

ISSN 2414-3146

Received 19 March 2016 Accepted 21 March 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; hexamethylguanidinium salt; 1,1,3,3-tetracyano-prop-2-en-1-ide.

CCDC reference: 1469774

Structural data: full structural data are available from iucrdata.iucr.org

N,*N*,*N'*,*N''*,*N''*,*N''*-Hexamethylguanidinium 1,1,3,3-tetracyanoprop-2-en-1-ide

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

The asymmetric unit of the title salt, $C_7H_{18}N_3^+ \cdot C_7HN_4^-$, comprises one cation and one anion. The N,N,N',N',N'',N''-hexamethylguanidinium ion shows orientational disorder and two sets of N- and C-atom positions were found, with an occupancy ratio of 0.535 (3):0.465 (3). The C–N bond lengths in the guanidinium ion range from 1.339 (16) to 1.35 (2) Å, indicating partial doublebond character pointing towards charge delocalization within the NCN planes. The negative charge in the 1,1,3,3-tetracyanoprop-2-en-1-ide ion is delocalized within the CCC planes with the C–C bonds ranging in length from 1.379 (3) to 1.427 (3) Å, also indicating partial double-bond character.

Structure description

The reaction of phosgene with N,N,N',N'-tetramethylurea yields N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), which can be transformed by a mixture of dimethylamine and triethylamine into a mixture of N,N,N',N',N'',N''-hexamethylguanidinium chloride and triethylamine hydrochloride. Treating the salt mixture with an aqueous sodium hydroxide solution leads, after work up, to the pure guanidinium chloride. A further anion exchange was possible by reacting N,N,N',N',N'',N''-hexamethylguanidinium chloride with sodium 1,1,3,3-tetracyano-prop-2-en-1-ide in acetonitrile. According to the structure analysis, the asymmetric unit contains one N,N,N',N',N'',N''-hexamethylguanidinium ion and one 1,1,3,3-tetracyano-prop-2-en-1-ide ion (Fig. 1).

The cation shows orientational disorder and two sets of N and C positions were found, with an occupancy ratio of 0.535 (3):0.465 (3) (Fig. 2). The C–N bond lengths in the guanidinium ion range from 1.339 (16) to 1.35 (2) Å, indicating partial double-bond character. The N–C–N angles range from 119 (2) to 121.0 (15)°, indicating a nearly ideal trigonal-planar surrounding of the carbon atom C1 by the nitrogen atoms. The

Figure 1

The structure of the title compound, with displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity (except for H9). Only the major orientation of the disordered cation is shown.

positive charge is completely delocalized in the CN₃ planes. The C–N bond lengths in the cation are in very good agreement with the data from the crystal structure analysis of known N,N,N',N',N'',N''-hexamethylguanidinium salts [see, for example: tetraphenylborate: Frey *et al.* (1998); chloride: Oelkers & Sundermeyer (2011); cyanate: Tiritiris & Kantlehner (2015)].

The negative charge in the 1,1,3,3-tetracyano-prop-2-en-1ide ion is delocalized within the CCC planes and the C–C bond distances also indicate partial double-bond character [d(C8-C9) = 1.386 (3) Å; d(C9-C10) = 1.379 (3) Å; d(C8-C11) = 1.421 (3) Å; d(C8-C12) = 1.425 (3) Å; d(C10-C13) =1.426 (3) Å; d(C10-C14) = 1.427 (3) Å]. The C–N bond lengths are in the range 1.148 (3) to 1.153 (3) Å and are characteristic for a triple bond. The dihedral angle between the C11-C8-C12 and the C13-C10-C14 planes is 2.38 (1)°, indicating that the anion is nearly flat. A similar anionic

Figure 2

The structure of the orientationally disordered N,N,N',N'',N''-hexamethylguanidinium ion. The C and N atoms are disordered between the dark (major orientation) and the opaque (minor orientation) positions. All H atoms have been omitted for clarity.

Fable 1	
Experimental	details.

