

ISSN 2414-3146

Received 28 February 2016 Accepted 3 March 2016

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; octylindoline; octyl chain; hydrogen bonds.

CCDC reference: 1457712

Structural data: full structural data are available from iucrdata.iucr.org

5-Bromo-1-octylindoline-2,3-dione

Yassine Kharbach,^a* Youssef Kandri Rodi,^a Frédéric Capet,^b El Mokhtar Essassi^c and Lahcen El Ammari^d

^aLaboratoire de Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, ^bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181. Ecole Nationale, Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, ^cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batoutta, Rabat, Morocco, and ^dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: kharbachy26@gmail.com

The title compound, $C_{16}H_{20}BrNO_2$, crystallizes with two molecules in the asymmetric unit. The indoline ring system and the two ketone O atoms are nearly coplanar, with the largest deviations from the mean plane being 0.077 (2) and 0.055 (2) Å in the two molecules. In each molecule, the mean plane through the octyl chain is nearly perpendicular to the mean plane of the indoline ring system, as indicated by the dihedral angles between them of 86.6 (1) and 76.1 (1)°. In the crystal, molecules are linked by week C–H···O hydrogen bonds, forming a three-dimensional network.

Structure description

Isatin and 5-bromoisatin have shown anxiolytic, sedative and anticonvulsant activities. They have proven to be good antagonists of natriuretic peptide receptors. In fact, some derivatives of isatins are already in use for the treatment of gastrointestinal stromal tumors and advanced renal cell carcinoma, while many other halogenated derivatives are in use for the treatment of cancer and leukemia. Probably the most important aspect of research surrounding isatin derivatives has evolved in the context of their antifungal and antiviral activities (Sridhar *et al.*, 2001*a*; Sarangapani & Reddy, 1994; Verma *et al.*, 2004; Pandeya *et al.*, 1999; Sridhar & Sreenivasulu, 2001*b*; Aboul-Fadl *et al.*, 2010; Varma & Nobles, 1975). We are concerned in developing new heteroatom-containing 5-bromoisatin derivatives and continue research work to explore other applications (Qachchachi *et al.*, 2013, 2014*a*,*b*)

The asymmetric unit of the title compound is built up from two independent molecules with different orientations, as shown in Fig. 1. The two fused five- and six-membered ring

Figure 1

The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

systems in each molecule are almost planar, with maximum deviation of 0.038 (2) Å for C7 in the first molecule (N1/C1-C8) and -.029 (2) Å for C24 in the second molecule (N2/C17-C24). The dihedral angle between the two indoline ring systems is $18.54 (6)^{\circ}$. Moreover, the mean plans through the octvl chains are almost perpendicular to the fused rings systems, as indicated by the torsion angles of C10-C9-N1-C5 = 86.0(2) and $C26-C25-N2-C21 = 85.3(2)^{\circ}$. In the crystal, molecules are linked by weak C-H···O hydrogen bonds (Table 1), forming a three-dimensional network as shown in Fig. 2.

Synthesis and crystallization

A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and 1-bromooctane (0.33 ml, 1.70 mmol) in DMF (25 ml) in the presence of

Figure 2

Molecules linked by C-H···O hydrogen bonds, forming a threedimensional network.

Table 1 Hydrogen-bond geometry (Å, °).

	•			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10−H10A···O4	0.99	2.59	3.572 (2)	174
C19−H19· · ·O1 ⁱ	0.95	2.51	3.181 (2)	128
$C20-H20\cdots O2^{i}$	0.95	2.56	3.457 (2)	159
$C26 - H26B \cdots O2^{i}$	0.99	2.50	3.159 (2)	124

Symmetry code: (i) x, y - 1, z.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{16}H_{20}BrNO_2$
M _r	338.24
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.5284 (2), 13.2044 (6), 25.9133 (11)
α, β, γ (°)	96.663 (3), 90.728 (3), 95.393 (3)
$V(\dot{A}^3)$	1531.77 (12)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.69
Crystal size (mm)	$0.13 \times 0.12 \times 0.10$
Data collection	
Diffractometer	Bruker X8 APEX
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.649, 0.746
No. of measured, independent and observed $[L > 2\pi(D)]$ reflections	32458, 7501, 6054
P	0.035
$(\sin \theta/\lambda)$ $(\dot{\Delta}^{-1})$	0.653
$(\sin \theta/\lambda)_{\max}(\mathbf{A})$	0.007
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.070, 1.22
No. of reflections	7501
No. of parameters	363
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.41, -0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009), publCIF (Westrip, 2010).

a catalytic amount of tetra-*n*-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. After filtering, the reaction was monitored by thin layer chromatography. Orange crystals of the title compound (m.p. = 347 K) were obtained in 69% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The reflection $(1 \ 0 \ 0)$ affected by the beamstop was removed during the final refinement.

