

ISSN 2414-3146

Received 28 June 2016 Accepted 6 July 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzoylthioureido acid; thiourea; hydrogen bonding.

CCDC reference: 1490858

Structural data: full structural data are available from iucrdata.iucr.org

2-(3-Benzoylthioureido)-3-phenylpropanoic acid

Yan Yi Chong,^a Mohamed Ibrahim Mohamed Tahir^b and Mohammad B. Kassim^{a,c*}

^aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and ^cFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. *Correspondence e-mail: mb_kassim@ukm.edu.my

In the title compound, $C_{17}H_{16}N_2O_3S$, the phenylpropanoic acid and the benzoyl moieties adopt a *cis-trans* conformation, respectively, with respect to the thiono S atom across the C-N bonds. An intramolecular N-H···O hydrogen bond generates an S(6) ring. The crystal structure features carboxylic acid inversion dimers and pairwise N-H···S hydrogen bonds, which together generate [201] chains. Weak C-H···O hydrogen bonds are also observed.

Structure description

The title compound (Fig. 1) adopts a *cis-trans* conformation with respect to the positions of the phenylpropanoic acid and benzoyl groups, relative to the S atom across the C8–N2 and C8–N1 bonds, respectively. The C8–S1, C7–O1, N1–C7, N1–C8 and N2–C8 bond lengths are similar to the corresponding bond lengths in related structures (Hassan *et al.*, 2008, 2009). The plane through the central thiourea unit (S1/N1/N2/C8/C9) forms dihedral angles of 14.90 (6) and 50.41 (6)°, with respect to the phenyl rings of the phenylpropanoic acid (C11–C16) and benzoyl (C1–C6) groups, respectively. The latter angle is larger than that previously reported for methyl 2-(3-benzoylthioureido)acetate (Hassan *et al.*, 2009). The phenyl rings of the phenylpropanoic acid and benzoyl groups subtend a dihedral angle of 36.06 (8)°. An intramolecular hydrogen bond, N2–H2A···O1, generates an S(6) ring.

The crystal structure (Fig. 2) features carboxylic-acid inversion dimers linked by pairs of $O3-H3a\cdots O2$ hydrogen bonds (Table 1). The dimers are linked by pairwise $N1-H1A\cdots S1$ hydrogen bonds, generating [201] chains. Weak $C16-H11\cdots O1$ hydrogen bonds are also observed.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Synthesis and crystallization

The title compound was synthesized according to a previously reported method (Ngah et al., 2005) with modification. Instead of 2-aminopropionic acid, 2-amino-3-phenylpropanoic acid was used for this reaction. Colourless plates were obtained by recrystallization from ethanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for research grants (OUP-2012-073 and UKM-PTS-016-2010), the Ministry of Higher Education for the UKM-ST-06-FRGS0111-2009 grant and MyMaster funding for CYY.

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Figure 2

Partial packing view of 2-(3-benzoylthioureido)-3-phenylpropanoic acid, showing the zigzag chain formed by $N-H\cdots S$, $C-H\cdots O$ and $O-H\cdots O$ hydrogen bonds which are shown as dashed lines [Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.]

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N2-H2A\cdotsO1$ $N1-H1A\cdotsS1^{i}$	0.86 (2)	1.98 (2)	2.6480 (16)	134.1 (16)
	0.790 (19)	2.571 (19)	3.3496 (13)	168.9 (18)
$\begin{array}{c} O3 - H3A \cdots O2^{ii} \\ C16 - H16 \cdots O1^{iii} \end{array}$	0.87 (2)	1.81 (2)	2.6696 (14)	175 (2)
	0.93	2.54	3.4026 (18)	155

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{17}H_{16}N_2O_3S$
$M_{\rm r}$	328.38
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.8750 (2), 25.9891 (12), 10.3089 (4)
β (°)	90.761 (4)
$V(Å^3)$	1573.89 (11)
Z	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	1.97
Crystal size (mm)	$0.25 \times 0.09 \times 0.05$
Data collection	
Diffractometer	Area
Absorption correction	Multi-scan (<i>DENZO/SCALE-PACK</i> ; Otwinowski & Minor, 1997)
Tmin. Tmax	0.638, 0.908
No. of measured, independent and observed $[L > 2\sigma(L)]$ reflections	10980, 3045, 2824
$R_{\rm e}$	0.026
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.615
(on onomax (i i)	01012
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.096, 1.04
No. of reflections	3045
No. of parameters	220
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.37, -0.23