Crystal data	
Chemical formula	$C_7H_{18}N_3^+ \cdot C_7HN_4^-$
M _r	285.36
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	7.7705 (5), 9.8189 (6), 21.5478 (14)
$V(Å^3)$	1644.05 (18)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.20\times0.14\times0.10$
Data collection	
Diffractometer	Bruker Kappa APEXII DUO
Absorption correction	Multi-scan (Blessing, 1995)
T_{\min}, \dot{T}_{\max}	0.720, 0.745
No. of measured, independent and	12519, 3368, 2709
observed $[I > 2\sigma(I)]$ reflections	0.000
\mathcal{K}_{int}	0.039
$\sin \theta / \lambda)_{\rm max} ({\rm A}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.076, 1.02
No. of reflections	3368
No. of parameters	293
No. of restraints	171
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.11, -0.13

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg & Putz, 2005).

arrangement was observed in the crystal structure of the compound 2,2'-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide, with the C–C bond lengths ranging from 1.3956 (16) to 1.4261 (17) Å and the C–N bond lengths in the range 1.1471 (17) to 1.1522 (16) Å (Setifi *et al.*, 2015). Since no significant hydrogen bonding exists in the title compound, the crystal packing results from electrostatic interactions between the cations and anions (Fig. 3).

Figure 3

Molecular packing of the title compound (view along *ac*). Both orientations of the disordered N, N, N', N', N''-hexamethylguanidinium ion are shown.

Synthesis and crystallization

The title compound was obtained by mixing an acetonitrile solution of N,N,N',N',N'',N''-hexamethylguanidinium chloride with sodium 1,1,3,3-tetracyano-prop-2-en-1-ide dissolved in acetonitrile and stirring it for 18 h at room temperature. The precipitated sodium chloride was removed by filtration. After removal of the acetonitrile, the colorless residue was crystallized from an ethanolic solution. After evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis emerged.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The title compound crystallizes in the non-centrosymmetric space group $P2_12_12_1$; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = -0.4 (10) (Parsons *et al.*, 2013) is essentially meaningless. The atoms C1–C7 and N1–N3 of the cation are disordered over two sets of sites (C1A/C1B– C7A/C7B and N1A/N1B–N3A/N3B) with refined occupancies of 0.535 (3):0.465 (3). The major and minor disordered components were each restrained to have similar geometries and the U^{ij} components of the ADPs of the corresponding atoms were restrained to be similar if closer than 1.7 Å.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, D-53002 Bonn, Germany.
- Bruker (2008). APEXII and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Frey, W., Vettel, M., Edelmann, K. & Kantlehner, W. (1998). Z. *Kristallogr.* **213**, 77–78.
- Oelkers, B. & Sundermeyer, J. (2011). Green Chem. 13, 608-618.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). *Acta Cryst.* E**71**, 509–515.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.
- Tiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1076-o1077.

full crystallographic data

IUCrData (2016). **1**, x160478 [doi:10.1107/S2414314616004788]

N,N,N',N',N'',N''-Hexamethylguanidinium 1,1,3,3-tetracyanoprop-2-en-1-ide

 $D_{\rm x} = 1.153 {\rm Mg m^{-3}}$

 $\theta = 1.9-26.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Block, colorless

 $0.20 \times 0.14 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 1.9^\circ$

12519 measured reflections 3368 independent reflections 2709 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.039$

 $h = -9 \rightarrow 9$ $k = -12 \rightarrow 11$ $l = -26 \rightarrow 25$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 12519 reflections

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner

N,N,N',N',N'',N''-hexamethylguanidinium 1,1,3,3-tetracyanoprop-2-en-1-ide

Crystal data

 $C_7H_{18}N_3^{+}C_7HN_4^{-}$ $M_r = 285.36$ Orthorhombic, $P2_12_12_1$ a = 7.7705 (5) Å b = 9.8189 (6) Å c = 21.5478 (14) Å V = 1644.05 (18) Å³ Z = 4F(000) = 608