References

Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.
- Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014*a*). *Acta Cryst.* E70, 0361–0362.
- Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, 0588.
- Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, 01801.
- Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sridhar, S. K., Saravanan, M. & Ramesh, A. (2001a). Eur. J. Med. Chem. 36, 615–625.
- Sridhar, S. K. & Sreenivasulu, M. (2001b). Indian Drugs, 38, 531--534.
- Varma, R. S. & Nobles, W. L. (1975). J. Pharm. Sci. 64, 881-882.
- Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x160371 [doi:10.1107/S2414314616003710]

5-Bromo-1-octylindoline-2,3-dione

Yassine Kharbach, Youssef Kandri Rodi, Frédéric Capet, El Mokhtar Essassi and Lahcen El

Z = 4F(000) = 696

 $D_{\rm x} = 1.467 {\rm Mg} {\rm m}^{-3}$

Ammari

5-Bromo-1-octylindoline-2,3-dione

Crystal data

C₁₆H₂₀BrNO₂ $M_r = 338.24$ Triclinic, $P\overline{1}$ a = 4.5284 (2) Å b = 13.2044 (6) Å c = 25.9133 (11) Å a = 96.663 (3)° $\beta = 90.728$ (3)° $\gamma = 95.393$ (3)° V = 1531.77 (12) Å³

Data collection

Bruker X8 APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.649, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.070$ S = 1.227501 reflections 363 parameters 0 restraints

Special details

 $\theta = 1.6-28.3^{\circ}$ $\mu = 2.69 \text{ mm}^{-1}$ T = 100 KIrregular shape, red $0.13 \times 0.12 \times 0.10 \text{ mm}$ 32458 measured reflections 7501 independent reflections 6054 reflections with $L \ge 2\sigma(L)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7501 reflections