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 and SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

- Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o2083.
- Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, 03078.
- Ngah, N., Shah, N. M., Kassim, M. B. & Yamin, B. M. (2005). Acta Cryst. E61, o1910-o1912.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). **1**, x161091 [https://doi.org/10.1107/S2414314616010919]

2-(3-Benzoylthioureido)-3-phenylpropanoic acid

Yan Yi Chong, Mohamed Ibrahim Mohamed Tahir and Mohammad B. Kassim

2-(3-Benzoylthioureido)-3-phenylpropanoic acid

Crystal data

C₁₇H₁₆N₂O₃S $M_r = 328.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8750 (2) Å b = 25.9891 (12) Å c = 10.3089 (4) Å $\beta = 90.761$ (4)° V = 1573.89 (11) Å³ Z = 4

Data collection

Area diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.638, T_{\max} = 0.908$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 1.043045 reflections 220 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 688 $D_x = 1.386 \text{ Mg m}^{-3}$ Melting point: 423 K Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 5690 reflections $\theta = 3-71^{\circ}$ $\mu = 1.97 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.25 \times 0.09 \times 0.05 \text{ mm}$

10980 measured reflections 3045 independent reflections 2824 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 71.4^\circ, \ \theta_{min} = 3.4^\circ$ $h = -7 \rightarrow 7$ $k = -29 \rightarrow 31$ $l = -11 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.745P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{iso} * / U_{eq}$ х Ζ v **S**1 0.01781 (13) 0.27806 (6) 0.545305 (13) 0.95051 (3) **O**1 0.0181(2)0.22425 (17) 0.42118(4)0.64014(9)02 0.75216 (16) 0.48331(4)0.56133 (10) 0.0160(2)03 0.97354 (17) 0.54898 (4) 0.62633 (10) 0.0161(2)N1 0.45848(5)0.0153(3)0.1462(2)0.83583 (12) N2 0.4436(2)0.50147(5)0.73866 (12) 0.0145(3)C1 -0.1982(3)0.36410(6) 0.67098 (15) 0.0203(3)H1-0.18540.3781 0.024* 0.5883 C2 -0.3611(3)0.32678 (6) 0.69518 (17) 0.0254(4)H2 -0.46070.3165 0.6293 0.031* C3 -0.3758(3)0.30477 (6) 0.0250(3)0.81781 (18) H3 -0.48490.2797 0.8337 0.030* C4 -0.2279(3)0.0220(3)0.32014 (6) 0.91634 (16) H4 -0.23600.3049 0.026* 0.9977 -0.0675(3)0.35843 (5) C5 0.0179 (3) 0.89373 (15) 0.022* H5 0.0299 0.3691 0.9603 C6 -0.0534(2)0.38063(5)0.77145 (14) 0.0157 (3) C7 0.1188(2)0.42121(5)0.74175 (14) 0.0145(3)C8 0.2955(2)0.50034(5)0.83430(13) 0.0147(3)C9 0.6127(2)0.54169(5)0.72320(13) 0.0139(3)Н9 0.6863 0.5489 0.8071 0.017* C10 0.5081(2)0.59226(5)0.66649 (14) 0.0155(3)H10A 0.4980 0.5893 0.5728 0.019* H10B 0.5962 0.019* 0.3547 0.6987 C11 0.6439(2)0.63986(5)0.70080 (14) 0.0156(3) C12 0.6241(3)0.66130(6) 0.82414 (15) 0.0205(3)0.025* H12 0.5286 0.6460 0.8842 C13 0.7457(3)0.70522 (6) 0.85818 (15) 0.0231(3)H13 0.7292 0.7195 0.9402 0.028* 0.0233(3)C14 0.8916(3)0.72781 (6) 0.77023 (16) 0.028* H14 0.9739 0.7571 0.7932 C15 0.70643 (6) 0.0221(3)0.9138(3)0.64755 (16) H15 1.0122 0.7213 0.027* 0.5884 C16 0.7893 (3) 0.66287(6) 0.61291 (14) 0.0191 (3) 0.023* H16 0.8036 0.6490 0.5302

