

ISSN 2414-3146

Received 3 June 2016 Accepted 21 June 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; nickel complex; octahedral coordination; hydrogen bonding.

CCDC reference: 1486868

Structural data: full structural data are available from iucrdata.iucr.org

Bis(2,2':6',2"-terpyridine- $\kappa^3 N, N', N''$)nickel(II) bis(perchlorate) hemihydrate

Carolin Anderer,* Christian Näther and Wolfgang Bensch

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany. *Correspondence e-mail: canderer@ac.uni-kiel.de

In the title compound, $[Ni(C_{15}H_{11}N_3)_2](ClO_4)_2\cdot 0.5H_2O,$ the Ni^{2+} cation is coordinated by two terpyridine ligands to form a discrete complex and the coordination polyhedron can be described as a slightly distorted octahedron. It crystallizes as a hemihydrate with two perchlorate anions to compensate the charges. In the crystal, one of the two crystallographically independent perchlorate anions is involved in $O-H \cdots O$ hydrogen bonding to the water molecules, where two inversion-related water molecules link two inversionrelated perchlorate anions into a ring with an $R_4^2(12)$ loop. The O-atom position of the water molecule is only half occupied, i.e. only half of the anions are involved in hydrogen bonding. A similar arrangement of two anions is also observed for the second crystallographically independent perchlorate anion but no water molecules are located between the anions. The cationic complex and the perchlorate anions are additionally linked by a number of weak $C-H \cdots O$ hydrogen bonds, forming a three-dimensional supramolecular structure. The crystal structure of the monohydrate of the same complex has been reported [Baker et al. (1995). Aust. J. Chem. 48, 1373-1378].

Structure description

Crystals of the title compound were obtained by the reaction of nickel perchlorate, terpyridine (terpy) and sodium trithioantimonate in H₂O during the synthesis of new thioantimonates containing Ni²⁺ cations. The title complex, Fig. 1, consists of an Ni²⁺ cation coordinated by two terpyridine ligands, two perchlorate anions and half a water molecule, all of them located in general positions. The Ni²⁺ coordination sphere can be described as an NiNN₆ slightly distorted octahedron (Fig. 1).

In the crystal structure, one of the two crystallographically independent perchlorate anions is involved in $O-H\cdots O$ hydrogen bonding to the water molecules, where two

Figure 1

Molecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level.

water molecules link two perchlorate anions into a ring (Figs. 2 and 3, and Table 1). The shortest intermolecular $O \cdots O$ distances between the two anions within the ring is 5.273 (4) Å. It is noted that the oxygen position of the water molecule is only half occupied, *i.e.* only half of the anions are involved in hydrogen bonding. A similar arrangement of two anions is also observed for the second crystallographically independent perchlorate anion but no water molecules are located between the anions leading to a shorter intermolecular distance ($O \cdots O$ distance *ca* 4.82 Å; see Fig. 3). The cationic complex and the perchlorate anions are additionally linked by a number of weak $C-H \cdots O$ hydrogen bonds (Table 1), that lead to the formation of a three-dimensional supramolecular structure.

The crystal structure of bis(2,2'-terpyridine)nickel(II) diperchlorate monohydrate in space group $P2_1$ (compared to

Figure 2

A view of the hydrogen-bonded $R_4^2(12)$ loop involving the water molecule and a perchlorate anion. Hydrogen bonds are shown as dashed lines (see Table 1).

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O21 H214 O3	0.84	2.01	2772(5)	151
$021 - H21R \cdots 03$ $021 - H21R \cdots 01^{i}$	0.84	2.01	2.772(5) 2.845(5)	150
$C1 - H1 \cdots O2$	0.95	2.58	3490(4)	162
$C2-H2\cdots O4$	0.95	2.59	3.292 (4)	131
$C4-H4\cdots O12^{ii}$	0.95	2.32	3.127 (3)	142
C9−H9···O13 ⁱⁱⁱ	0.95	2.53	3.417 (3)	155
$C12-H12\cdots O13^{iii}$	0.95	2.66	3.539 (3)	155
$C15-H15\cdots O3^{iv}$	0.95	2.45	3.265 (4)	144
$C15-H15\cdots O21^{iv}$	0.95	2.48	3.124 (5)	125
C21-H21···O11	0.95	2.52	3.255 (3)	134
$C21 - H21 \cdots O14$	0.95	2.60	3.319 (4)	133
$C24 - H24 \cdots O2^{v}$	0.95	2.65	3.575 (4)	166
$C32-H32\cdots O1^{v_1}$	0.95	2.39	3.243 (3)	149
$C34 - H34 \cdots O11^{vn}$	0.95	2.52	3.095 (3)	119