6054 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.6^\circ$ $h = -6 \rightarrow 6$ $k = -17 \rightarrow 17$ $l = -34 \rightarrow 34$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0287P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.006$ $\Delta\rho_{max} = 0.41$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.33986 (5)	0.53518 (2)	0.43877 (2)	0.02445 (6)	
Br2	0.95415 (5)	0.09935 (2)	0.08242 (2)	0.02568 (7)	
C1	0.4271 (4)	0.66359 (14)	0.35847 (7)	0.0167 (4)	
H1	0.2996	0.7066	0.3775	0.020*	
C2	0.4956 (4)	0.57285 (15)	0.37545 (7)	0.0175 (4)	
C3	0.6762 (4)	0.50825 (15)	0.34690 (7)	0.0176 (4)	
H3	0.7146	0.4455	0.3590	0.021*	
C4	0.8007 (4)	0.53444 (15)	0.30092 (7)	0.0168 (4)	
H4	0.9240	0.4906	0.2814	0.020*	
C5	0.7395 (4)	0.62592 (14)	0.28468 (7)	0.0138 (4)	
C6	0.5515 (4)	0.68921 (14)	0.31275 (7)	0.0142 (4)	
C7	0.5225 (4)	0.77703 (14)	0.28406 (7)	0.0152 (4)	
C8	0.7297 (4)	0.76111 (15)	0.23685 (7)	0.0164 (4)	
C9	1.0208 (4)	0.62114 (14)	0.19977 (7)	0.0154 (4)	
H9A	1.1547	0.5771	0.2152	0.018*	
H9B	1.1451	0.6742	0.1837	0.018*	
C10	0.8240 (4)	0.55667 (14)	0.15815 (7)	0.0158 (4)	
H10B	0.6973	0.6016	0.1417	0.019*	
H10A	0.6921	0.5063	0.1747	0.019*	
C11	0.9994 (4)	0.49967 (14)	0.11622 (7)	0.0160 (4)	
H11B	1.1389	0.5496	0.1009	0.019*	
H11A	1.1179	0.4518	0.1323	0.019*	
C12	0.7999 (4)	0.43955 (14)	0.07312 (7)	0.0156 (4)	
H12B	0.6498	0.3939	0.0889	0.019*	
H12A	0.6933	0.4882	0.0553	0.019*	
C13	0.9682 (4)	0.37547 (15)	0.03312 (7)	0.0166 (4)	
H13B	1.1101	0.4216	0.0159	0.020*	
H13A	1.0843	0.3297	0.0512	0.020*	
C14	0.7673 (4)	0.31093 (15)	-0.00806 (7)	0.0181 (4)	
H14B	0.6475	0.3566	-0.0255	0.022*	
H14A	0.6289	0.2636	0.0091	0.022*	
C15	0.9363 (4)	0.24857 (15)	-0.04907 (7)	0.0211 (4)	
H15B	1.0709	0.2959	-0.0670	0.025*	
H15A	1.0600	0.2041	-0.0316	0.025*	
C16	0.7334 (5)	0.18244 (17)	-0.08919 (8)	0.0283 (5)	
H16A	0.6089	0.1321	-0.0721	0.042*	
H16C	0.8533	0.1467	-0.1154	0.042*	