Data collection

Bruker Kappa APEXII DUO
diffractometer
Radiation source: fine-focus sealed tube
Triumph monochromator
φ scans, and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\min} = 0.720, T_{\max} = 0.745$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.02	H-atom parameters constrained
3368 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2 + 0.107P]$
293 parameters	where $P = (F_o^2 + 2F_c^2)/3$
171 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1A	0.473 (2)	0.769 (4)	0.1683 (15)	0.018 (2)	0.535 (3)
C2A	0.727 (2)	0.7960 (18)	0.1024 (8)	0.034 (4)	0.535 (3)
H2A	0.7249	0.8883	0.1197	0.051*	0.535 (3)
H2B	0.7264	0.8011	0.0570	0.051*	0.535 (3)
H2C	0.8315	0.7491	0.1163	0.051*	0.535 (3)
C3A	0.5426 (8)	0.5938 (8)	0.0903 (4)	0.0299 (15)	0.535 (3)
H3A	0.4501	0.5437	0.1111	0.045*	0.535 (3)
H3B	0.6473	0.5381	0.0899	0.045*	0.535 (3)
H3C	0.5082	0.6143	0.0476	0.045*	0.535 (3)
C4A	0.201 (2)	0.727 (2)	0.2239 (7)	0.028 (3)	0.535 (3)
H4A	0.1281	0.6456	0.2203	0.042*	0.535 (3)
H4B	0.1284	0.8074	0.2293	0.042*	0.535 (3)
H4C	0.2774	0.7170	0.2598	0.042*	0.535 (3)
C5A	0.209 (2)	0.7339 (19)	0.1085 (9)	0.027 (3)	0.535 (3)
H5A	0.2879	0.7514	0.0739	0.041*	0.535 (3)
H5B	0.1173	0.8023	0.1084	0.041*	0.535 (3)
H5C	0.1588	0.6429	0.1040	0.041*	0.535 (3)
C6A	0.7115 (10)	0.8155 (9)	0.2409 (4)	0.0289 (15)	0.535 (3)
H6A	0.7554	0.7291	0.2246	0.043*	0.535 (3)
H6B	0.7045	0.8105	0.2863	0.043*	0.535 (3)
H6C	0.7893	0.8895	0.2290	0.043*	0.535 (3)
C7A	0.446 (2)	0.9560 (16)	0.2432 (9)	0.027 (3)	0.535 (3)
H7A	0.3447	0.9769	0.2179	0.040*	0.535 (3)
H7B	0.5214	1.0361	0.2449	0.040*	0.535 (3)
H7C	0.4098	0.9316	0.2853	0.040*	0.535 (3)
N1A	0.5760 (4)	0.7210 (3)	0.12360 (16)	0.0251 (8)	0.535 (3)
N2A	0.3046 (3)	0.7416 (3)	0.16741 (14)	0.0207 (8)	0.535 (3)
N3A	0.5401 (4)	0.8415 (3)	0.21540 (14)	0.0222 (8)	0.535 (3)
C1B	0.465 (2)	0.764 (5)	0.1653 (18)	0.020 (3)	0.465 (3)
C2B	0.7389 (14)	0.7854 (11)	0.2214 (4)	0.031 (2)	0.465 (3)
H2B1	0.6659	0.7618	0.2569	0.047*	0.465 (3)
H2B2	0.7886	0.8760	0.2278	0.047*	0.465 (3)
H2B3	0.8315	0.7183	0.2174	0.047*	0.465 (3)
C3B	0.735 (3)	0.805 (2)	0.1080 (9)	0.035 (4)	0.465 (3)
H3B1	0.6567	0.8222	0.0733	0.052*	0.465 (3)
H3B2	0.8028	0.7227	0.0994	0.052*	0.465 (3)
H3B3	0.8132	0.8827	0.1130	0.052*	0.465 (3)
C4B	0.411 (2)	0.9432 (18)	0.2423 (10)	0.027 (3)	0.465 (3)
H4B1	0.4591	0.9251	0.2835	0.040*	0.465 (3)
H4B2	0.3064	0.9983	0.2465	0.040*	0.465 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4B3	0.4955	0.9927	0.2172	0.040*	0.465 (3)
