IUCrData

ISSN 2414-3146

Received 18 June 2016 Accepted 19 July 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; benzodiazepine; bilayer.

CCDC references: 1494817; 1494817

Structural data: full structural data are available from iucrdata.iucr.org

# (4*E*)-1-Decyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1*H*-1,5-benzodiazepin-2-one

Jihad Sebhaoui,<sup>a</sup>\* Cherryl Mirabelle Zang Ondo,<sup>a</sup> Youness El Bakri,<sup>a</sup> El Mokhtar Essassi<sup>a</sup> and Joel T. Mague<sup>b</sup>

<sup>a</sup>Heterocyclic Organic Chemistry Laboratory URAC 21, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, BP 1014 Rabat, Morocco, and <sup>b</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. \*Correspondence e-mail: sebhaoui.jihad@gmail.com

The title compound,  $C_{22}H_{32}N_2O_2$ , forms bilayers with the *n*-decyl chains in extended conformation oriented towards the interior of the bilayer structure. Weak C-H···O interactions help to stabilize the exterior surfaces. The conformation of the seven-membered ring has been analysed.



### Structure description

1,5-Benzodiazepine derivatives constitute an important class of nitrogen-containing heterocycles and possess interesting activities as anticonvulsant (Ben-Cherif *et al.*, 2010), antimicrobial (Wang *et al.*, 2015), and anti-inflammatory (Ha *et al.*, 2010) agents. They have also been used as intermediates for the synthesis of benzimidazoles (El Azzaoui *et al.*, 1999) and quinoxalines (Doumbia *et al.*, 2008).

In the crystal, the title compound adopts a U-shaped conformation (Fig. 1). A puckering analysis of the conformation of the seven-membered ring yielded the parameters  $q_2 = 0.888$  (1) Å,  $\varphi_2 = 32.74$  (8)°,  $q_3 = 0.203$  (1) Å and  $\varphi_3 = 127.5$  (4)°. An intramolecular N2–H2A···O2 hydrogen bond (Table 1) occurs.

In the crystal, the molecules pack to form bilayers with the *n*-decyl chains extended to fill the interior, and with the substituted benzodiazepine units on the surfaces (Fig. 2). Weak  $C5-H5\cdots O2^i$  contacts [symmetry code (i): x + 1, y - 1, z] help to stabilize the hydrophilic portion (Table 1 and Fig. 2).

Synthesis and crystallization

To a solution of (4E)-2-oxopropylidene-1,5-benzodiazepin-2-one (0.01 mol, 2.16 g) in *N*,*N*-dimethylformamide (60 ml), was added K<sub>2</sub>CO<sub>3</sub> (0.02 mol, 2.76 g), 1-bromodecane



Figure 1

The title molecule with 30% probability ellipsoids for non-H atoms. The dashed line represents an intramolecular hydrogen bond (Table 1, entry 1).

(0.02 mol, 4.42 g) and tetra-*n*-butylammonium bromide (0.001 mol, 0.321 g). The reaction mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent was removed under reduced pressure. The obtained residue was chromatographed on a silica-gel column using a mixture of hexane and ethyl acetate (80/20) as eluent, to afford the title compound as colourless crystals.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.



Figure 2

Packing structure viewed along the *a* axis, with  $C-H\cdots O$  interactions shown as dashed lines. For clarity only the H atoms involved in these interactions are included.

| Table 1                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdots A$                                                           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|----------------------------------------------------------------------------|----------------|-------------------------|--------------|-----------------------------|
| $\begin{array}{c} N2 - H2A \cdots O2 \\ C5 - H5 \cdots O2^{i} \end{array}$ | 0.887 (16)     | 1.904 (16)              | 2.6459 (14)  | 140.0 (14)                  |
|                                                                            | 0.93           | 2.54                    | 3.3123 (17)  | 140                         |

Symmetry code: (i) x + 1, y - 1, z.