H16B	0.6069	0.2258	-0.1061	0.042*	
C17	0.6291 (4)	0.21003 (15)	0.15971 (7)	0.0168 (4)	
H17	0.6944	0.2691	0.1438	0.020*	
C18	0.7167 (4)	0.11479 (15)	0.14196 (7)	0.0170 (4)	
C19	0.6272 (4)	0.02868 (15)	0.16610 (7)	0.0169 (4)	
H19	0.6949	-0.0354	0.1536	0.020*	
C20	0.4396 (4)	0.03486 (14)	0.20842 (7)	0.0153 (4)	
H20	0.3771	-0.0239	0.2249	0.018*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.3485 (4)	0.12914 (14)	0.22545 (7)	0.0136 (4)
C22	0.4430 (4)	0.21578 (14)	0.20151 (7)	0.0149 (4)
C23	0.3020 (4)	0.30251 (15)	0.22828 (7)	0.0170 (4)
C24	0.1096 (4)	0.25545 (15)	0.27056 (7)	0.0176 (4)
C25	0.0036 (4)	0.08215 (14)	0.29796 (7)	0.0148 (4)
H25A	-0.0544	0.0170	0.2757	0.018*
H25B	-0.1806	0.1100	0.3110	0.018*
C26	0.1880 (4)	0.05958 (14)	0.34417 (7)	0.0126 (4)
H26A	0.2513	0.1243	0.3664	0.015*
H26B	0.3682	0.0284	0.3316	0.015*
C27	0.0073 (4)	-0.01333 (14)	0.37592 (7)	0.0142 (4)
H27B	-0.1545	0.0229	0.3927	0.017*
H27A	-0.0855	-0.0719	0.3520	0.017*
C28	0.1859 (4)	-0.05445 (14)	0.41761 (7)	0.0133 (4)
H28B	0.2807	0.0039	0.4415	0.016*
H28A	0.3456	-0.0919	0.4009	0.016*
C29	-0.0021 (4)	-0.12577 (14)	0.44903 (7)	0.0140 (4)
H29B	-0.1616	-0.0881	0.4656	0.017*
H29A	-0.0976	-0.1837	0.4250	0.017*
C30	0.1708 (4)	-0.16839 (14)	0.49094 (7)	0.0133 (4)
H30A	0.3237	-0.2091	0.4742	0.016*
H30B	0.2745	-0.1105	0.5140	0.016*
C31	-0.0209 (4)	-0.23528 (15)	0.52385 (7)	0.0157 (4)
H31A	-0.1172	-0.2950	0.5011	0.019*
H31B	-0.1796	-0.1956	0.5393	0.019*
C32	0.1519 (4)	-0.27373 (15)	0.56740 (7)	0.0202 (4)
H32A	0.3006	-0.3171	0.5524	0.030*
H32C	0.0150	-0.3136	0.5880	0.030*
H32B	0.2513	-0.2151	0.5898	0.030*
N1	0.8458 (3)	0.67046 (11)	0.24066 (6)	0.0152 (3)
N2	0.1553 (3)	0.15416 (12)	0.26640 (6)	0.0143 (3)
01	0.7723 (3)	0.81734 (10)	0.20352 (5)	0.0234 (3)
O2	0.3696 (3)	0.84731 (10)	0.29132 (5)	0.0209 (3)
O3	-0.0522 (3)	0.30056 (11)	0.30020 (5)	0.0248 (3)
O4	0.3105 (3)	0.39090 (10)	0.22037 (5)	0.0234 (3)