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y, -z + 1; (vii) x, y - 1, z.

 $P2_1/n$ for the title complex) has been reported by Baker *et al.* (1995). The structure of the nickel nitrate complex of terpy (Calatayud *et al.*, 2005) and the nickel pentathionate complex of terpy (Freire *et al.*, 2001), have also been reported. McMurtrie & Dance (2010) have reported the structure of a nickel sulfate complex of terpy.

Synthesis and crystallization

 Na_3SbS_3 was prepared by a reported procedure (Pompe & Pfitzner, 2013). Ni(ClO₄)₂·6H₂O (36.6 mg, 0.1 mmol), terpyridine (46.7 mg, 0.2 mmol) and Na_3SbS_3 (172.2 mg, 0.6 mmol) were reacted under solvothermal conditions in 2 ml H₂O at 443 K for 26.5 h in an 11 ml glass tube. After cooling to room temperature, the solid was filtered off, washed with water and ethanol and dried over silica gel. The product consists of red block-like crystals and a grey powder of unknown identity.

Crystal packing of the title compound, viewed along the *a* axis. Only the $O-H\cdots O$ hydrogen bonds are shown (dashed lines; see Table 1), and the C-bound H atoms have been omitted for clarity.

Table 2Experimental details.

Crystal data	
Chemical formula	[Ni(C ₁₅ H ₁₁ N ₃) ₂](ClO ₄) ₂ ·0.5H ₂ O
M _r	733.15
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	8.7733 (2), 8.8342 (2), 39.4158 (10)
β (°)	94.150 (2)
$V(Å^3)$	3046.92 (12)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.88
Crystal size (mm)	$0.1 \times 0.08 \times 0.07$
Data collection	
Diffractometer	Stoe IPDS2
No. of measured, independent and	31108, 5107, 4629
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.047
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.585
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.107, 1.05
No. of reflections	5107
No. of parameters	436
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.41, -0.35

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The water position is not fully occupied, initially the occupancy factor was refined to be close to 0.5, and in the final cycles of refinement it was fixed at this value.

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

- Baker, A. T., Craig, D. C. & Rae, A. D. (1995). Aust. J. Chem. 48, 1373–1378.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Calatayud, M. L., Sletten, J., Julve, M. & Castro, I. (2005). J. Mol. Struct. 741, 121–128.

Freire, E., Baggio, S. & Baggio, R. (2001). Aust. J. Chem. 54, 131-134.

McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 2700-2710.

Pompe, C. & Pfitzner, A. (2013). Z. Anorg. Allg. Chem. 639, 296-300.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). **1**, x161009 [https://doi.org/10.1107/S2414314616010099]

Bis(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)nickel(II) bis(perchlorate) hemihydrate

Carolin Anderer, Christian Näther and Wolfgang Bensch

Bis(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)nickel(II) bis(perchlorate) hemihydrate