 Table 2

 Experimental details.

| Crystal data                                                          |                                                                              |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                      | $C_{22}H_{32}N_2O_2$                                                         |
| M <sub>r</sub>                                                        | 356.49                                                                       |
| Crystal system, space group                                           | Triclinic, P1                                                                |
| Temperature (K)                                                       | 296                                                                          |
| a, b, c (Å)                                                           | 8.4132 (14), 8.4870 (14), 16.670 (3)                                         |
| $\alpha, \beta, \gamma$ (°)                                           | 83.560 (2), 85.919 (2), 62.599 (2)                                           |
| $V(\dot{A}^3)$                                                        | 1049.8 (3)                                                                   |
| Z                                                                     | 2                                                                            |
| Radiation type                                                        | Μο Κα                                                                        |
| $\mu (\text{mm}^{-1})$                                                | 0.07                                                                         |
| Crystal size (mm)                                                     | $0.44 \times 0.32 \times 0.26$                                               |
| Data collection                                                       |                                                                              |
| Diffractometer                                                        | Bruker SMART APEX CCD                                                        |
| Absorption correction                                                 | Multi-scan ( <i>SADABS</i> ; Bruker, 2016)                                   |
| $T_{\min}, T_{\max}$                                                  | 0.85, 0.98                                                                   |
| No. of measured, independent and                                      | 20426, 5575, 3821                                                            |
| observed $[I > 2\sigma(I)]$ reflections                               |                                                                              |
| R <sub>int</sub>                                                      | 0.029                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                  | 0.685                                                                        |
| Refinement                                                            |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                   | 0.047, 0.136, 1.04                                                           |
| No. of reflections                                                    | 5575                                                                         |
| No. of parameters                                                     | 241                                                                          |
| H-atom treatment                                                      | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta  ho_{ m max},  \Delta  ho_{ m min}  ({ m e} \ { m \AA}^{-3})$ | 0.23, -0.15                                                                  |

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

### References

- Ben-Cherif, W., Gharbi, R., Sebai, H., Dridi, D., Boughattas, N. A. & Ben-Attia, M. (2010). C. R. Biol. 333, 214–219.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doumbia, M. L., Bouhfid, R., Ahabchane, N. H. & Essassi, E. M. (2008). Arkivoc, xiii, 36–44.
- El Azzaoui, B., Fifani, J., Tjiou, E. M., Essassi, E. M., Jaud, J., Lopez, L. & Bellan, J. (1999). *Tetrahedron Lett.* **40**, 4677–4680.
- Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., Ahn, K.-H. & Kim, S. Y. (2010). *Bioorg. Med. Chem. Lett.* 20, 3969–3971.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, L.-Z., Li, X.-Q. & An, Y.-S. (2015). Org. Biomol. Chem. 13, 5497–5509.

# full crystallographic data

*IUCrData* (2016). **1**, x161174 [https://doi.org/10.1107/S2414314616011743]

(4*E*)-1-Decyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1*H*-1,5-benzodiazepin-2-one

Jihad Sebhaoui, Cherryl Mirabelle Zang Ondo, Youness El Bakri, El Mokhtar Essassi and Joel T. Mague

(4E)-1-Decyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

# Crystal data

 $C_{22}H_{32}N_2O_2$   $M_r = 356.49$ Triclinic, *P*1 a = 8.4132 (14) Å b = 8.4870 (14) Å c = 16.670 (3) Å  $a = 83.560 (2)^{\circ}$   $\beta = 85.919 (2)^{\circ}$   $\gamma = 62.599 (2)^{\circ}$  $V = 1049.8 (3) Å^3$ 

# Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016)  $T_{\min} = 0.85, T_{\max} = 0.98$ 

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.047$  $wR(F^2) = 0.136$ S = 1.045575 reflections 241 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 388  $D_x = 1.128 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7410 reflections  $\theta = 2.5-28.9^{\circ}$   $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K Block, colourless  $0.44 \times 0.32 \times 0.26 \text{ mm}$ 