Atomic displacement parameters $(Å^2)$

	0	U^{ss}	U^{12}	U^{13}	U^{23}
0.03487 (14)	0.02370 (12)	0.01569 (10)	0.00250 (9)	0.00435 (8)	0.00609 (8)
0.02694 (13)	0.03326 (14)	0.01880 (11)	0.00805 (9)	0.00766 (8)	0.00649 (9)
0.0176 (10)	0.0166 (10)	0.0153 (9)	0.0029 (8)	-0.0007 (7)	-0.0021 (8)
0.0215 (11)	0.0202 (11)	0.0105 (8)	-0.0005 (8)	-0.0008 (7)	0.0028 (7)
0.0226 (11)	0.0127 (10)	0.0174 (9)	0.0014 (8)	-0.0050 (8)	0.0023 (8)
0.0185 (10)	0.0151 (10)	0.0165 (9)	0.0033 (8)	-0.0004 (7)	-0.0011 (8)
0.0150 (10)	0.0139 (10)	0.0116 (8)	-0.0011 (8)	-0.0034 (7)	-0.0004 (7)
0.0168 (10)	0.0127 (10)	0.0123 (8)	0.0016 (8)	-0.0028 (7)	-0.0017 (7)
0.0187 (10)	0.0136 (10)	0.0123 (9)	-0.0001 (8)	-0.0029 (7)	-0.0006 (7)
	0.03487 (14) 0.02694 (13) 0.0176 (10) 0.0215 (11) 0.0226 (11) 0.0185 (10) 0.0150 (10) 0.0168 (10) 0.0187 (10)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.03487 (14)0.02370 (12)0.01569 (10)0.02694 (13)0.03326 (14)0.01880 (11)0.0176 (10)0.0166 (10)0.0153 (9)0.0215 (11)0.0202 (11)0.0105 (8)0.0226 (11)0.0127 (10)0.0174 (9)0.0185 (10)0.0151 (10)0.0165 (9)0.0150 (10)0.0139 (10)0.0116 (8)0.0168 (10)0.0136 (10)0.0123 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C8	0.0202 (11)	0.0144 (10)	0.0145 (9)	0.0026 (8)	-0.0010 (7)	0.0004 (8)
C9	0.0151 (10)	0.0175 (10)	0.0141 (9)	0.0046 (8)	0.0040 (7)	0.0009 (7)
C10	0.0147 (10)	0.0184 (10)	0.0140 (9)	0.0019 (8)	0.0023 (7)	0.0006 (8)
C11	0.0156 (10)	0.0184 (10)	0.0141 (9)	0.0028 (8)	0.0016 (7)	0.0013 (8)
C12	0.0158 (10)	0.0182 (10)	0.0135 (9)	0.0027 (8)	0.0020 (7)	0.0034 (8)
C13	0.0155 (10)	0.0192 (11)	0.0151 (9)	0.0035 (8)	0.0023 (7)	0.0000 (8)
C14	0.0182 (10)	0.0209 (11)	0.0152 (9)	0.0042 (8)	0.0007 (8)	-0.0004 (8)
C15	0.0207 (11)	0.0238 (12)	0.0177 (10)	0.0043 (9)	-0.0002 (8)	-0.0036 (8)
C16	0.0269 (12)	0.0343 (13)	0.0211 (11)	0.0053 (10)	0.0007 (9)	-0.0096 (9)
C17	0.0159 (10)	0.0180 (10)	0.0178 (9)	-0.0002 (8)	-0.0013 (7)	0.0089 (8)
C18	0.0140 (10)	0.0253 (11)	0.0125 (9)	0.0030 (8)	-0.0006 (7)	0.0046 (8)
C19	0.0177 (10)	0.0185 (11)	0.0148 (9)	0.0039 (8)	-0.0037 (7)	0.0018 (8)
C20	0.0174 (10)	0.0139 (10)	0.0149 (9)	0.0014 (8)	-0.0040 (7)	0.0035 (7)
C21	0.0126 (10)	0.0180 (10)	0.0109 (8)	0.0016 (8)	-0.0017 (7)	0.0046 (7)
C22	0.0169 (10)	0.0131 (10)	0.0150 (9)	0.0019 (8)	-0.0022 (7)	0.0035 (7)
C23	0.0199 (11)	0.0151 (10)	0.0165 (9)	0.0019 (8)	-0.0013 (8)	0.0041 (8)
C24	0.0223 (11)	0.0162 (10)	0.0148 (9)	0.0028 (8)	-0.0021 (8)	0.0037 (8)
C25	0.0147 (10)	0.0152 (10)	0.0148 (9)	-0.0008 (8)	-0.0009 (7)	0.0050 (7)
C26	0.0122 (9)	0.0146 (10)	0.0115 (8)	0.0026 (7)	0.0009 (7)	0.0028 (7)
C27	0.0132 (10)	0.0174 (10)	0.0129 (8)	0.0019 (8)	0.0019 (7)	0.0049 (7)
C28	0.0126 (10)	0.0153 (10)	0.0123 (8)	0.0008 (7)	-0.0006 (7)	0.0033 (7)
C29	0.0138 (10)	0.0152 (10)	0.0131 (8)	0.0004 (8)	-0.0009 (7)	0.0033 (7)
C30	0.0123 (9)	0.0154 (10)	0.0126 (8)	0.0008 (7)	0.0012 (7)	0.0036 (7)
C31	0.0167 (10)	0.0174 (10)	0.0133 (9)	0.0010 (8)	-0.0007 (7)	0.0039 (7)
C32	0.0222 (11)	0.0204 (11)	0.0188 (10)	0.0001 (8)	0.0001 (8)	0.0073 (8)
N1	0.0189 (9)	0.0138 (9)	0.0136 (7)	0.0037 (7)	0.0028 (6)	0.0019 (6)
N2	0.0171 (8)	0.0146 (8)	0.0124 (7)	0.0025 (7)	0.0017 (6)	0.0054 (6)
01	0.0322 (9)	0.0197 (8)	0.0205 (7)	0.0067 (6)	0.0043 (6)	0.0081 (6)
O2	0.0287 (8)	0.0161 (7)	0.0191 (7)	0.0089 (6)	0.0019 (6)	0.0016 (6)
03	0.0343 (9)	0.0221 (8)	0.0203 (7)	0.0114 (7)	0.0086 (6)	0.0043 (6)
O4	0.0317 (9)	0.0141 (8)	0.0259 (8)	0.0045 (6)	0.0014 (6)	0.0071 (6)