Crystal data	
$[Ni(C_{15}H_{11}N_{3})_{2}](CIO_{4})_{2} \cdot 0.5H_{2}O$ $M_{r} = 733.15$ Monoclinic, $P2_{1}/n$ a = 8.7733 (2) Å b = 8.8342 (2) Å c = 39.4158 (10) Å $\beta = 94.150$ (2)° V = 3046.92 (12) Å ³ Z = 4	F(000) = 1500 $D_x = 1.598 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 31108 reflections $\theta = 1.0-24.6^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 150 K Block, red $0.1 \times 0.08 \times 0.07 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer ω scans 31108 measured reflections 5107 independent reflections 4629 reflections with $I > 2\sigma(I)$	$R_{\text{int}} = 0.047$ $\theta_{\text{max}} = 24.6^{\circ}, \ \theta_{\text{min}} = 1.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -46 \rightarrow 46$
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0634P)^2 + 1.5903P]$
Least-squares matrix: fun $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.05 5107 reflections 436 parameters 0 restraints Hydrogen site location: mixed H-atom parameters constrained	where $P = (P_0^{-1} + 2P_c^{-1})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.41 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.35 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0049 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.64470 (3)	0.32729 (3)	0.37211 (2)	0.03402 (14)	
N1	0.4214 (2)	0.2406 (2)	0.36311 (5)	0.0367 (5)	
N2	0.6094 (2)	0.3488 (2)	0.32166 (5)	0.0366 (5)	
N3	0.8557 (2)	0.4161 (2)	0.35825 (5)	0.0377 (5)	
C1	0.3333 (3)	0.1807 (3)	0.38621 (7)	0.0405 (6)	
H1	0.3671	0.1865	0.4096	0.049*	
C2	0.1955 (3)	0.1112 (3)	0.37714 (7)	0.0462 (6)	
H2	0.1355	0.0697	0.3940	0.055*	
C3	0.1470 (3)	0.1030 (3)	0.34324 (8)	0.0510(7)	
H3	0.0529	0.0550	0.3364	0.061*	
C4	0.2352 (3)	0.1647 (3)	0.31918 (7)	0.0457 (6)	
H4	0.2030	0.1594	0.2957	0.055*	
C5	0.3716(3)	0.2343 (3)	0.32991 (6)	0.0387 (5)	
C6	0.4745 (3)	0.3055 (3)	0.30633 (6)	0.0387 (5)	
C7	0.4415 (3)	0.3280 (3)	0.27179 (7)	0.0460 (6)	