20426 measured reflections 5575 independent reflections 3821 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.029$  $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.5^{\circ}$  $h = -11 \rightarrow 11$  $k = -11 \rightarrow 11$  $l = -22 \rightarrow 22$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.119P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.23$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.15$  e Å<sup>-3</sup>

### Special details

**Experimental**. The diffraction data were obtained from 3 sets of 400 frames, each of width  $0.5^{\circ}$  in  $\omega$ , collected at  $\varphi = 0.00, 90.00$  and  $180.00^{\circ}$  and 2 sets of 800 frames, each of width  $0.45^{\circ}$  in  $\varphi$ , collected at  $\omega = -30.00$  and  $210.00^{\circ}$ . The scan time was 5 sec/frame.

|      | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|---------------|--------------|--------------|-----------------------------|--|
| 01   | 0.47356 (13)  | 0.07555 (12) | 0.87693 (7)  | 0.0643 (3)                  |  |
| O2   | 0.11670 (14)  | 0.84072 (12) | 0.87720 (7)  | 0.0745 (3)                  |  |
| N1   | 0.65022 (13)  | 0.19922 (12) | 0.82244 (6)  | 0.0450 (2)                  |  |
| N2   | 0.43528 (14)  | 0.56271 (13) | 0.86512 (6)  | 0.0466 (3)                  |  |
| H2A  | 0.360 (2)     | 0.678 (2)    | 0.8561 (10)  | 0.074 (5)*                  |  |
| C1   | 0.61644 (16)  | 0.49845 (15) | 0.84118 (7)  | 0.0430 (3)                  |  |
| C2   | 0.68986 (19)  | 0.61726 (17) | 0.83285 (8)  | 0.0528 (3)                  |  |
| H2   | 0.6181        | 0.7360       | 0.8420       | 0.063*                      |  |
| C3   | 0.8672 (2)    | 0.5606 (2)   | 0.81126 (9)  | 0.0641 (4)                  |  |
| H3   | 0.9141        | 0.6415       | 0.8043       | 0.077*                      |  |
| C4   | 0.9758 (2)    | 0.3830 (2)   | 0.79987 (10) | 0.0686 (4)                  |  |
| H4   | 1.0970        | 0.3432       | 0.7877       | 0.082*                      |  |
| C5   | 0.90426 (18)  | 0.26497 (18) | 0.80653 (9)  | 0.0576 (3)                  |  |
| H5   | 0.9781        | 0.1460       | 0.7985       | 0.069*                      |  |
| C6   | 0.72332 (16)  | 0.32080 (15) | 0.82512 (7)  | 0.0440 (3)                  |  |
| C7   | 0.53781 (16)  | 0.17720 (14) | 0.88058 (8)  | 0.0448 (3)                  |  |
| C8   | 0.49415 (15)  | 0.29106 (14) | 0.95032 (7)  | 0.0429 (3)                  |  |
| H8A  | 0.4383        | 0.2477       | 0.9942       | 0.052*                      |  |
| H8B  | 0.6035        | 0.2837       | 0.9699       | 0.052*                      |  |
| C9   | 0.36916 (15)  | 0.48169 (14) | 0.92314 (7)  | 0.0410 (3)                  |  |
| C10  | 0.20044 (16)  | 0.56744 (15) | 0.95487 (8)  | 0.0457 (3)                  |  |
