (2)
I1—Bi1—I1 ⁱⁱ	88.616 (7)	N1—C4—C5	111.8 (3)
I1 ⁱ —Bi1—I1 ⁱⁱ	88.616 (7)	N1—C4—H4A	109.3

I2—Bi2—I1	168.28 (3)	C5—C4—H4A	109.3
I2 ⁱ —Bi2—I1 ⁱ	168.28 (3)	N1—C4—H4B	109.3
I2 ⁱⁱ —Bi2—I1 ⁱⁱ	168.28 (3)	C5—C4—H4B	109.3
I2 ⁱ —Bi2—I2 ⁱⁱ	96.914 (8)	H4A—C4—H4B	107.9
I2—Bi2—I2 ⁱ	96.914 (8)	С4—С5—Н5А	109.5
I2—Bi2—I2 ⁱⁱ	96.914 (8)	C4—C5—H5B	109.5
I2 ⁱ —Bi2—I1 ⁱⁱ	91.151 (6)	H5A—C5—H5B	109.5
I2 ⁱⁱ —Bi2—I1	91.151 (6)	C4—C5—H5C	109.5
I2—Bi2—I1 i	91.151 (6)	H5A—C5—H5C	109.5
I2—Bi2—I1 ⁱⁱ	90.517 (7)	H5B—C5—H5C	109.5
$I2^{i}$ —Bi2—I1	90.517 (7)	N2—C6—C7	112.0 (3)
$I2^{ii}$ —Bi2—I1 ⁱ	90.517 (7)	N2—C6—H6A	109.2
$I1 - Bi2 - I1^{i}$	80 243 (8)	C7—C6—H6A	109.2
$I1 - Bi2 - I1^{ii}$	80 243 (8)	N2—C6—H6B	109.2
$I1^{i}$ $Bi2$ $I1^{ii}$	80 243 (8)	C7—C6—H6B	109.2
Bi1—I1—Bi2	78 156 (7)	H_{6A} C_{6} H_{6B}	107.9
I3I4	166.83 (2)	C6_C7_H7A	107.5
13 - B13 - 14 $13 vii B3 = 14 vii$	166.83(2)	C6 C7 H7B	109.5
13 - B13 - 14 $12 vi B; 2 14 vi$	100.03(2) 166.82(2)		109.5
13 - B13 - 14 12vii B:2 14	100.05(2)	H/A - C / - H/B	109.5
$13^{-1} $	97.555 (7)		109.5
$13 - D13 - 14^{12}$	97.555 (7)	H/A = C/ = H/C	109.5
$13^{1} - B13 - 14^{11}$	97.553 (7)	H/B = C/=H/C	109.5
13^{v_1} B13 -13^{v_1}	94.628 (9)	N2-C8-C9	112.1 (3)
13 ^{vi} —B13—13	94.628 (9)	N2—C8—H8A	109.2
13^{vn} —B13—13	94.628 (9)	C9—C8—H8A	109.2
13^{v_1} —Bi3—I4	89.373 (7)	N2—C8—H8B	109.2
$I3^{vn}$ —Bi3—I4 ^{vi}	89.373 (7)	С9—С8—Н8В	109.2
I3—Bi3—I4 ^{vii}	89.373 (7)	H8A—C8—H8B	107.9
I4—Bi3—I4 ^{vi}	77.653 (8)	С8—С9—Н9А	109.5
I4—Bi3—I4 ^{vii}	77.653 (8)	С8—С9—Н9В	109.5
I4 ^{vi} —Bi3—I4 ^{vii}	77.653 (8)	H9A—C9—H9B	109.5
$I4^{vii}$ —Bi4—I4 ^{ix}	180.0	С8—С9—Н9С	109.5
I4—Bi4—I4 ^{viii}	180.0	Н9А—С9—Н9С	109.5
I4 ^{vi} —Bi4—I4 ^x	180.0	Н9В—С9—Н9С	109.5
I4 ^{vii} —Bi4—I4 ^x	94.178 (7)	N3—C10—C11	112.4 (3)
I4 ^{vi} —Bi4—I4 ^{viii}	94.178 (7)	N3—C10—H10A	109.1
I4—Bi4—I4 ^{ix}	94.178 (7)	C11—C10—H10A	109.1
I4—Bi4—I4 ^x	94.178 (7)	N3—C10—H10B	109.1
I4 ^{vii} —Bi4—I4 ^{viii}	94.178 (7)	C11—C10—H10B	109.1
I4 ^{vi} —Bi4—I4 ^{ix}	94.178 (7)	H10A—C10—H10B	107.9
I4—Bi4—I4 ^{vii}	85.824 (7)	C10—C11—H11A	109.5
I4—Bi4—I4 ^{vi}	85.824 (7)	C10—C11—H11B	109.5
I4 ^{vii} —Bi4—I4 ^{vi}	85.824 (7)	H11A—C11—H11B	109.5
I4 ^{ix} —Bi4—I4 ^x	85.824 (7)	C10—C11—H11C	109.5
I4 ^{viii} —Bi4—I4 ^{ix}	85.824 (7)	H11A—C11—H11C	109.5
I4 ^{viii} —Bi4—I4 ^x	85.824 (7)	H11B—C11—H11C	109.5
Bi4—I4—Bi3	81.786 (7)	N3—C12—C13	112.2 (3)
N2—C1—N1	120.5 (3)	N3—C12—H12A	109.2
	\ - /		·

