

ISSN 2414-3146

Received 24 June 2016 Accepted 25 June 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzofuran; hydrogen bonding.

CCDC reference: 1484420

Structural data: full structural data are available from iucrdata.iucr.org

2-(4,6-Dimethyl-1-benzofuran-3-yl)acetic acid

N. Ramprasad,^a Ramakrishna Gowda,^b* K.V. Arjuna Gowda^c and Mahantesha Basanagouda^d

^aDepartment of Physics, Govt. First Grade College, Mulbagal, Kolar 563 131, Karnataka, India, ^bDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, ^cDepartment of Physics, Govt. College for Women, Mandya 571 401, India, and ^dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India. *Correspondence e-mail: rkgowdaphy@gmail.com

In the title compound, $C_{12}H_{12}O_3$, the dihedral angle between the planes of the carboxylic acid group and the benzofuran ring system (r.m.s. deviation = 0.012 Å) is 76.53 (10)°. In the crystal, carboxylic acid inversion dimers linked by pairs of O-H···O hydrogen bonds generate $R_2^2(8)$ loops. C-H···O interactions link the dimers into (101) sheets.

Structure description

Carboxylic acids, such as arylalkanoic acids, exhibit anti-inflammatory, analgesic and antipyretic properties and have been in widespread clinical use for a number of years (Basanagouda *et al.*, 2015). As part of our studies in this area, we now report the crystal structure of the title compound. All the bond lengths and angles are close to those observed for similar structures (Gowda *et al.*, 2015; Ramprasad *et al.*, 2016).

The X-ray structure of the title molecule (Fig. 1) reveals its non-planar nature; the plane of the acetic acid group makes a dihedral angle of 76.53 (10)° with that of the benzofuran ring system. The C9–C12 bond length [1.512 (3) Å] reflects the $sp^2(C1)-sp^3(C12)$ hybridization of these atoms; this is also reflected in the C7–C11 bond length [1.497 (3) Å].

In the crystal, molecules are linked into carboxylic acid inversion dimers by pairs of $O-H\cdots O$ hydrogen bonds. The dimers are linked into (101) sheets by a very weak $C-H\cdots O$ hydrogen bond (Fig. 2 and Table 1).

data reports

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4\cdots O3^{i}$	0.93	2.58	3.328 (2)	137
$O2-H2\cdots O1^{ii}$	0.82	1.83	2.645 (2)	171

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y, -z.

Figure 1

The molecular structure of the title compound, showing 40% probability displacement ellipsoids.

Synthesis and crystallization

4-Bromomethyl-5,7-dimethylcoumarin (10 m*M*) was refluxed in 1 *M* NaOH (100 ml) for 2 h (the completion of the reaction was monitored by thin-layer chromatography). The reaction mixture was cooled, neutralized with 1 *M* HCl and the obtained product was filtered off and dried. Colourless blocks were obtained by recrystallization from an ethanol and ethyl acetate solvent mixture by slow evaporation (m.p. 442–443 K) (Basanagouda *et al.*, 2015).

Figure 2

The crystal packing diagram of the title compound. The dotted lines indicate intermolecular hydrogen bonds. H atoms not involved in these interactions have been omitted for clarity.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{12}H_{12}O_3$
Mr	204.22
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	9.5048 (4), 4.8237 (2), 23.3395 (11)
β (°)	100.829 (2)
$V(Å^3)$	1051.02 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.25 \times 0.20 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.969, 0.992
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15929, 2056, 1581
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.616
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.129, 1.06
No. of reflections	2056
No. of parameters	139
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.27, -0.30

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SIR92* (Altomare *et al.*, 1994), *SHELXL2014* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/ UGC-SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Basanagouda, M., Narayanachar Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.

Bruker (2004). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053–o1054.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Ramprasad, N., Gowda, R., Gowda, K. V. A. & Basanagouda, M. (2016). *IUCrData*, **1**, x160170.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). 1, x161032 [https://doi.org/10.1107/S2414314616010324]

2-(4,6-Dimethyl-1-benzofuran-3-yl)acetic acid

N. Ramprasad, Ramakrishna Gowda, K.V. Arjuna Gowda and Mahantesha Basanagouda

2-(4,6-Dimethyl-1-benzofuran-3-yl)acetic acid

Crystal data

C₁₂H₁₂O₃ $M_r = 204.22$ Monoclinic, $P2_1/n$ a = 9.5048 (4) Å b = 4.8237 (2) Å c = 23.3395 (11) Å $\beta = 100.829$ (2)° V = 1051.02 (8) Å³ Z = 4F(000) = 432