| H10  | 0.1610        | 0.5038       | 0.9931       | 0.055*                      |  |
| C11  | 0.08004 (17)  | 0.75103 (16) | 0.93245 (9)  | 0.0530 (3)                  |  |
| C12  | -0.09418 (18) | 0.83550 (19) | 0.97834 (11) | 0.0696 (4)                  |  |
| H12A | -0.0899       | 0.7611       | 1.0268       | 0.104*                      |  |
| H12B | -0.1898       | 0.8492       | 0.9455       | 0.104*                      |  |
| H12C | -0.1145       | 0.9503       | 0.9921       | 0.104*                      |  |
| C13  | 0.69323 (19)  | 0.09919 (17) | 0.75086 (8)  | 0.0561 (3)                  |  |
| H13A | 0.6405        | 0.0180       | 0.7577       | 0.067*                      |  |
| H13B | 0.8221        | 0.0286       | 0.7460       | 0.067*                      |  |
| C14  | 0.62465 (19)  | 0.22126 (19) | 0.67381 (8)  | 0.0580 (3)                  |  |
| H14A | 0.6848        | 0.2958       | 0.6653       | 0.070*                      |  |
| H14B | 0.6569        | 0.1486       | 0.6287       | 0.070*                      |  |
| C15  | 0.42421 (19)  | 0.34017 (19) | 0.67379 (8)  | 0.0561 (3)                  |  |
| H15A | 0.3926        | 0.4197       | 0.7162       | 0.067*                      |  |
| H15B | 0.3635        | 0.2667       | 0.6860       | 0.067*                      |  |
| C16  | 0.3583 (2)    | 0.4507 (2)   | 0.59375 (8)  | 0.0614 (4)                  |  |
| H16A | 0.4224        | 0.5209       | 0.5812       | 0.074*                      |  |
| H16B | 0.3887        | 0.3703       | 0.5518       | 0.074*                      |  |
| C17  | 0.1596 (2)    | 0.5751 (2)   | 0.59099 (9)  | 0.0618 (4)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H17A | 0.1287      | 0.6593     | 0.6313       | 0.074*     |
|------|-------------|------------|--------------|------------|
| H17B | 0.0943      | 0.5064     | 0.6047       | 0.074*     |
| C18  | 0.1012 (2)  | 0.6778 (2) | 0.50848 (9)  | 0.0656 (4) |
| H18A | 0.1697      | 0.7432     | 0.4946       | 0.079*     |
| H18B | 0.1316      | 0.5925     | 0.4687       | 0.079*     |
| C19  | -0.0946 (2) | 0.8067 (2) | 0.50190 (9)  | 0.0663 (4) |
| H19A | -0.1258     | 0.8926     | 0.5414       | 0.080*     |
| H19B | -0.1639     | 0.7418     | 0.5151       | 0.080*     |
| C20  | -0.1467 (2) | 0.9068 (2) | 0.41840 (10) | 0.0711 (4) |
| H20A | -0.0756     | 0.9696     | 0.4051       | 0.085*     |
| H20B | -0.1159     | 0.8203     | 0.3792       | 0.085*     |
| C21  | -0.3395 (3) | 1.0373 (2) | 0.40996 (12) | 0.0848 (5) |
| H21A | -0.3708     | 1.1237     | 0.4492       | 0.102*     |
| H21B | -0.4110     | 0.9746     | 0.4227       | 0.102*     |
| C22  | -0.3878 (3) | 1.1358 (3) | 0.32680 (14) | 0.1133 (8) |
| H22A | -0.5132     | 1.2178     | 0.3262       | 0.170*     |
| H22B | -0.3615     | 1.0519     | 0.2876       | 0.170*     |