Geometric parameters (Å, °)

Br1—C2	1.8948 (19)	C16—H16B	0.9800
Br2—C18	1.8943 (18)	C17—C22	1.380 (3)
C1—C2	1.384 (3)	C17—C18	1.384 (3)
C1—C6	1.382 (3)	C17—H17	0.9500
C1—H1	0.9500	C18—C19	1.390 (3)
C2—C3	1.394 (3)	C19—C20	1.396 (3)
C3—C4	1.391 (3)	C19—H19	0.9500
С3—Н3	0.9500	C20—C21	1.374 (2)
C4—C5	1.375 (3)	C20—H20	0.9500
C4—H4	0.9500	C21—C22	1.399 (3)
C5—C6	1.400 (2)	C21—N2	1.413 (2)
C5—N1	1.413 (2)	C22—C23	1.471 (3)
С6—С7	1.463 (3)	C23—O4	1.205 (2)
C7—O2	1.208 (2)	C23—C24	1.558 (3)

С7—С8	1.558 (3)	C24—O3	1.213 (2)
C8—O1	1.208 (2)	C24—N2	1.365 (2)
C8—N1	1.365 (2)	C25—N2	1.455 (2)
C9—N1	1.461 (2)	C25—C26	1.525 (2)
C9—C10	1.517 (2)	С25—Н25А	0.9900
С9—Н9А	0.9900	С25—Н25В	0.9900
С9—Н9В	0.9900	C26—C27	1.525 (2)
C10—C11	1.524 (2)	С26—Н26А	0.9900
C10—H10B	0.9900	С26—Н26В	0.9900
С10—Н10А	0.9900	C27—C28	1.521 (2)
C11—C12	1.526 (2)	С27—Н27В	0.9900
C11—H11B	0.9900	C27—H27A	0.9900
С11—Н11А	0.9900	C28—C29	1.523 (2)
C12—C13	1.520 (2)	C28—H28B	0.9900
C12—H12B	0.9900	C28—H28A	0.9900
C12—H12A	0.9900	C29—C30	1.521 (2)
C13—C14	1.520 (3)	C29—H29B	0.9900
C13—H13B	0.9900	C29—H29A	0.9900
C13—H13A	0.9900	C30—C31	1.520 (2)
C14—C15	1.526 (2)	C30—H30A	0.9900
C14—H14B	0.9900	C30—H30B	0.9900
C14—H14A	0.9900	C31—C32	1.526 (2)
C15—C16	1.517 (3)	C31—H31A	0.9900
С15—Н15В	0.9900	C31—H31B	0.9900
С15—Н15А	0.9900	C32—H32A	0.9800
C16—H16A	0.9800	C32—H32C	0.9800
C16—H16C	0.9800	С32—Н32В	0.9800
C2—C1—C6	117.35 (17)	C17—C18—C19	121.35 (18)
C2—C1—H1	121.3	C17—C18—Br2	119.87 (14)
C6—C1—H1	121.3	C19—C18—Br2	118.76 (14)
C1—C2—C3	121.45 (18)	C18—C19—C20	121.06 (18)
C1—C2—Br1	119.35 (14)	C18—C19—H19	119.5
C3—C2—Br1	119.20 (14)	С20—С19—Н19	119.5
C2—C3—C4	120.91 (18)	C21—C20—C19	117.54 (17)
С2—С3—Н3	119.5	C21—C20—H20	121.2
С4—С3—Н3	119.5	C19—C20—H20	121.2
C5—C4—C3	117.75 (18)	C20—C21—C22	121.12 (17)
C5—C4—H4	121.1	C20—C21—N2	128.01 (17)
C3—C4—H4	121.1	C22—C21—N2	110.86 (16)
C4—C5—C6	121.11 (17)	C17—C22—C21	121.52 (17)
C4—C5—N1	128.32 (17)	C17—C22—C23	131.21 (17)
C6—C5—N1	110.56 (16)	C21—C22—C23	107.25 (16)
C1—C6—C5	121.38 (17)	O4—C23—C22	131.15 (18)
C1—C6—C7	131.27 (17)	O4—C23—C24	124.06 (17)
C5—C6—C7	107.35 (16)	C22—C23—C24	104.72 (15)
O2—C7—C6	131.13 (18)	O3—C24—N2	127.65 (18)
O2—C7—C8	123.80 (16)	O3—C24—C23	126.12 (17)