H7	0.3457	0.2986	0.2611	0.055*	
C8	0.5519(3)	0.3946 (3)	0.25334 (7)	0.0492 (6)	
H8	0.5320	0.4107	0.2296	0.059*	
C9	0.6910(3)	0.4380 (3)	0.26923 (7)	0.0455 (6)	
H9	0.7670	0.4837	0.2567	0.055*	
C10	0.7167 (3)	0.4133 (3)	0.30368 (6)	0.0385 (5)	
C11	0.8586 (3)	0.4522 (3)	0.32483 (6)	0.0388 (5)	
C12	0.9847 (3)	0.5194 (3)	0.31204 (7)	0.0447 (6)	
H12	0.9841	0.5449	0.2886	0.054*	
C13	1.1117 (3)	0.5490 (3)	0.33388 (8)	0.0499 (7)	
H13	1.1991	0.5962	0.3257	0.060*	
C14	1.1105 (3)	0.5093 (3)	0.36773 (7)	0.0466 (6)	
H14	1.1972	0.5274	0.3830	0.056*	
C15	0.9805 (3)	0.4427 (3)	0.37890 (7)	0.0410 (6)	
H15	0.9799	0.4148	0.4022	0.049*	
N21	0.5653 (2)	0.5392 (2)	0.38896 (5)	0.0373 (5)	
N22	0.6842 (2)	0.3128 (2)	0.42262 (5)	0.0355 (4)	
N23	0.7339 (2)	0.1055 (2)	0.37814 (5)	0.0376 (5)	
C21	0.5004 (3)	0.6500 (3)	0.36951 (7)	0.0401 (6)	
H21	0.4927	0.6377	0.3455	0.048*	
C22	0.4445 (3)	0.7810(3)	0.38307 (7)	0.0461 (6)	
H22	0.3987	0.8569	0.3686	0.055*	
C23	0.4558 (3)	0.8001 (3)	0.41779 (8)	0.0497 (7)	
H23	0.4172	0.8891	0.4276	0.060*	
C24	0.5246 (3)	0.6873 (3)	0.43832 (7)	0.0457 (6)	
H24	0.5351	0.6990	0.4623	0.055*	
C25	0.5774 (3)	0.5578 (3)	0.42313 (6)	0.0386 (5)	
C26	0.6493 (3)	0.4290 (3)	0.44239 (6)	0.0385 (5)	
C27	0.6803 (3)	0.4232 (3)	0.47740 (7)	0.0457 (6)	
H27	0.6565	0.5064	0.4914	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C28	0.7466 (3)	0.2937 (3)	0.49150 (7)	0.0489 (6)	
H28	0.7677	0.2870	0.5154	0.059*	
C29	0.7823 (3)	0.1735 (3)	0.47092 (7)	0.0448 (6)	
H29	0.8280	0.0842	0.4804	0.054*	
C30	0.7498 (3)	0.1868 (3)	0.43622 (7)	0.0385 (6)	
C31	0.7804 (3)	0.0699 (3)	0.41065 (6)	0.0378 (5)	
C32	0.8504 (3)	-0.0664 (3)	0.41903 (7)	0.0440 (6)	
H32	0.8837	-0.0885	0.4420	0.053*	
C33	0.8715 (3)	-0.1704 (3)	0.39353 (8)	0.0493 (7)	
H33	0.9208	-0.2642	0.3987	0.059*	
C34	0.8201 (3)	-0.1362 (3)	0.36048 (7)	0.0460 (6)	
H34	0.8312	-0.2070	0.3427	0.055*	
C35	0.7523 (3)	0.0024 (3)	0.35372 (7)	0.0403 (6)	
H35	0.7172	0.0259	0.3310	0.048*	