| H22C | -0.3194     | 1.2003     | 0.3139       | 0.170*     |
|      |             |            |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-----------------|--------------|--------------|-------------|
| 01  | 0.0662 (6)  | 0.0505 (5)  | 0.0877 (7)      | -0.0352 (5)  | 0.0045 (5)   | -0.0153 (5) |
| O2  | 0.0675 (7)  | 0.0420 (5)  | 0.0939 (8)      | -0.0118 (5)  | -0.0011 (6)  | 0.0115 (5)  |
| N1  | 0.0496 (6)  | 0.0347 (5)  | 0.0484 (6)      | -0.0169 (4)  | -0.0028 (4)  | -0.0047 (4) |
| N2  | 0.0485 (6)  | 0.0308 (5)  | 0.0531 (6)      | -0.0127 (4)  | -0.0031 (5)  | 0.0018 (4)  |
| C1  | 0.0498 (7)  | 0.0377 (5)  | 0.0405 (6)      | -0.0195 (5)  | -0.0069(5)   | 0.0020 (5)  |
| C2  | 0.0699 (9)  | 0.0460 (6)  | 0.0484 (7)      | -0.0322 (6)  | -0.0057 (6)  | 0.0019 (5)  |
| C3  | 0.0759 (10) | 0.0689 (9)  | 0.0639 (9)      | -0.0489 (8)  | -0.0032 (7)  | 0.0037 (7)  |
| C4  | 0.0558 (9)  | 0.0781 (10) | 0.0751 (10)     | -0.0359 (8)  | 0.0017 (7)   | 0.0036 (8)  |
| C5  | 0.0497 (8)  | 0.0514 (7)  | 0.0646 (8)      | -0.0187 (6)  | 0.0018 (6)   | 0.0002 (6)  |
| C6  | 0.0473 (7)  | 0.0388 (6)  | 0.0441 (6)      | -0.0185 (5)  | -0.0046 (5)  | 0.0010 (5)  |
| C7  | 0.0414 (6)  | 0.0314 (5)  | 0.0568 (7)      | -0.0124 (5)  | -0.0083 (5)  | 0.0001 (5)  |
| C8  | 0.0425 (6)  | 0.0357 (5)  | 0.0464 (6)      | -0.0150 (5)  | -0.0063 (5)  | 0.0031 (5)  |
| C9  | 0.0455 (6)  | 0.0333 (5)  | 0.0435 (6)      | -0.0166 (5)  | -0.0090(5)   | -0.0019 (4) |
| C10 | 0.0425 (6)  | 0.0368 (5)  | 0.0556 (7)      | -0.0158 (5)  | -0.0066 (5)  | -0.0018 (5) |
| C11 | 0.0469 (7)  | 0.0394 (6)  | 0.0688 (9)      | -0.0151 (6)  | -0.0122 (6)  | -0.0043 (6) |
| C12 | 0.0465 (8)  | 0.0482 (7)  | 0.1026 (12)     | -0.0105 (6)  | -0.0050 (8)  | -0.0099 (8) |
| C13 | 0.0605 (8)  | 0.0414 (6)  | 0.0596 (8)      | -0.0157 (6)  | -0.0004 (6)  | -0.0132 (6) |
| C14 | 0.0638 (9)  | 0.0600 (8)  | 0.0493 (7)      | -0.0262 (7)  | 0.0052 (6)   | -0.0144 (6) |
| C15 | 0.0617 (8)  | 0.0586 (8)  | 0.0466 (7)      | -0.0262 (7)  | -0.0004 (6)  | -0.0057 (6) |
| C16 | 0.0710 (9)  | 0.0645 (8)  | 0.0481 (7)      | -0.0306 (8)  | -0.0023 (6)  | -0.0034 (6) |
| C17 | 0.0704 (9)  | 0.0626 (8)  | 0.0512 (8)      | -0.0294 (8)  | -0.0069 (7)  | -0.0011 (6) |
| C18 | 0.0774 (10) | 0.0632 (8)  | 0.0546 (8)      | -0.0309 (8)  | -0.0082(7)   | 0.0008 (7)  |
| C19 | 0.0772 (10) | 0.0621 (8)  | 0.0581 (9)      | -0.0304 (8)  | -0.0100 (7)  | -0.0001 (7) |
| C20 | 0.0874 (12) | 0.0642 (9)  | 0.0642 (9)      | -0.0366 (9)  | -0.0170 (8)  | 0.0040 (7)  |
| C21 | 0.0953 (13) | 0.0717 (10) | 0.0833 (12)     | -0.0334 (10) | -0.0272 (10) | 0.0032 (9)  |
| C22 | 0.149 (2)   | 0.0893 (13) | 0.1018 (16)     | -0.0534 (14) | -0.0625 (14) | 0.0264 (12) |
|     |             |             |                 |              |              |             |