C5B	0.218 (3)	0.743 (3)	0.2362 (9)	0.030 (3)	0.465 (3)
H5B1	0.2096	0.6533	0.2168	0.045*	0.465 (3)
H5B2	0.1137	0.7959	0.2267	0.045*	0.465 (3)
H5B3	0.2284	0.7328	0.2813	0.045*	0.465 (3)
C6B	0.213 (2)	0.729 (2)	0.0983 (11)	0.032 (4)	0.465 (3)
H6B1	0.1353	0.6535	0.1091	0.048*	0.465 (3)
H6B2	0.2127	0.7416	0.0532	0.048*	0.465 (3)
H6B3	0.1737	0.8122	0.1186	0.048*	0.465 (3)
C7B	0.4713 (9)	0.5843 (10)	0.0862 (5)	0.0338 (19)	0.465 (3)
H7B1	0.5800	0.5614	0.1067	0.051*	0.465 (3)
H7B2	0.4942	0.6119	0.0432	0.051*	0.465 (3)
H7B3	0.3955	0.5045	0.0863	0.051*	0.465 (3)
N1B	0.6359 (4)	0.7857 (4)	0.16509 (19)	0.0248 (10)	0.465 (3)
N2B	0.3689 (5)	0.8151 (4)	0.21212 (17)	0.0214 (10)	0.465 (3)
N3B	0.3883 (4)	0.6959 (3)	0.11918 (17)	0.0227 (10)	0.465 (3)
N4	0.4223 (3)	-0.0855 (2)	-0.00048 (8)	0.0491 (6)	
N5	0.5394 (3)	0.2260 (2)	0.13383 (9)	0.0584 (6)	
N6	0.5537 (3)	0.46050 (19)	-0.16125 (9)	0.0439 (5)	
N7	0.4329 (3)	0.03094 (18)	-0.15091 (8)	0.0419 (5)	
C8	0.5027 (3)	0.1647 (2)	0.01848 (9)	0.0269 (5)	
C9	0.5256 (3)	0.2613 (2)	-0.02772 (9)	0.0277 (5)	
H9	0.5563	0.3494	-0.0133	0.033*	
C10	0.5110 (2)	0.2500 (2)	-0.09130 (9)	0.0255 (5)	
C11	0.4570 (3)	0.0269 (2)	0.00714 (9)	0.0299 (5)	
C12	0.5233 (3)	0.1998 (2)	0.08220 (11)	0.0366 (6)	
C13	0.5355 (3)	0.3669 (2)	-0.12963 (9)	0.0308 (5)	
C14	0.4672 (3)	0.1278 (2)	-0.12346 (9)	0.0284 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.022 (4)	0.013 (4)	0.019 (4)	0.002 (4)	-0.002 (4)	0.002 (4)
C2A	0.026 (6)	0.029 (5)	0.048 (7)	-0.006 (4)	0.010 (5)	-0.004 (5)
C3A	0.037 (4)	0.023 (3)	0.029 (3)	0.003 (3)	0.004 (4)	-0.007 (2)
C4A	0.028 (4)	0.038 (6)	0.019 (5)	-0.003 (3)	0.003 (3)	0.003 (4)
C5A	0.033 (5)	0.025 (4)	0.022 (5)	-0.007 (4)	-0.004 (3)	-0.001 (3)
C6A	0.023 (3)	0.036 (4)	0.028 (4)	0.003 (3)	-0.014 (3)	-0.002 (3)
C7A	0.027 (5)	0.022 (4)	0.032 (4)	0.001 (3)	-0.003 (4)	-0.008 (3)
N1A	0.0233 (17)	0.0238 (16)	0.0282 (18)	0.0004 (13)	0.0053 (14)	-0.0020 (14)
N2A	0.0192 (15)	0.0254 (16)	0.0176 (17)	-0.0042 (13)	0.0006 (13)	0.0001 (14)
N3A	0.0190 (16)	0.0221 (15)	0.0255 (17)	0.0000 (13)	-0.0064 (14)	-0.0002 (13)
C1B	0.025 (5)	0.017 (5)	0.019 (5)	0.000 (4)	0.001 (5)	0.002 (4)
C2B	0.030 (4)	0.031 (5)	0.034 (5)	0.000 (3)	-0.003 (3)	-0.004 (3)
C3B	0.024 (7)	0.058 (10)	0.021 (5)	0.002 (5)	0.008 (4)	0.003 (5)
C4B	0.042 (7)	0.018 (4)	0.020 (4)	-0.004 (4)	0.003 (5)	-0.001 (3)
C5B	0.027 (5)	0.032 (6)	0.031 (7)	-0.003 (4)	0.012 (6)	0.002 (6)
C6B	0.019 (5)	0.046 (7)	0.032 (7)	0.002 (4)	-0.010 (4)	0.002 (5)