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

C17	0.7876 (2)	0.52116 (5)	0.62938 (13)	0.0136 (3)
H1A	0.060 (3)	0.4587 (7)	0.894 (2)	0.018 (5)*
H2A	0.440 (3)	0.4775 (8)	0.6817 (19)	0.022 (5)*
H3A	1.055 (4)	0.5387 (9)	0.562 (2)	0.036 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0200 (2)	0.0174 (2)	0.0163 (2)	-0.00387 (12)	0.00715 (14)	-0.00508 (12)
01	0.0211 (5)	0.0186 (5)	0.0147 (5)	-0.0030 (4)	0.0044 (4)	-0.0023 (4)
O2	0.0157 (5)	0.0152 (5)	0.0173 (5)	-0.0006 (4)	0.0040 (4)	-0.0022 (4)
03	0.0128 (5)	0.0187 (5)	0.0170 (5)	-0.0017 (4)	0.0035 (4)	-0.0022 (4)
N1	0.0167 (6)	0.0157 (6)	0.0137 (6)	-0.0026 (4)	0.0062 (5)	-0.0014 (4)
N2	0.0158 (6)	0.0137 (6)	0.0140 (6)	-0.0015 (5)	0.0028 (4)	-0.0031 (5)
C1	0.0209 (7)	0.0172 (7)	0.0227 (8)	0.0006 (6)	-0.0022 (6)	0.0008 (6)
C2	0.0194 (7)	0.0199 (8)	0.0368 (9)	-0.0012 (6)	-0.0058 (7)	-0.0010(7)
C3	0.0189 (8)	0.0156 (7)	0.0406 (9)	-0.0027 (6)	0.0081 (7)	0.0012 (7)
C4	0.0261 (8)	0.0152 (7)	0.0251 (8)	0.0023 (6)	0.0109 (6)	0.0012 (6)
C5	0.0199 (7)	0.0142 (7)	0.0198 (7)	0.0021 (5)	0.0047 (6)	-0.0024 (5)
C6	0.0144 (7)	0.0129 (7)	0.0198 (7)	0.0023 (5)	0.0035 (5)	-0.0015 (5)
C7	0.0143 (7)	0.0138 (7)	0.0155 (7)	0.0020 (5)	-0.0002 (5)	0.0007 (5)
C8	0.0151 (7)	0.0143 (7)	0.0149 (7)	0.0016 (5)	0.0010 (5)	0.0001 (5)
C9	0.0134 (7)	0.0154 (7)	0.0129 (6)	-0.0013 (5)	0.0015 (5)	-0.0014 (5)
C10	0.0137 (6)	0.0164 (7)	0.0164 (7)	0.0007 (5)	0.0016 (5)	-0.0013 (5)
C11	0.0139 (6)	0.0144 (7)	0.0185 (7)	0.0021 (5)	-0.0006 (5)	0.0005 (5)
C12	0.0234 (8)	0.0186 (7)	0.0196 (7)	-0.0017 (6)	0.0045 (6)	-0.0004 (6)
C13	0.0302 (8)	0.0199 (8)	0.0193 (8)	-0.0008 (6)	-0.0003 (6)	-0.0052 (6)
C14	0.0254 (8)	0.0164 (8)	0.0279 (8)	-0.0040 (6)	-0.0037 (6)	-0.0010 (6)
C15	0.0223 (8)	0.0193 (8)	0.0248 (8)	-0.0037 (6)	0.0042 (6)	0.0037 (6)
C16	0.0223 (7)	0.0172 (7)	0.0177 (7)	0.0011 (6)	0.0010 (6)	-0.0006 (6)
C17	0.0135 (7)	0.0145 (7)	0.0127 (6)	0.0012 (5)	-0.0006 (5)	0.0020 (5)

Geometric parameters (Å, °)