N2—C1—N3	120.5 (3)	C13—C12—H12A	109.2
N1—C1—N3	119.0 (3)	N3—C12—H12B	109.2
C1—N1—C2	121.8 (3)	C13—C12—H12B	109.2
C1—N1—C4	121.6 (3)	H12A—C12—H12B	107.9
C2—N1—C4	116.6 (3)	С12—С13—Н13А	109.5
N1—C2—C3	111.2 (3)	С12—С13—Н13В	109.5
N1—C2—H2A	109.4	H13A—C13—H13B	109.5
C3—C2—H2A	109.4	С12—С13—Н13С	109.5
N1—C2—H2B	109.4	H13A—C13—H13C	109.5
C3—C2—H2B	109.4	H13B—C13—H13C	109.5
N2-C1-N1-C2	38.7 (4)	N2-C1-N3-C10	-145.5 (3)
N3—C1—N1—C2	-141.6 (3)	N1-C1-N3-C10	34.8 (5)
N2-C1-N1-C4	-137.1 (3)	C1—N1—C4—C5	90.0 (4)
N3—C1—N1—C4	42.6 (4)	C2—N1—C4—C5	-85.9 (3)
C1—N1—C2—C3	103.7 (4)	C1—N2—C6—C7	121.5 (3)
C4—N1—C2—C3	-80.4 (4)	C8—N2—C6—C7	-56.4 (4)
N1-C1-N2-C6	34.8 (4)	C1—N2—C8—C9	129.8 (3)
N3—C1—N2—C6	-144.8 (3)	C6—N2—C8—C9	-52.3 (4)
N1-C1-N2-C8	-147.3 (3)	C1—N3—C10—C11	128.1 (3)
N3—C1—N2—C8	33.0 (4)	C12—N3—C10—C11	-52.8 (4)
N2-C1-N3-C12	35.5 (5)	C1—N3—C12—C13	123.8 (3)
N1-C1-N3-C12	-144.2 (3)	C10—N3—C12—C13	-55.2 (4)

Symmetry codes: (i) -*y*, *x*-*y*, *z*; (ii) -*x*+*y*, -*x*, *z*; (iii) -*x*, -*y*, -*z*; (iv) *y*, -*x*+*y*, -*z*; (v) *x*-*y*, *x*, -*z*; (vi) -*x*+*y*, -*x*+1, *z*; (vii) -*y*+1, *x*-*y*+1, *z*; (viii) -*x*+2/3, -*y*+4/3, -*z*+1/3; (ix) *y*-1/3, -*x*+*y*+1/3, -*z*+1/3; (x) *x*-*y*+2/3, *x*+1/3, -*z*+1/3.