C7B	0.038 (5)	0.030 (3)	0.033 (4)	0.002 (4)	0.000 (5)	-0.009 (2)
N1B	0.0181 (18)	0.032 (2)	0.025 (2)	0.0000 (15)	0.0009 (16)	0.0008 (18)
N2B	0.026 (2)	0.0186 (19)	0.019 (2)	-0.0001 (15)	0.0034 (16)	-0.0007 (15)
N3B	0.0215 (18)	0.0236 (19)	0.023 (2)	0.0026 (15)	0.0003 (16)	-0.0021 (17)
N4	0.0887 (17)	0.0356 (11)	0.0229 (10)	-0.0180 (12)	-0.0009 (11)	0.0039 (9)
N5	0.1007 (17)	0.0476 (12)	0.0270 (12)	-0.0207 (14)	-0.0035 (12)	-0.0047 (9)
N6	0.0597 (13)	0.0333 (10)	0.0389 (11)	-0.0060 (10)	0.0021 (11)	0.0079 (10)
N7	0.0726 (15)	0.0281 (10)	0.0248 (10)	0.0068 (10)	-0.0085 (10)	0.0000 (9)
C8	0.0345 (12)	0.0271 (10)	0.0190 (10)	-0.0037 (9)	0.0001 (9)	-0.0024 (8)
С9	0.0289 (11)	0.0244 (10)	0.0298 (11)	-0.0020 (9)	-0.0001 (9)	-0.0030 (9)
C10	0.0300 (12)	0.0220 (10)	0.0245 (10)	0.0011 (9)	0.0018 (8)	0.0018 (8)
C11	0.0395 (11)	0.0352 (12)	0.0150 (10)	-0.0053 (11)	-0.0001 (10)	0.0032 (9)
C12	0.0519 (15)	0.0290 (11)	0.0290 (12)	-0.0100 (11)	0.0002 (11)	-0.0009 (9)
C13	0.0357 (11)	0.0287 (11)	0.0281 (11)	-0.0008 (10)	0.0005 (10)	-0.0007 (10)
C14	0.0385 (11)	0.0270 (11)	0.0198 (10)	0.0080 (10)	-0.0005 (10)	0.0064 (9)

Geometric parameters (Å, °)

C1A—N2A	1.339 (17)	C2B—H2B3	0.9800
C1A—N1A	1.339 (16)	C3B—N1B	1.466 (16)
C1A—N3A	1.34 (3)	C3B—H3B1	0.9800
C2A—N1A	1.459 (14)	C3B—H3B2	0.9800
C2A—H2A	0.9800	C3B—H3B3	0.9800
C2A—H2B	0.9800	C4B—N2B	1.453 (16)
C2A—H2C	0.9800	C4B—H4B1	0.9800
C3A—N1A	1.464 (8)	C4B—H4B2	0.9800
СЗА—НЗА	0.9800	C4B—H4B3	0.9800
СЗА—НЗВ	0.9800	C5B—N2B	1.466 (17)
СЗА—НЗС	0.9800	C5B—H5B1	0.9800
C4A—N2A	1.466 (15)	C5B—H5B2	0.9800
C4A—H4A	0.9800	C5B—H5B3	0.9800
C4A—H4B	0.9800	C6B—N3B	1.470 (16)
C4A—H4C	0.9800	C6B—H6B1	0.9800
C5A—N2A	1.472 (15)	C6B—H6B2	0.9800
C5A—H5A	0.9800	C6B—H6B3	0.9800
C5A—H5B	0.9800	C7B—N3B	1.457 (10)
С5А—Н5С	0.9800	C7B—H7B1	0.9800
C6A—N3A	1.464 (8)	C7B—H7B2	0.9800
С6А—Н6А	0.9800	C7B—H7B3	0.9800
C6A—H6B	0.9800	N4—C11	1.148 (3)
С6А—Н6С	0.9800	N5-C12	1.149 (3)
C7A—N3A	1.468 (15)	N6—C13	1.153 (3)
C7A—H7A	0.9800	N7—C14	1.151 (3)
C7A—H7B	0.9800	C8—C9	1.386 (3)
C7A—H7C	0.9800	C8—C11	1.421 (3)
C1B—N1B	1.349 (19)	C8—C12	1.425 (3)
C1B—N2B	1.35 (2)	C9—C10	1.379 (3)
C1B—N3B	1.34 (3)	С9—Н9	0.9500