Cl1	0.21251 (8)	0.20342 (8)	0.47263 (2)	0.04847 (19)	
O1	0.1600 (3)	0.2159 (3)	0.50604 (5)	0.0631 (6)	
O2	0.3705 (3)	0.2339 (4)	0.47414 (7)	0.0918 (9)	
O3	0.1348 (4)	0.3097 (3)	0.45068 (7)	0.0924 (9)	
O4	0.1820 (3)	0.0561 (3)	0.45948 (6)	0.0825 (8)	
Cl2	0.48296 (8)	0.82419 (8)	0.27874 (2)	0.0496 (2)	
O11	0.6161 (2)	0.7635 (3)	0.29712 (5)	0.0585 (5)	
O12	0.4709 (3)	0.7648 (3)	0.24492 (6)	0.0734 (7)	
O13	0.4980 (3)	0.9858 (2)	0.27707 (6)	0.0628 (6)	
O14	0.3498 (3)	0.7874 (4)	0.29620 (7)	0.0866 (9)	
O21	0.0023 (5)	0.5946 (5)	0.45066 (10)	0.0582 (10)	0.5
H21A	0.0460	0.5156	0.4582	0.049 (17)*	0.5
H21B	-0.0185	0.6406	0.4684	0.07 (2)*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0341 (2)	0.0325 (2)	0.0354 (2)	-0.00023 (12)	0.00246 (13)	0.00065 (12)
N1	0.0369 (10)	0.0337 (11)	0.0396 (11)	0.0023 (9)	0.0036 (8)	0.0005 (9)
N2	0.0376 (11)	0.0320 (10)	0.0407 (11)	0.0006 (8)	0.0053 (9)	-0.0008 (8)
N3	0.0371 (10)	0.0336 (11)	0.0427 (11)	0.0018 (9)	0.0045 (9)	-0.0002 (9)
C1	0.0405 (13)	0.0373 (13)	0.0439 (14)	0.0008 (10)	0.0058 (11)	0.0009 (11)
C2	0.0388 (13)	0.0462 (15)	0.0546 (16)	-0.0018 (12)	0.0104 (11)	-0.0004 (13)
C3	0.0361 (13)	0.0532 (17)	0.0635 (18)	-0.0058 (12)	0.0033 (12)	-0.0048 (14)
C4	0.0400 (14)	0.0490 (16)	0.0474 (15)	-0.0003 (11)	-0.0013 (11)	-0.0031 (12)
C5	0.0357 (12)	0.0365 (13)	0.0436 (14)	0.0025 (10)	0.0011 (10)	-0.0006 (11)
C6	0.0387 (13)	0.0357 (13)	0.0414 (14)	0.0024 (10)	0.0011 (10)	-0.0016 (10)
C7	0.0491 (15)	0.0470 (16)	0.0407 (14)	0.0033 (12)	-0.0043 (12)	0.0016 (11)
C8	0.0591 (17)	0.0502 (16)	0.0382 (14)	0.0047 (13)	0.0017 (12)	0.0033 (12)
C9	0.0516 (15)	0.0457 (15)	0.0402 (14)	0.0019 (12)	0.0102 (11)	0.0045 (11)
C10	0.0400 (13)	0.0335 (12)	0.0425 (13)	0.0024 (10)	0.0061 (10)	-0.0005 (10)
C11	0.0420 (13)	0.0311 (12)	0.0440 (14)	0.0024 (10)	0.0076 (10)	-0.0005 (10)
C12	0.0467 (14)	0.0404 (14)	0.0484 (14)	-0.0030 (11)	0.0130 (11)	-0.0022 (12)
C13	0.0436 (14)	0.0426 (15)	0.0653 (18)	-0.0052 (12)	0.0163 (13)	-0.0034 (13)