Data collection

Bruker axs kappa apex2 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.969, T_{\max} = 0.992$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.129$ S = 1.062056 reflections 139 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.291 \text{ Mg m}^{-3}$ Melting point = 433–432 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4624 reflections $\theta = 2.2-25.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.25 \times 0.20 \times 0.20 \text{ mm}$

15929 measured reflections 2056 independent reflections 1581 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -5 \rightarrow 5$ $l = -28 \rightarrow 28$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0551P)^2 + 0.4386P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.27 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.30 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.021 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6178 (2)	-0.1293 (4)	0.07038 (8)	0.0483 (5)	
C2	0.7035 (2)	-0.2388 (4)	0.12645 (9)	0.0544 (5)	
H2A	0.6384	-0.2841	0.1525	0.065*	
H2B	0.7501	-0.4093	0.1182	0.065*	
C3	0.81502 (18)	-0.0435 (4)	0.15717 (8)	0.0431 (4)	
C4	0.79779 (19)	0.1147 (4)	0.20245 (8)	0.0486 (5)	
H4	0.7150	0.1145	0.2183	0.058*	
C5	1.01240 (18)	0.2144 (4)	0.18824 (7)	0.0391 (4)	
C6	0.95676 (17)	0.0184 (3)	0.14658 (7)	0.0384 (4)	
C7	1.0429 (2)	-0.0704 (4)	0.10711 (8)	0.0458 (5)	
C8	1.1781 (2)	0.0431 (4)	0.11406 (9)	0.0540 (5)	
H8	1.2370	-0.0135	0.0886	0.065*	
C9	1.23245 (19)	0.2375 (4)	0.15682 (9)	0.0519 (5)	
C10	1.14744 (19)	0.3273 (4)	0.19488 (8)	0.0480 (5)	
H10	1.1798	0.4580	0.2237	0.058*	
C11	0.9921 (3)	-0.2776 (5)	0.06001 (9)	0.0667 (6)	
H11A	0.9718	-0.4502	0.0773	0.100*	
H11B	1.0651	-0.3056	0.0372	0.100*	
H11C	0.9067	-0.2099	0.0353	0.100*	
C12	1.3832 (2)	0.3480 (6)	0.16180 (13)	0.0832 (8)	
H12A	1.4150	0.3199	0.1256	0.125*	
H12B	1.4459	0.2517	0.1924	0.125*	
H12C	1.3843	0.5425	0.1706	0.125*	
01	0.64980 (17)	0.0843 (4)	0.04769 (7)	0.0808 (6)	
O2	0.50928 (17)	-0.2762 (4)	0.04947 (7)	0.0828 (6)	
H2	0.4680	-0.2081	0.0187	0.124*	
O3	0.91475 (13)	0.2772 (3)	0.22303 (5)	0.0484 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0459 (10)	0.0473 (11)	0.0473 (10)	-0.0099 (8)	-0.0028 (8)	0.0048 (8)
C2	0.0515 (11)	0.0519 (11)	0.0527 (11)	-0.0142 (9)	-0.0087 (9)	0.0131 (9)
C3	0.0398 (9)	0.0435 (10)	0.0413 (9)	-0.0045 (7)	-0.0040 (7)	0.0106 (8)
C4	0.0377 (9)	0.0612 (12)	0.0459 (10)	-0.0028 (8)	0.0053 (8)	0.0064 (9)
C5	0.0388 (9)	0.0427 (9)	0.0348 (8)	0.0014 (7)	0.0038 (7)	-0.0003 (7)
C6	0.0412 (9)	0.0356 (9)	0.0358 (8)	0.0002 (7)	0.0003 (7)	0.0050 (7)
C7	0.0576 (11)	0.0396 (10)	0.0392 (9)	0.0058 (8)	0.0068 (8)	0.0018 (8)
C8	0.0531 (11)	0.0596 (12)	0.0529 (11)	0.0104 (10)	0.0192 (9)	0.0045 (10)
C9	0.0405 (10)	0.0592 (12)	0.0555 (11)	-0.0007 (9)	0.0074 (8)	0.0084 (10)
C10	0.0423 (10)	0.0511 (11)	0.0471 (10)	-0.0067 (8)	-0.0005 (8)	-0.0018 (8)
C11	0.0917 (17)	0.0557 (13)	0.0519 (12)	0.0043 (12)	0.0110 (11)	-0.0118 (10)
C12	0.0465 (12)	0.108 (2)	0.0973 (19)	-0.0135 (13)	0.0180 (12)	0.0074 (16)
01	0.0777 (11)	0.0734 (11)	0.0753 (11)	-0.0296 (9)	-0.0270 (8)	0.0324 (9)
O2	0.0786 (11)	0.0869 (12)	0.0666 (10)	-0.0386 (9)	-0.0284 (8)	0.0240 (9)