	106.21 (15)
O1—C8—N1 127.77 (18) N2—C25—C26	114.12 (15)
O1—C8—C7 126.40 (17) N2—C25—H25A	108.7
N1—C8—C7 105.82 (15) C26—C25—H25A	108.7
N1—C9—C10 111.50 (15) N2—C25—H25B	108.7
N1—C9—H9A 109.3 C26—C25—H25B	108.7
С10—С9—Н9А 109.3 Н25А—С25—Н25В	107.6
N1—C9—H9B 109.3 C25—C26—C27	110.31 (15)
С10—С9—Н9В 109.3 С25—С26—Н26А	109.6
Н9А—С9—Н9В 108.0 С27—С26—Н26А	109.6
C9—C10—C11 112.97 (15) C25—C26—H26B	109.6
С9—С10—Н10В 109.0 С27—С26—Н26В	109.6
C11—C10—H10B 109.0 H26A—C26—H26B	108.1
C9—C10—H10A 109.0 C28—C27—C26	114.35 (15)
C11—C10—H10A 109.0 C28—C27—H27B	108.7
H10B—C10—H10A 107.8 C26—C27—H27B	108.7
C12—C11—C10 112.51 (15) C28—C27—H27A	108.7
С12—С11—Н11В 109.1 С26—С27—Н27А	108.7
C10—C11—H11B 109.1 H27B—C27—H27A	107.6
C12—C11—H11A 109.1 C27—C28—C29	112.95 (15)
C10—C11—H11A 109.1 C27—C28—H28B	109.0
H11B—C11—H11A 107.8 C29—C28—H28B	109.0
C13—C12—C11 113.37 (15) C27—C28—H28A	109.0
C13—C12—H12B 108.9 C29—C28—H28A	109.0
C11—C12—H12B 108.9 H28B—C28—H28A	107.8
C13—C12—H12A 108.9 C30—C29—C28	114.15 (15)
C11—C12—H12A 108.9 C30—C29—H29B	108.7
H12B—C12—H12A 107.7 C28—C29—H29B	108.7
C14—C13—C12 113.30 (15) C30—C29—H29A	108.7
C14—C13—H13B 108.9 C28—C29—H29A	108.7
C12—C13—H13B 108.9 H29B—C29—H29A	107.6
C14—C13—H13A 108.9 C31—C30—C29	113.80 (15)
C12—C13—H13A 108.9 C31—C30—H30A	108.8
H13B—C13—H13A 107.7 C29—C30—H30A	108.8
C13—C14—C15 113.41 (15) C31—C30—H30B	108.8
C13—C14—H14B 108.9 C29—C30—H30B	108.8
C15—C14—H14B 108.9 H30A—C30—H30B	107.7
C13—C14—H14A 108.9 C30—C31—C32	113.48 (15)
C15—C14—H14A 108.9 C30—C31—H31A	108.9
	108.9
H14B—C14—H14A 107.7 C32—C31—H31A	
H14B—C14—H14A 107.7 C32—C31—H31A C16—C15—C14 112.96 (16) C30—C31—H31B	108.9
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31B	108.9 108.9
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31BC14—C15—H15B109.0H31A—C31—H31B	108.9 108.9 107.7
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31BC14—C15—H15B109.0H31A—C31—H31BC16—C15—H15A109.0C31—C32—H32A	108.9 108.9 107.7 109.5
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31BC14—C15—H15B109.0H31A—C31—H31BC16—C15—H15A109.0C31—C32—H32AC14—C15—H15A109.0C31—C32—H32A	108.9 108.9 107.7 109.5 109.5
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31BC14—C15—H15B109.0H31A—C31—H31BC16—C15—H15A109.0C31—C32—H32AC14—C15—H15A109.0C31—C32—H32CH15B—C15—H15A107.8H32A—C32—H32C	108.9 108.9 107.7 109.5 109.5 109.5
H14B—C14—H14A107.7C32—C31—H31AC16—C15—C14112.96 (16)C30—C31—H31BC16—C15—H15B109.0C32—C31—H31BC14—C15—H15B109.0H31A—C31—H31BC16—C15—H15A109.0C31—C32—H32AC14—C15—H15A109.0C31—C32—H32CH15B—C15—H15A107.8H32A—C32—H32CC15—C16—H16A109.5C31—C32—H32B	108.9 108.9 107.7 109.5 109.5 109.5 109.5