C14	0.0374 (13)	0.0431 (15)	0.0594 (17)	-0.0023 (11)	0.0036 (11)	-0.0054 (12)
C15	0.0388 (13)	0.0373 (14)	0.0468 (14)	0.0017 (11)	0.0021 (11)	-0.0023 (11)
N21	0.0366 (10)	0.0354 (11)	0.0401 (11)	-0.0023 (8)	0.0045 (8)	0.0009 (9)
N22	0.0341 (10)	0.0323 (10)	0.0403 (11)	-0.0006 (8)	0.0038 (8)	0.0001 (8)
N23	0.0353 (10)	0.0361 (11)	0.0414 (11)	-0.0021 (9)	0.0023 (8)	-0.0002 (9)
C21	0.0385 (13)	0.0379 (13)	0.0439 (14)	-0.0006 (10)	0.0024 (11)	0.0051 (11)
C22	0.0441 (14)	0.0358 (14)	0.0582 (17)	0.0043 (11)	0.0019 (12)	0.0046 (12)
C23	0.0521 (15)	0.0382 (14)	0.0590 (17)	0.0051 (12)	0.0063 (13)	-0.0046 (12)
C24	0.0475 (15)	0.0430 (15)	0.0469 (15)	0.0000 (12)	0.0060 (12)	-0.0038 (12)
C25	0.0378 (12)	0.0356 (13)	0.0426 (13)	-0.0017 (10)	0.0050 (10)	-0.0009 (10)
C26	0.0363 (12)	0.0379 (13)	0.0416 (13)	-0.0036 (10)	0.0046 (10)	-0.0007 (11)
C27	0.0501 (15)	0.0466 (15)	0.0403 (14)	-0.0015 (12)	0.0035 (11)	-0.0035 (11)
C28	0.0516 (15)	0.0566 (17)	0.0380 (14)	0.0006 (13)	0.0007 (12)	0.0038 (12)
C29	0.0491 (15)	0.0432 (15)	0.0418 (14)	0.0030 (11)	0.0020 (12)	0.0066 (11)
C30	0.0353 (12)	0.0374 (13)	0.0428 (14)	-0.0029 (10)	0.0032 (10)	0.0025 (10)
C31	0.0348 (12)	0.0344 (13)	0.0442 (14)	-0.0024 (10)	0.0032 (10)	0.0003 (10)
C32	0.0412 (13)	0.0394 (14)	0.0510 (15)	0.0009 (11)	-0.0004 (11)	0.0062 (12)
C33	0.0459 (15)	0.0358 (14)	0.0654 (18)	0.0050 (11)	-0.0009 (13)	0.0005 (12)
C34	0.0420 (14)	0.0385 (14)	0.0573 (16)	0.0003 (11)	0.0038 (12)	-0.0079 (12)
C35	0.0375 (12)	0.0382 (14)	0.0450 (14)	-0.0021 (10)	0.0023 (10)	-0.0038 (11)
C11	0.0498 (4)	0.0530 (4)	0.0425 (4)	-0.0029 (3)	0.0024 (3)	0.0012 (3)
01	0.0762 (14)	0.0714 (14)	0.0434 (11)	0.0017 (12)	0.0152 (10)	0.0032 (10)
O2	0.0523 (13)	0.148 (3)	0.0765 (17)	-0.0239 (16)	0.0113 (12)	-0.0276 (18)
O3	0.121 (2)	0.095 (2)	0.0606 (15)	0.0389 (17)	0.0048 (15)	0.0256 (14)
O4	0.123 (2)	0.0598 (15)	0.0651 (14)	-0.0260 (14)	0.0079 (14)	-0.0111 (12)
Cl2	0.0536 (4)	0.0471 (4)	0.0472 (4)	-0.0079 (3)	-0.0026 (3)	0.0082 (3)
011	0.0604 (12)	0.0606 (13)	0.0524 (12)	0.0031 (10)	-0.0095 (9)	0.0025 (10)
O12	0.1052 (18)	0.0608 (14)	0.0502 (12)	-0.0133 (13)	-0.0219 (12)	-0.0002 (11)
O13	0.0817 (15)	0.0422 (11)	0.0671 (13)	0.0034 (10)	0.0240 (11)	0.0037 (10)
O14	0.0584 (14)	0.115 (2)	0.0859 (18)	-0.0224 (14)	0.0042 (12)	0.0435 (16)
O21	0.072 (3)	0.054 (3)	0.048 (2)	0.009 (2)	-0.002 (2)	-0.005 (2)