C2B—N1B	1.452 (11)	C10—C13	1.426 (3)
C2B—H2B1	0.9800	C10—C14	1.427 (3)
C2B—H2B2	0.9800		
N2A—C1A—N1A	120 (2)	H2B1—C2B—H2B3	109.5
N2A—C1A—N3A	119.9 (12)	H2B2—C2B—H2B3	109.5
N1A—C1A—N3A	120.1 (13)	N1B-C3B-H3B1	109.5
N1A—C2A—H2A	109.4	N1B-C3B-H3B2	109.4
N1A—C2A—H2B	109.4	H3B1—C3B—H3B2	109.5
H2A—C2A—H2B	109.5	N1B-C3B-H3B3	109.5
N1A—C2A—H2C	109.5	H3B1—C3B—H3B3	109.5
H2A—C2A—H2C	109.5	H3B2—C3B—H3B3	109.5
H2B—C2A—H2C	109.5	N2B—C4B—H4B1	109.4
N1A—C3A—H3A	109.5	N2B—C4B—H4B2	109.5
N1A—C3A—H3B	109.5	H4B1—C4B—H4B2	109.5
НЗА—СЗА—НЗВ	109.5	N2B—C4B—H4B3	109.5
N1A—C3A—H3C	109.5	H4B1—C4B—H4B3	109.5
НЗА—СЗА—НЗС	109.5	H4B2—C4B—H4B3	109.5
НЗВ—СЗА—НЗС	109.5	N2B—C5B—H5B1	109.5
N2A—C4A—H4A	109.5	N2B—C5B—H5B2	109.5
N2A—C4A—H4B	109.5	H5B1—C5B—H5B2	109.5
H4A—C4A—H4B	109.5	N2B—C5B—H5B3	109.5
N2A—C4A—H4C	109.5	H5B1—C5B—H5B3	109.5
H4A—C4A—H4C	109.5	H5B2—C5B—H5B3	109.5
H4B—C4A—H4C	109.5	N3B—C6B—H6B1	109.5
N2A—C5A—H5A	109.5	N3B—C6B—H6B2	109.5
N2A—C5A—H5B	109.5	H6B1-C6B-H6B2	109.5
H5A—C5A—H5B	109.5	N3B—C6B—H6B3	109.5
N2A—C5A—H5C	109.5	H6B1 - C6B - H6B3	109.5
H5A—C5A—H5C	109.5	H6B2-C6B-H6B3	109.5
H5B-C5A-H5C	109.5	N3B-C7B-H7B1	109.5
N3A—C6A—H6A	109.5	N3B C7B H7B2	109.5
N3A—C6A—H6B	109.5	H7B1 - C7B - H7B2	109.5
H6A - C6A - H6B	109.5	N3B-C7B-H7B3	109.5
N3A—C6A—H6C	109.5	H7B1 - C7B - H7B3	109.5
H6A - C6A - H6C	109.5	H7B2 - C7B - H7B3	109.5
H6B—C6A—H6C	109.5	C1B $N1B$ $C2B$	109.5 122.7(18)
N3A—C7A—H7A	109.5	C1B $N1B$ $C3B$	122.7(10) 123.0(19)
N3A—C7A—H7B	109.5	C2B N1B $C3B$	123.0(19) 1143(10)
H7A - C7A - H7B	109.5	C1B N2B $C4B$	114.3(10) 122.2(10)
$N_{A} C_{A} H_{C}$	109.5	C1B N2B $C5B$	122.2(1)) 121.8(10)
H7A - C7A - H7C	109.5	C4B N2B C5B	121.0(12)
$H7B_C7A_H7C$	109.5	C_{1B} N_{3B} C_{7B}	122 8 (15)
$\frac{11}{2} - \frac{1}{2} - 1$	109.5	$C1B_N3B_C6B$	122.0(13) 122.0(17)
C1A = N1A = C2A	123.7(13) 121.7(17)	C7B N3B $C6P$	122.0(17) 115 1 (10)
$C_{1A} = N_{1A} = C_{2A}$	121.7(17) 114.8(8)	$C_{1}D_{1}D_{1}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2$	12/ 07 (10)
$C_{1A} = N_{1A} = C_{2A}$	117.0(0)	$C_{2} = C_{0} = C_{11}$	124.07(10) 120.82(10)
C1A = N2A = C3A	121.1(17) 1220(16)	$C_7 - C_0 - C_{12}$	120.02(18) 115(10(19))
UTA-NZA-U4A	$1 \angle 3.0(10)$	UII-U0-UI2	113.10(18)