H16A—C16—H16C	109.5	H32C—C32—H32B	109.5
C15—C16—H16B	109.5	C8—N1—C5	111.17 (15)
H16A—C16—H16B	109.5	C8—N1—C9	122.78 (15)
H16C—C16—H16B	109.5	C5—N1—C9	125.47 (15)
C22—C17—C18	117.40 (17)	C24—N2—C21	110.93 (15)
С22—С17—Н17	121.3	C24—N2—C25	123.13 (16)
C18—C17—H17	121.3	C21—N2—C25	125.78 (15)
C6—C1—C2—C3	-1.8 (3)	N2-C21-C22-C17	-178.74 (16)
C6-C1-C2-Br1	178.44 (13)	C20—C21—C22—C23	178.98 (16)
C1—C2—C3—C4	1.8 (3)	N2-C21-C22-C23	-0.3 (2)
Br1—C2—C3—C4	-178.37 (14)	C17—C22—C23—O4	0.7 (4)
C2—C3—C4—C5	0.0 (3)	C21—C22—C23—O4	-177.6 (2)
C3—C4—C5—C6	-1.7 (3)	C17—C22—C23—C24	177.60 (19)
C3—C4—C5—N1	177.88 (17)	C21—C22—C23—C24	-0.65 (19)
C2-C1-C6-C5	0.0 (3)	O4—C23—C24—O3	0.0 (3)
C2-C1-C6-C7	179.01 (18)	C22—C23—C24—O3	-177.20 (18)
C4—C5—C6—C1	1.8 (3)	O4—C23—C24—N2	178.57 (18)
N1-C5-C6-C1	-177.87 (16)	C22—C23—C24—N2	1.39 (19)
C4—C5—C6—C7	-177.43 (16)	N2-C25-C26-C27	177.96 (15)
N1-C5-C6-C7	2.9 (2)	C25—C26—C27—C28	170.44 (15)
C1—C6—C7—O2	-4.6 (3)	C26—C27—C28—C29	179.20 (15)
C5—C6—C7—O2	174.48 (19)	C27—C28—C29—C30	179.83 (15)
C1—C6—C7—C8	178.04 (19)	C28—C29—C30—C31	177.15 (16)
C5—C6—C7—C8	-2.85 (19)	C29—C30—C31—C32	-177.35 (15)
O2—C7—C8—O1	3.1 (3)	O1—C8—N1—C5	-178.94 (19)
C6—C7—C8—O1	-179.34 (19)	C7—C8—N1—C5	-0.2 (2)
O2—C7—C8—N1	-175.73 (17)	O1—C8—N1—C9	-7.3 (3)
C6—C7—C8—N1	1.85 (19)	C7—C8—N1—C9	171.50 (15)
N1—C9—C10—C11	-177.08 (15)	C4—C5—N1—C8	178.64 (18)
C9—C10—C11—C12	-177.01 (16)	C6—C5—N1—C8	-1.7 (2)
C10-C11-C12-C13	-175.47 (16)	C4—C5—N1—C9	7.3 (3)
C11—C12—C13—C14	176.69 (16)	C6—C5—N1—C9	-173.12 (16)
C12-C13-C14-C15	178.53 (16)	C10-C9-N1-C8	-84.4 (2)
C13—C14—C15—C16	178.57 (17)	C10—C9—N1—C5	86.0 (2)
C22-C17-C18-C19	-1.6 (3)	O3—C24—N2—C21	176.94 (19)
C22—C17—C18—Br2	176.54 (13)	C23—C24—N2—C21	-1.61 (19)
C17—C18—C19—C20	1.5 (3)	O3—C24—N2—C25	1.3 (3)
Br2-C18-C19-C20	-176.63 (13)	C23—C24—N2—C25	-177.24 (15)
C18—C19—C20—C21	-0.4 (3)	C20-C21-N2-C24	-177.93 (17)
C19—C20—C21—C22	-0.6 (3)	C22-C21-N2-C24	1.3 (2)
C19—C20—C21—N2	178.50 (17)	C20—C21—N2—C25	-2.4 (3)
C18—C17—C22—C21	0.6 (3)	C22—C21—N2—C25	176.75 (16)
C18—C17—C22—C23	-177.44 (18)	C26—C25—N2—C24	-99.72 (19)
C20—C21—C22—C17	0.5 (3)	C26—C25—N2—C21	85.3 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.99	2.59	3.572 (2)	174
0.95	2.51	3.181 (2)	128
0.95	2.56	3.457 (2)	159
0.99	2.50	3.159 (2)	124
	<i>D</i> —H 0.99 0.95 0.95 0.99	D—H H···A 0.99 2.59 0.95 2.51 0.95 2.56 0.99 2.50	D—HH···AD···A0.992.593.572 (2)0.952.513.181 (2)0.952.563.457 (2)0.992.503.159 (2)

Symmetry code: (i) x, y-1, z.