Geometric parameters (Å, °)

| 01—C7     | 1.2190 (14) | C13—H13A      | 0.9700      |  |
|-----------|-------------|---------------|-------------|--|
| O2—C11    | 1.2415 (16) | C13—H13B      | 0.9700      |  |
| N1—C7     | 1.3640 (16) | C14—C15       | 1.515 (2)   |  |
| N1—C6     | 1.4295 (15) | C14—H14A      | 0.9700      |  |
| N1—C13    | 1.4692 (16) | C14—H14B      | 0.9700      |  |
| N2—C9     | 1.3579 (15) | C15—C16       | 1.5210(19)  |  |
| N2—C1     | 1.4060 (16) | C15—H15A      | 0.9700      |  |
| N2—H2A    | 0.887 (16)  | C15—H15B      | 0.9700      |  |
| C1—C2     | 1.3955 (16) | C16—C17       | 1.512 (2)   |  |
| C1—C6     | 1.4007 (16) | C16—H16A      | 0.9700      |  |
| С2—С3     | 1.374 (2)   | C16—H16B      | 0.9700      |  |
| C2—H2     | 0.9300      | C17—C18       | 1.525 (2)   |  |
| C3—C4     | 1.384 (2)   | C17—H17A      | 0.9700      |  |
| С3—Н3     | 0.9300      | C17—H17B      | 0.9700      |  |
| C4—C5     | 1.377 (2)   | C18—C19       | 1.504 (2)   |  |
| C4—H4     | 0.9300      | C18—H18A      | 0.9700      |  |
| C5—C6     | 1.3927 (18) | C18—H18B      | 0.9700      |  |
| С5—Н5     | 0.9300      | C19—C20       | 1.526 (2)   |  |
| С7—С8     | 1.5115 (17) | C19—H19A      | 0.9700      |  |
| С8—С9     | 1.5054 (15) | C19—H19B      | 0.9700      |  |
| C8—H8A    | 0.9700      | C20—C21       | 1.490 (2)   |  |
| C8—H8B    | 0.9700      | C20—H20A      | 0.9700      |  |
| C9—C10    | 1.3612 (17) | C20—H20B      | 0.9700      |  |
| C10-C11   | 1.4367 (17) | C21—C22       | 1.514 (3)   |  |
| C10—H10   | 0.9300      | C21—H21A      | 0.9700      |  |
| C11—C12   | 1.498 (2)   | C21—H21B      | 0.9700      |  |
| C12—H12A  | 0.9600      | C22—H22A      | 0.9600      |  |
| C12—H12B  | 0.9600      | C22—H22B      | 0.9600      |  |
| C12—H12C  | 0.9600      | C22—H22C      | 0.9600      |  |
| C13—C14   | 1.5208 (19) |               |             |  |
| C7—N1—C6  | 123.72 (10) | C15—C14—C13   | 114.50 (11) |  |
| C7—N1—C13 | 118.75 (10) | C15—C14—H14A  | 108.6       |  |
| C6—N1—C13 | 117.46 (10) | C13—C14—H14A  | 108.6       |  |
| C9—N2—C1  | 125.52 (10) | C15—C14—H14B  | 108.6       |  |
| C9—N2—H2A | 111.0 (10)  | C13—C14—H14B  | 108.6       |  |
| C1—N2—H2A | 120.2 (10)  | H14A—C14—H14B | 107.6       |  |
| C2—C1—C6  | 119.63 (12) | C14—C15—C16   | 113.14 (12) |  |
| C2C1N2    | 118.29 (11) | C14—C15—H15A  | 109.0       |  |
| C6-C1-N2  | 122.07 (10) | C16—C15—H15A  | 109.0       |  |
| C3—C2—C1  | 120.68 (13) | C14—C15—H15B  | 109.0       |  |
| С3—С2—Н2  | 119.7       | C16—C15—H15B  | 109.0       |  |
| C1—C2—H2  | 119.7       | H15A—C15—H15B | 107.8       |  |
| C2—C3—C4  | 119.84 (13) | C17—C16—C15   | 115.36 (12) |  |
| С2—С3—Н3  | 120.1       | C17—C16—H16A  | 108.4       |  |
| С4—С3—Н3  | 120.1       | C15—C16—H16A  | 108.4       |  |