C5A—N2A—C4A	115.7 (11)	C10—C9—C8	130.39 (19)
C1A—N3A—C6A	123.0 (13)	С10—С9—Н9	114.8
C1A—N3A—C7A	121.4 (15)	С8—С9—Н9	114.8
C6A—N3A—C7A	115.6 (8)	C9—C10—C13	119.99 (18)
N1B—C1B—N2B	119 (2)	C9—C10—C14	124.71 (18)
N1B—C1B—N3B	121.0 (15)	C13—C10—C14	115.28 (17)
N2B—C1B—N3B	119.8 (14)	N4—C11—C8	178.1 (2)
N1B—C2B—H2B1	109.5	N5-C12-C8	178.9 (2)
N1B—C2B—H2B2	109.5	N6-C13-C10	179.0 (2)
H2B1—C2B—H2B2	109.5	N7—C14—C10	178.1 (2)
N1B—C2B—H2B3	109.5		
N2A—C1A—N1A—C3A	-29 (5)	N2B—C1B—N1B—C3B	-146 (3)
N3A—C1A—N1A—C3A	148 (3)	N3B—C1B—N1B—C3B	32 (6)
N2A—C1A—N1A—C2A	148 (3)	N1B—C1B—N2B—C4B	33 (6)
N3A—C1A—N1A—C2A	-35 (5)	N3B—C1B—N2B—C4B	-145 (3)
N1A—C1A—N2A—C5A	-36 (5)	N1B—C1B—N2B—C5B	-146 (3)
N3A—C1A—N2A—C5A	146 (3)	N3B—C1B—N2B—C5B	36 (6)
N1A—C1A—N2A—C4A	148 (3)	N1B—C1B—N3B—C7B	34 (6)
N3A—C1A—N2A—C4A	-29 (5)	N2B—C1B—N3B—C7B	-148 (3)
N2A—C1A—N3A—C6A	144 (3)	N1B-C1B-N3B-C6B	-146 (3)
N1A—C1A—N3A—C6A	-33 (5)	N2B-C1B-N3B-C6B	31 (6)
N2A—C1A—N3A—C7A	-38 (5)	C11—C8—C9—C10	0.1 (4)
N1A—C1A—N3A—C7A	144 (3)	C12—C8—C9—C10	-179.4 (2)
N2B—C1B—N1B—C2B	38 (6)	C8—C9—C10—C13	177.8 (2)
N3B—C1B—N1B—C2B	-144 (3)	C8—C9—C10—C14	-0.3 (4)