						data reports
03	0.0433 (7)	0.0587 (8)	0.0435 (7)	-0.0017 (6)	0.0089 (5)	-0.0080 (6)
Geome	tric parameters (A	Å, °)				
C1—0	1	1.223 (2)	С7—С8		1.378 (3)
C1—O	2	1.271 (2)	C7—C11		1.497 (3)
C1—C	2	1.501 (3)	С8—С9		1.396 (3)
С2—С	3	1.497 (2)	C8—H8		0.9300
С2—Н	2A	0.9700		C9—C10		1.378 (3)
С2—Н	2B	0.9700		C9—C12		1.512 (3)
С3—С	4	1.338 (3)	C10—H10		0.9300
С3—С	6	1.446 (2)	C11—H11A		0.9600
C4—O	3	1.371 (2)	C11—H11B		0.9600
С4—Н	4	0.9300	, ,	C11—H11C		0.9600
С5—С	10	1.376 (2)	C12—H12A		0.9600
С5—О	3	1.377 (2)	C12—H12B		0.9600
С5—С	6	1.388 (2)	C12—H12C		0.9600
C6—C	7	1.409 (2)	O2—H2		0.8200
01—C	1—02	123.60 (18)	C7—C8—C9		124.24 (18)
01—C	1—C2	122.38 (16)	С7—С8—Н8		117.9
02—С	1—C2	114.02 (16)	С9—С8—Н8		117.9
С3—С	2—C1	114.56 (15)	С10—С9—С8		119.28 (17)
С3—С	2—H2A	108.6		C10-C9-C12		120.1 (2)
C1—C	2—H2A	108.6		C8—C9—C12		120.6 (2)
С3—С	2—H2B	108.6		C5—C10—C9		116.77 (18)
C1—C	2—H2B	108.6		С5—С10—Н10		121.6
H2A—	C2—H2B	107.6		C9-C10-H10		121.6
C4—C	3—Сб	105.86 (15)	C7—C11—H11A		109.5
C4—C	3—С2	123.83 (17)	C7—C11—H11B		109.5
С6—С	3—С2	130.31 (18)	H11A-C11-H11B		109.5
С3—С	4—03	113.03 (16)	C7—C11—H11C		109.5
С3—С	4—H4	123.5		H11A-C11-H11C		109.5
03—С	4—H4	123.5		H11B-C11-H11C		109.5
C10—0	C5—O3	124.36 (16)	C9-C12-H12A		109.5
C10—0	С5—С6	124.98 (17)	C9-C12-H12B		109.5
03—С	5—C6	110.65 (15)	H12A—C12—H12B		109.5
С5—С	6—C7	118.25 (16)	C9-C12-H12C		109.5
С5—С	6—C3	105.41 (15)	H12A—C12—H12C		109.5
С7—С	6—C3	136.34 (17)	H12B—C12—H12C		109.5
C8—C	7—С6	116.47 (17)	C1—O2—H2		109.5
C8—C	7—C11	121.12 (18)	C4—O3—C5		105.04 (14)
С6—С	7—C11	122.41 (18)			
01—C	1—C2—C3	9.8 (3)		C3—C6—C7—C8		-178.26 (18)
02—С	1—C2—C3	-169.37	(19)	C5—C6—C7—C11		-179.04 (16)
C1—C	2—С3—С4	99.9 (2)		C3—C6—C7—C11		1.5 (3)
C1—C	2—С3—С6	-80.0 (3)	C6—C7—C8—C9		-0.4 (3)

C6—C3—C4—O3	0.2 (2)	C11—C7—C8—C9	179.83 (19)	
C2—C3—C4—O3	-179.76 (15)	C7—C8—C9—C10	-0.6 (3)	
C10—C5—C6—C7	-1.2 (3)	C7—C8—C9—C12	179.1 (2)	
O3—C5—C6—C7	-179.97 (15)	O3—C5—C10—C9	178.86 (16)	
C10—C5—C6—C3	178.44 (17)	C6—C5—C10—C9	0.2 (3)	
O3—C5—C6—C3	-0.37 (19)	C8—C9—C10—C5	0.6 (3)	
C4—C3—C6—C5	0.13 (19)	C12—C9—C10—C5	-179.02 (19)	
C2—C3—C6—C5	-179.96 (17)	C3—C4—O3—C5	-0.4 (2)	
C4—C3—C6—C7	179.6 (2)	C10—C5—O3—C4	-178.36 (17)	
C2—C3—C6—C7	-0.5 (3)	C6—C5—O3—C4	0.46 (19)	
C5—C6—C7—C8	1.2 (2)			

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…O3 ⁱ	0.93	2.58	3.328 (2)	137
O2—H2…O1 ⁱⁱ	0.82	1.83	2.645 (2)	171

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*, -*z*.