S1—C8	1.6778 (14)	C5—C6	1.390 (2)
O1—C7	1.2242 (18)	С5—Н5	0.9300
O2—C17	1.2245 (18)	C6—C7	1.4956 (19)
O3—C17	1.3108 (17)	C9—C17	1.5172 (19)
ОЗ—НЗА	0.87 (2)	C9—C10	1.5612 (19)
N1—C7	1.3787 (19)	С9—Н9	0.9800
N1—C8	1.3977 (18)	C10—C11	1.5114 (19)
N1—H1A	0.79 (2)	C10—H10A	0.9700
N2-C8	1.3240 (19)	C10—H10B	0.9700
N2-C9	1.4522 (18)	C11—C16	1.389 (2)
N2—H2A	0.85 (2)	C11—C12	1.395 (2)
C1—C2	1.388 (2)	C12—C13	1.389 (2)
C1—C6	1.399 (2)	C12—H12	0.9300
C1—H1	0.9300	C13—C14	1.386 (2)

С2—С3	1.391 (2)	C13—H13	0.9300
С2—Н2	0.9300	C14—C15	1.389 (2)
C3—C4	1.386 (2)	C14—H14	0.9300
С3—Н3	0.9300	C15—C16	1.392 (2)
C4—C5	1.392 (2)	C15—H15	0.9300
C4—H4	0.9300	C16—H16	0.9300
С17—О3—НЗА	108.5 (15)	N2-C9-C10	112.38 (11)
C7—N1—C8	127.33 (13)	C17—C9—C10	108.90 (11)
C7—N1—H1A	117.9 (13)	N2—C9—H9	109.6
C8—N1—H1A	114.4 (13)	С17—С9—Н9	109.6
C8—N2—C9	123.71 (12)	С10—С9—Н9	109.6
C8—N2—H2A	118.9 (13)	C11—C10—C9	113.41 (11)
C9—N2—H2A	117.4 (13)	C11—C10—H10A	108.9
C2—C1—C6	119.71 (15)	C9—C10—H10A	108.9
C2—C1—H1	120.1	C11—C10—H10B	108.9
С6—С1—Н1	120.1	C9—C10—H10B	108.9
C1—C2—C3	120.12 (15)	H10A—C10—H10B	107.7
С1—С2—Н2	119.9	C16—C11—C12	118.83 (14)
С3—С2—Н2	119.9	C16—C11—C10	121.81 (13)
C4—C3—C2	120.10 (14)	C12—C11—C10	119.36 (13)
С4—С3—Н3	120.0	C13—C12—C11	120.65 (14)
С2—С3—Н3	120.0	C13—C12—H12	119.7
C3—C4—C5	120.15 (15)	C11—C12—H12	119.7
C3—C4—H4	119.9	C14—C13—C12	120.21 (15)
C5—C4—H4	119.9	C14—C13—H13	119.9
C6—C5—C4	119.81 (14)	C12—C13—H13	119.9
С6—С5—Н5	120.1	C13—C14—C15	119.51 (14)
С4—С5—Н5	120.1	C13—C14—H14	120.2
C5—C6—C1	120.05 (14)	C15—C14—H14	120.2
C5—C6—C7	121.81 (13)	C14—C15—C16	120.23 (15)
C1—C6—C7	118.11 (13)	C14—C15—H15	119.9
O1—C7—N1	123.14 (13)	C16—C15—H15	119.9
O1—C7—C6	121.74 (13)	C11—C16—C15	120.57 (14)
N1—C7—C6	115.12 (12)	C11—C16—H16	119.7
N2	116.39 (12)	C15—C16—H16	119.7
N2	124.28 (11)	O2—C17—O3	124.38 (13)
N1	119.32 (11)	O2—C17—C9	122.44 (12)
N2—C9—C17	106.66 (11)	O3—C17—C9	113.15 (12)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A…O1	0.86 (2)	1.98 (2)	2.6480 (16)	134.1 (16)
N1—H1A…S1 ⁱ	0.790 (19)	2.571 (19)	3.3496 (13)	168.9 (18)

				data reports
O3—H3 <i>A</i> ···O2 ⁱⁱ	0.87 (2)	1.81 (2)	2.6696 (14)	175 (2)
C16—H16···O1 ⁱⁱⁱ	0.93	2.54	3.4026 (18)	155

Symmetry codes: (i) -*x*, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.