Geometric parameters (Å, °)

Ni1—N2	1.999 (2)	N22—C26	1.338 (3)
Ni1—N22	2.000 (2)	N22—C30	1.347 (3)
Nil—N1	2.110 (2)	N23—C35	1.343 (3)
Ni1—N23	2.117 (2)	N23—C31	1.353 (3)
Ni1—N3	2.119 (2)	C21—C22	1.379 (4)
Ni1—N21	2.120 (2)	C21—H21	0.9500
N1-C1	1.345 (3)	C22—C23	1.375 (4)
N1C5	1.350 (3)	C22—H22	0.9500
N2—C6	1.345 (3)	C23—C24	1.393 (4)
N2-C10	1.345 (3)	C23—H23	0.9500
N3—C15	1.337 (3)	C24—C25	1.387 (4)
N3—C11	1.357 (3)	C24—H24	0.9500
C1—C2	1.379 (4)	C25—C26	1.483 (4)
C1—H1	0.9500	C26—C27	1.388 (4)

C2—C3	1.375 (4)	C27—C28	1.382 (4)
С2—Н2	0.9500	С27—Н27	0.9500
C3—C4	1.379 (4)	C28—C29	1.386 (4)
С3—Н3	0.9500	C28—H28	0.9500
C4—C5	1.384 (4)	C29—C30	1.382 (4)
C4—H4	0.9500	С29—Н29	0.9500
C5—C6	1.482 (4)	C30—C31	1.481 (4)
C6—C7	1.385 (4)	C31—C32	1.381 (4)
C7—C8	1.383 (4)	C32—C33	1.384 (4)
С7—Н7	0.9500	С32—Н32	0.9500
C8—C9	1.385 (4)	C33—C34	1.381 (4)
C8—H8	0.9500	C33—H33	0.9500
C9-C10	1 378 (4)	C_{34} C_{35}	1 379 (4)
C9—H9	0.9500	C34—H34	0.9500
C10-C11	1.487(4)	C35H35	0.9500
	1.407(4) 1.383(4)	C_{11} C_{2}	1,409(2)
$C_{12} = C_{12}$	1.383(4)	$C_{11} = O_2$	1.409(2)
C12—C13	1.383 (4)	C1103	1.410(2)
C12 - H12	0.9300	CII—04	1.419(2)
C13—C14	1.380 (4)		1.430 (2)
С13—Н13	0.9500	C12—012	1.429 (2)
C14—C15	1.383 (4)		1.434 (2)
C14—H14	0.9500	Cl2—014	1.435 (2)
С15—Н15	0.9500	Cl2—O13	1.436 (2)
N21—C21	1.345 (3)	O21—H21A	0.8400
N21—C25	1.354 (3)	O21—H21B	0.8398
N2—Ni1—N22	177.92 (8)	C14—C15—H15	118.7
N2—Ni1—N1	78.00 (8)	C21—N21—C25	118.6 (2)
N22—Ni1—N1	103.66 (8)	C21—N21—Ni1	126.84 (17)
N2—Ni1—N23	103.24 (8)	C25—N21—Ni1	114.52 (16)
N22—Ni1—N23	78.06 (8)	$C_{26} = N_{22} = C_{30}$	120.8(2)
N1—Ni1—N23	90.81 (8)	C26—N22—Ni1	120.04(16)
N2—Ni1—N3	77 50 (8)	C_{30} N22 Ni1	120.01(10) 119.17(17)
N22—Ni1—N3	100 87 (8)	C_{35} N23 C_{31}	119.17(17) 1185(2)
N1N1N3	155 42 (8)	$C_{35} = N_{23} = N_{11}$	127.55(17)
N23_Ni1_N3	92 80 (8)	C_{31} N23 Ni1	113 88 (16)
N2 Ni1 N21	101 35 (8)	N21 C21 C22	113.00(10) 122.5(2)
$\frac{1}{1} \frac{1}{1} \frac{1}$	101.33(8)	N21 C21 H21	122.3 (2)
$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$	77.40(8)	121 - 221 - 1121	118.7
$\frac{1}{1} \frac{1}{1} \frac{1}$	52.54(0)	$C_{22} = C_{21} = H_{21}$	110.7
N_{23} N_{11} N_{21}	133.37(8)	$C_{23} = C_{22} = C_{21}$	119.1 (5)
$N_3 = N_1 = N_2 I$	93.82 (8)	C23—C22—H22	120.4
CI = NI = N'I	118.0 (2)	$C_{21} = C_{22} = C_{24}$	120.4
U = NI = NII	126.96 (17)	$C_{22} = C_{23} = C_{24}$	119.1 (3)
C5—NI—NII	114.14 (16)	C22—C23—H23	120.4
C6—N2—C10	120.7 (2)	C24—C23—H23	120.4
C6—N2—N11	119.19 (17)	C25—C24—C23	118.9 (3)
C10—N2—Ni1	120.03 (17)	C25—C24—H24	120.5
C15—N3—C11	118.5 (2)	C23—C24—H24	120.5