| C5—C4—C3      | 120.01 (14)  | C17—C16—H16B  | 108.4        |
|---------------|--------------|---------------|--------------|
| C5—C4—H4      | 120.0        | C15—C16—H16B  | 108.4        |
| C3—C4—H4      | 120.0        | H16A—C16—H16B | 107.5        |
| C4—C5—C6      | 121.13 (13)  | C16—C17—C18   | 112.79 (12)  |
| С4—С5—Н5      | 119.4        | C16—C17—H17A  | 109.0        |
| С6—С5—Н5      | 119.4        | C18—C17—H17A  | 109.0        |
| C5—C6—C1      | 118.53 (11)  | C16—C17—H17B  | 109.0        |
| C5—C6—N1      | 119.33 (11)  | C18—C17—H17B  | 109.0        |
| C1—C6—N1      | 122.03 (11)  | H17A—C17—H17B | 107.8        |
| O1—C7—N1      | 123.17 (12)  | C19—C18—C17   | 115.60 (13)  |
| O1—C7—C8      | 121.50 (12)  | C19—C18—H18A  | 108.4        |
| N1—C7—C8      | 115.32 (10)  | C17—C18—H18A  | 108.4        |
| C9—C8—C7      | 109.74 (9)   | C19—C18—H18B  | 108.4        |
| С9—С8—Н8А     | 109.7        | C17—C18—H18B  | 108.4        |
| С7—С8—Н8А     | 109.7        | H18A—C18—H18B | 107.4        |
| С9—С8—Н8В     | 109.7        | C18—C19—C20   | 113.76 (14)  |
| С7—С8—Н8В     | 109.7        | C18—C19—H19A  | 108.8        |
| H8A—C8—H8B    | 108.2        | С20—С19—Н19А  | 108.8        |
| N2-C9-C10     | 122.13 (10)  | C18—C19—H19B  | 108.8        |
| N2-C9-C8      | 115.85 (10)  | C20—C19—H19B  | 108.8        |
| C10—C9—C8     | 122.02 (10)  | H19A—C19—H19B | 107.7        |
| C9—C10—C11    | 123.47 (12)  | C21—C20—C19   | 115.22 (15)  |
| С9—С10—Н10    | 118.3        | C21—C20—H20A  | 108.5        |
| C11—C10—H10   | 118.3        | С19—С20—Н20А  | 108.5        |
| O2—C11—C10    | 122.16 (12)  | C21—C20—H20B  | 108.5        |
| O2—C11—C12    | 119.60 (12)  | С19—С20—Н20В  | 108.5        |
| C10—C11—C12   | 118.24 (13)  | H20A—C20—H20B | 107.5        |
| C11—C12—H12A  | 109.5        | C20—C21—C22   | 114.29 (19)  |
| C11—C12—H12B  | 109.5        | C20—C21—H21A  | 108.7        |
| H12A—C12—H12B | 109.5        | C22—C21—H21A  | 108.7        |
| C11—C12—H12C  | 109.5        | C20—C21—H21B  | 108.7        |
| H12A—C12—H12C | 109.5        | C22—C21—H21B  | 108.7        |
| H12B—C12—H12C | 109.5        | H21A—C21—H21B | 107.6        |
| N1—C13—C14    | 112.14 (10)  | C21—C22—H22A  | 109.5        |
| N1—C13—H13A   | 109.2        | C21—C22—H22B  | 109.5        |
| C14—C13—H13A  | 109.2        | H22A—C22—H22B | 109.5        |
| N1—C13—H13B   | 109.2        | C21—C22—H22C  | 109.5        |
| C14—C13—H13B  | 109.2        | H22A—C22—H22C | 109.5        |
| H13A—C13—H13B | 107.9        | H22B—C22—H22C | 109.5        |
|               |              |               |              |
| C9—N2—C1—C2   | -133.51 (13) | 01—C7—C8—C9   | -106.01 (13) |
| C9—N2—C1—C6   | 46.96 (17)   | N1—C7—C8—C9   | 72.89 (13)   |
| C6—C1—C2—C3   | -1.84 (19)   | C1—N2—C9—C10  | 166.11 (11)  |
| N2—C1—C2—C3   | 178.62 (12)  | C1—N2—C9—C8   | -13.82 (17)  |
| C1—C2—C3—C4   | -1.9 (2)     | C7—C8—C9—N2   | -63.37 (13)  |
| C2—C3—C4—C5   | 3.0 (2)      | C7—C8—C9—C10  | 116.70 (12)  |
| C3—C4—C5—C6   | -0.4 (2)     | N2—C9—C10—C11 | -2.25 (19)   |
| C4—C5—C6—C1   | -3.3 (2)     | C8—C9—C10—C11 | 177.68 (11)  |
|               | × /          |               | ~ /          |

