# ISSN 2414-3146 Received 3 July 2016

**IUCrData** 

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; indole derivative; pyrrole-3-carbonitrile; N—H···O hydrogen bonding.

CCDC reference: 1495298

Accepted 22 July 2016

Structural data: full structural data are available from iucrdata.iucr.org

### 2-(5-Bromo-1*H*-indol-3-yl)-4-(4-bromophenyl)-5-(4-chlorobenzoyl)-1*H*-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

Y. AaminaNaaz,<sup>a</sup> Jayabal Kamalraja,<sup>b</sup> G. Vimala,<sup>a</sup> Paramasivam T. Perumal<sup>b</sup> and A. SubbiahPandi<sup>a</sup>\*

<sup>a</sup>Department of Physics, Presidency College (Autonomous), Chennai 600 005, India, and <sup>b</sup>Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India. \*Correspondence e-mail: aspandian59@gmail.com

In the title solvated compound,  $C_{26}H_{14}Br_2ClN_3O\cdot C_2H_6OS$ , the indole ring is inclined to the central pyrrole ring by 25.7 (2)°. The chlorobenzene ring and the bromobenzene rings subtend dihedral angles of 56.5 (2) and 53.4 (2)°, respectively, with the central pyrrole ring. In the crystal, molecules are bridged by N-H···O hydrogen bonds, involving the dimethyl sulfoxide solvent molecule, forming chains along [010]. There are no other significant intermolecular interactions present.



### **Structure description**

Indole structures are considered to be privileged structural motifs due to their ability to bind many receptors within the body (Fuwa & Sasaki, 2009). Several indole derivatives are in clinical use, such as *sunitinib* as a tyrosine kinase inhibitor (Oudard *et al.*, 2011) or *delavirdine* as a non-nucleoside reverse transcriptase inhibitor (Beale, 2011). Indole derivatives are known to exhibit biological activities such as anti-proliferative (Parrino *et al.*, 2015), potential mushroom tyrosinase inhibition (Ferro *et al.*, 2015), anti-inflammatory (Chen *et al.*, 2015) and anti-tumor (Ma *et al.*, 2015). As part of our studies of indole derivatives, we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the indole ring system is twisted away from the central pyrrole ring by 25.7 (2)°. The C16–C17–N3 bond angle of 178.3 (5)° indicates the linear character of the cyano group, a feature observed in carbonitrile compounds. In the benzene ring of the indole ring system, the endocyclic angle at C26 is contracted to 117.8 (4)°, while the angle at C21 is expanded to 122.6 (4)°. This would appear to be a real



| Table 1                |         |
|------------------------|---------|
| Hydrogen-bond geometry | (Å, °). |

| $D - H \cdot \cdot \cdot A$                                             | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------|--------------|-------------------------|------------------------|-----------------------------|
| $\begin{array}{c} N1 - H1 \cdots O2 \\ N2 - H2 \cdots O2^i \end{array}$ | 0.86<br>0.86 | 2.08<br>1.96            | 2.812 (4)<br>2.813 (4) | 143<br>170                  |
|                                                                         |              |                         |                        |                             |

Symmetry code: (i)  $-x + \frac{5}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

effect caused by the fusion of the pyrrole ring with the benzene ring resulting in an angular distortion. The chlorobenzene (C1–C6) and bromobenzene (C10–C15) rings subtend dihedral angles of 56.5 (2)° and 53.4 (2)°, respectively, with the central pyrrole ring.

In the crystal, molecules are bridged by  $N-H\cdots O$  hydrogen bonds involving the dimethyl sulfoxide solvent molecule, forming chains along [010], see Table 1 and Fig. 2. There are no other significant intermolecular interactions present.

### Synthesis and crystallization

To a stirred mixture of 4-bromobenzaldehyde 1 (1.0 mmol), 3-(5-bromo-1*H*-indol-3-yl)-3-oxopropanenitrile 2 (1.0 mmol) and 4-chlorophenacylazide 3 (1.0 mmol) in H<sub>2</sub>O (3 ml), piperidine (0.25 mmol) was added at 353 K. The turbid solution slowly turned into a clear solution, followed by the formation of a solid after 30 min. After completion of the reaction, as indicated by TLC, the solid was filtered and washed with a PE–EtOAc mixture (1:1 ratio, v/v, 5 ml) to give the title compound (yield 91%), which was recrystallized from EtOH solution to give yellow crystals on slow evaporation of the solvent.



### Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

| Table 2<br>Experimental details                                              |                                                |
|------------------------------------------------------------------------------|------------------------------------------------|
|                                                                              |                                                |
| Chamical formula                                                             |                                                |
|                                                                              | $C_{26}\Pi_{14}\Pi_{2}CIN_{3}U C_{2}\Pi_{6}US$ |
| M <sub>r</sub><br>Crustal system, space group                                | 037.80<br>Monoclinia <i>P</i> 2 /m             |
| Tomponetung (K)                                                              | Monochine, $F Z_1/n$                           |
| Temperature (K)                                                              | 295<br>12 40(2 (12) 12 8055 (10)               |
| a, b, c (A)                                                                  | 12.4962 (12), 12.8055 (10),<br>17.6834 (17)    |
| $\beta$ (°)                                                                  | 92.820 (3)                                     |
| $V(Å^3)$                                                                     | 2826.3 (4)                                     |
| Ζ                                                                            | 4                                              |
| Radiation type                                                               | Μο Κα                                          |
| $\mu (\text{mm}^{-1})$                                                       | 3.07                                           |
| Crystal size (mm)                                                            | $0.20 \times 0.19 \times 0.17$                 |
| Data collection                                                              |                                                |
| Diffractometer                                                               | Bruker SMART APEXII CCD                        |
| Absorption correction                                                        | Multi-scan (SADABS; Bruker, 2008)              |
| $T_{\min}, T_{\max}$                                                         | 0.547, 0.594                                   |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 29776, 4972, 3236                              |
| R <sub>int</sub>                                                             | 0.054                                          |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                         | 0.595                                          |
| Refinement                                                                   |                                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.070, 0.107, 1.15                             |
| No. of reflections                                                           | 4972                                           |
| No. of parameters                                                            | 334                                            |
| H-atom treatment                                                             | H-atom parameters constrained                  |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.59, -0.40                                    |

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009).

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.



### Figure 2

A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1), and for clarity C-bound H atoms have been omitted.

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

### References

- Beale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342–352. Philadelphia: Lippincott Williams and Wilkins.
- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532–6544.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferro, S., Certo, G., De Luca, L., Germanò, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme Inhib. Med. Chem. pp. 1–6.
- Fuwa, H. & Sasaki, M. (2009). J. Org. Chem. 74, 212-221.
- Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). *Eur. J. Med. Chem.* 96, 173–186.
- Oudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178-184.
- Parrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901–1924.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## full crystallographic data

### *IUCrData* (2016). **1**, x161197 [https://doi.org/10.1107/S2414314616011974]

2-(5-Bromo-1*H*-indol-3-yl)-4-(4-bromophenyl)-5-(4-chlorobenzoyl)-1*H*pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

Y. AaminaNaaz, Jayabal Kamalraja, G. Vimala, Paramasivam T. Perumal and A. SubbiahPandi

2-(5-Bromo-1*H*-indol-3-yl)-4-(4-bromophenyl)-5-(4-chlorobenzoyl)-1*H*-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

### Crystal data

C<sub>26</sub>H<sub>14</sub>Br<sub>2</sub>ClN<sub>3</sub>O·C<sub>2</sub>H<sub>6</sub>OS  $M_r = 657.80$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 12.4962 (12) Å b = 12.8055 (10) Å c = 17.6834 (17) Å  $\beta = 92.820$  (3)° V = 2826.3 (4) Å<sup>3</sup> Z = 4

### Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008)  $T_{\min} = 0.547, T_{\max} = 0.594$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.070$  $wR(F^2) = 0.107$ S = 1.154972 reflections 334 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1312  $D_x = 1.546 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3236 reflections  $\theta = 2.0-25.0^{\circ}$   $\mu = 3.07 \text{ mm}^{-1}$  T = 293 KBlock, yellow  $0.20 \times 0.19 \times 0.17 \text{ mm}$ 

29776 measured reflections 4972 independent reflections 3236 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.054$  $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.0^{\circ}$  $h = -14 \rightarrow 14$  $k = -15 \rightarrow 15$  $l = -20 \rightarrow 21$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0239P)^2 + 4.3884P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.59$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.40$  e Å<sup>-3</sup>