C15 N2 N:1	126.02(18)	NO1 CO5 CO4	121.7(2)
$C_{13} = N_{13} = N_{11}$	120.92(16)	$N_{21} = C_{23} = C_{24}$	121.7(2) 114.6(2)
C_{11} N_{1} C_{1} C_{2}	114.31(10) 122.4(2)	$N_{21} = C_{23} = C_{20}$	114.0(2)
	122.4 (2)	$C_{24} = C_{23} = C_{20}$	123.7(2)
NI-CI-HI	118.8	$N_{22} = C_{26} = C_{27}$	121.0 (2)
	118.8	N22-C26-C25	113.4 (2)
C3—C2—C1	118.6 (2)	C27—C26—C25	125.6 (2)
C3—C2—H2	120.7	C28—C27—C26	118.5 (3)
C1—C2—H2	120.7	С28—С27—Н27	120.8
C2—C3—C4	119.9 (3)	С26—С27—Н27	120.8
С2—С3—Н3	120.1	C27—C28—C29	120.4 (3)
С4—С3—Н3	120.1	C27—C28—H28	119.8
C3—C4—C5	118.8 (3)	C29—C28—H28	119.8
C3—C4—H4	120.6	C30—C29—C28	118.4 (2)
C5—C4—H4	120.6	С30—С29—Н29	120.8
N1—C5—C4	121.7 (2)	С28—С29—Н29	120.8
N1—C5—C6	114.9 (2)	N22—C30—C29	121.1 (2)
C4—C5—C6	123.3 (2)	N22—C30—C31	113.5 (2)
N2—C6—C7	121.0 (2)	C29—C30—C31	125.4 (2)
N2—C6—C5	113.3 (2)	N23—C31—C32	121.8 (2)
C7—C6—C5	125.7 (2)	N23—C31—C30	115.2 (2)
C8—C7—C6	118.3 (3)	C32—C31—C30	123.0 (2)
С8—С7—Н7	120.9	C31—C32—C33	119.1 (3)
С6—С7—Н7	120.9	С31—С32—Н32	120.5
C7—C8—C9	120.5 (3)	С33—С32—Н32	120.5
C7—C8—H8	119.8	$C_{34} - C_{33} - C_{32}$	119.2 (2)
C9—C8—H8	119.8	C34—C33—H33	120.4
C10-C9-C8	118.6 (2)	C32—C33—H33	120.4
C10 - C9 - H9	120.7	$C_{35} - C_{34} - C_{33}$	1189(3)
C8-C9-H9	120.7	$C_{35} - C_{34} - H_{34}$	120.5
$N_2 - C_{10} - C_9$	120.7 121.0(2)	C33—C34—H34	120.5
$N_2 - C_{10} - C_{11}$	121.0(2) 113 1(2)	N23_C35_C34	120.3 122.4(2)
C_{0} C_{10} C_{11}	115.1(2) 125.0(2)	N23 C35 H35	122.4 (2)
$N_{2} = C_{10} = C_{11}$	123.3(2) 121.7(2)	123 - 235 - 1135	110.0
$N_2 = C_{11} = C_{12}$	121.7(2) 114.6(2)	$C_{34} = C_{33} = 1133$	110.0 1 (2)
$N_{3} = C_{11} = C_{10}$	114.0(2) 122.7(2)	02 - C11 - 03	109.1(2)
	123.7(2)	02 - C11 - O4	110.48 (19)
	119.0 (3)	03 - 01 - 04	108.34 (19)
C13—C12—H12	120.5	02-01-01	109.14 (15)
C11—C12—H12	120.5	O3—CII—OI	109.75 (16)
C14—C13—C12	119.4 (2)	O4—CII—OI	110.00 (15)
C14—C13—H13	120.3	012—Cl2—011	109.68 (15)
C12—C13—H13	120.3	012-Cl2-014	110.85 (17)
C13—C14—C15	118.7 (3)	011—Cl2—O14	109.55 (14)
C13—C14—H14	120.7	O12—Cl2—O13	108.86 (14)
C15—C14—H14	120.7	O11—Cl2—O13	108.73 (14)
N3—C15—C14	122.6 (3)	O14—Cl2—O13	109.14 (17)
N3—C15—H15	118.7	H21A—O21—H21B	103.2

	D—H	H…A	D····A	D—H…A
021—H21A····O3	0.84	2.01	2.772 (5)	151
$O21$ — $H21B$ ···· $O1^{i}$	0.84	2.08	2.845 (5)	150
C1—H1···O2	0.95	2.58	3.490 (4)	162
C2—H2…O4	0.95	2.59	3.292 (4)	131
C4—H4…O12 ⁱⁱ	0.95	2.32	3.127 (3)	142
С9—Н9…О13 ^{ііі}	0.95	2.53	3.417 (3)	155
С12—Н12…О13 ^{ііі}	0.95	2.66	3.539 (3)	155
C15—H15····O3 ^{iv}	0.95	2.45	3.265 (4)	144
C15—H15····O21 ^{iv}	0.95	2.48	3.124 (5)	125
C21—H21…O11	0.95	2.52	3.255 (3)	134
C21—H21···O14	0.95	2.60	3.319 (4)	133
C24—H24···O2 ^v	0.95	2.65	3.575 (4)	166
C32—H32…O1 ^{vi}	0.95	2.39	3.243 (3)	149
C34—H34…O11 ^{vii}	0.95	2.52	3.095 (3)	119

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*, -*z*+1; (vii) *x*, *y*-1, *z*.