| C4 C5 C( N1  | 172 02 (12)  | $C_0$ $C_{10}$ $C_{11}$ $O_2$ | (2)          |
|--------------|--------------|-------------------------------|--------------|
| C4-C5-C6-NI  | 1/2.92 (13)  | C9-C10-C11-02                 | 0.2 (2)      |
| C2-C1-C6-C5  | 4.37 (18)    | C9-C10-C11-C12                | -173.27 (12) |
| N2-C1-C6-C5  | -176.11 (11) | C7—N1—C13—C14                 | 115.76 (13)  |
| C2-C1-C6-N1  | -171.75 (11) | C6—N1—C13—C14                 | -61.51 (15)  |
| N2-C1-C6-N1  | 7.77 (18)    | N1-C13-C14-C15                | -58.53 (16)  |
| C7—N1—C6—C5  | 135.27 (13)  | C13—C14—C15—C16               | -175.86 (12) |
| C13—N1—C6—C5 | -47.61 (15)  | C14—C15—C16—C17               | -178.65 (12) |
| C7—N1—C6—C1  | -48.64 (16)  | C15-C16-C17-C18               | -178.22 (13) |
| C13—N1—C6—C1 | 128.48 (12)  | C16—C17—C18—C19               | -178.91 (13) |
| C6—N1—C7—O1  | 178.57 (11)  | C17—C18—C19—C20               | 179.79 (13)  |
| C13—N1—C7—O1 | 1.49 (17)    | C18—C19—C20—C21               | -179.32 (14) |
| C6—N1—C7—C8  | -0.31 (16)   | C19—C20—C21—C22               | 179.61 (15)  |
| C13—N1—C7—C8 | -177.39 (10) |                               |              |

Hydrogen-bond geometry (Å, °)

| D—H···A              | D—H        | Н…А        | D····A      | <i>D</i> —H··· <i>A</i> |
|----------------------|------------|------------|-------------|-------------------------|
| N2—H2A···O2          | 0.887 (16) | 1.904 (16) | 2.6459 (14) | 140.0 (14)              |
| $C5-H5\cdots O2^{1}$ | 0.93       | 2.54       | 3.3123 (17) | 140                     |

Symmetry code: (i) x+1, y-1, z.