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x          | У          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|------------|------------|------------|-----------------------------|
| C1  | 1.3650 (3) | 0.7573 (3) | 0.1460 (3) | 0.0423 (12)                 |
| H1A | 1.3715     | 0.7143     | 0.1883     | 0.051*                      |
| C2  | 1.4030 (4) | 0.8589 (4) | 0.1498 (3) | 0.0499 (13)                 |
| H2A | 1.4345     | 0.8849     | 0.1947     | 0.060*                      |
| C3  | 1.3936 (4) | 0.9203 (4) | 0.0868 (4) | 0.0529 (14)                 |
| C4  | 1.3434 (4) | 0.8858 (4) | 0.0210 (3) | 0.0563 (15)                 |
| H4  | 1.3355     | 0.9299     | -0.0207    | 0.068*                      |
| C5  | 1.3050 (4) | 0.7857 (4) | 0.0172 (3) | 0.0486 (13)                 |
| Н5  | 1.2702     | 0.7618     | -0.0272    | 0.058*                      |
| C6  | 1.3176 (3) | 0.7199 (3) | 0.0791 (3) | 0.0368 (11)                 |
| C7  | 1.2789 (3) | 0.6105 (3) | 0.0726 (3) | 0.0389 (11)                 |
| C8  | 1.3422 (3) | 0.5262 (3) | 0.1073 (2) | 0.0320 (10)                 |
| С9  | 1.4510 (3) | 0.5131 (3) | 0.1266 (2) | 0.0310 (10)                 |
| C10 | 1.5384 (3) | 0.5894 (3) | 0.1181 (2) | 0.0323 (10)                 |
| C11 | 1.5531 (3) | 0.6405 (3) | 0.0511 (3) | 0.0412 (11)                 |
| H11 | 1.5110     | 0.6223     | 0.0083     | 0.049*                      |
| C12 | 1.6288 (4) | 0.7183 (4) | 0.0458 (3) | 0.0486 (13)                 |
| H12 | 1.6379     | 0.7524     | 0.0001     | 0.058*                      |
| C13 | 1.6907 (4) | 0.7445 (4) | 0.1096 (3) | 0.0490 (13)                 |
| C14 | 1.6812 (3) | 0.6930 (4) | 0.1768 (3) | 0.0487 (13)                 |
| H14 | 1.7249     | 0.7103     | 0.2190     | 0.058*                      |
| C15 | 1.6052 (3) | 0.6148 (3) | 0.1807 (3) | 0.0421 (12)                 |
| H15 | 1.5988     | 0.5786     | 0.2259     | 0.050*                      |
| C16 | 1.4618 (3) | 0.4099 (3) | 0.1543 (2) | 0.0305 (10)                 |
| C17 | 1.5598 (4) | 0.3568 (4) | 0.1722 (3) | 0.0414 (12)                 |
| C18 | 1.3605 (3) | 0.3633 (3) | 0.1538 (2) | 0.0297 (10)                 |
| C19 | 1.3286 (3) | 0.2625 (3) | 0.1812 (2) | 0.0317 (10)                 |
| C20 | 1.3851 (3) | 0.2061 (3) | 0.2357 (2) | 0.0370 (11)                 |
| H20 | 1.4483     | 0.2282     | 0.2607     | 0.044*                      |
| C21 | 1.2458 (3) | 0.1067 (3) | 0.2000 (2) | 0.0346 (11)                 |
| C22 | 1.2373 (3) | 0.1996 (3) | 0.1580 (2) | 0.0307 (10)                 |
| C23 | 1.1506 (3) | 0.2111 (3) | 0.1054 (2) | 0.0370 (11)                 |
| H23 | 1.1429     | 0.2713     | 0.0761     | 0.044*                      |
| C24 | 1.0777 (3) | 0.1317 (4) | 0.0981 (3) | 0.0440 (12)                 |
| C25 | 1.0879 (4) | 0.0392 (4) | 0.1398 (3) | 0.0504 (13)                 |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H25  | 1.0367       | -0.0132      | 0.1330       | 0.060*      |
|------|--------------|--------------|--------------|-------------|
| C26  | 1.1730 (4)   | 0.0255 (3)   | 0.1906 (3)   | 0.0447 (12) |
| H26  | 1.1817       | -0.0363      | 0.2179       | 0.054*      |
| C27  | 0.9319 (5)   | 0.5805 (5)   | 0.0966 (4)   | 0.088 (2)   |
| H27A | 0.9815       | 0.6227       | 0.0702       | 0.132*      |
| H27B | 0.9244       | 0.6082       | 0.1465       | 0.132*      |
| H27C | 0.8635       | 0.5808       | 0.0694       | 0.132*      |
| C28  | 0.8771 (5)   | 0.3945 (6)   | 0.1528 (4)   | 0.108 (3)   |
| H28A | 0.8918       | 0.3218       | 0.1613       | 0.162*      |
| H28B | 0.8107       | 0.4019       | 0.1235       | 0.162*      |
| H28C | 0.8718       | 0.4293       | 0.2005       | 0.162*      |
| N1   | 1.2906 (3)   | 0.4344 (2)   | 0.12369 (19) | 0.0323 (9)  |
| H1   | 1.2231       | 0.4237       | 0.1158       | 0.039*      |
| N2   | 1.3361 (3)   | 0.1139 (3)   | 0.2479 (2)   | 0.0415 (10) |
| H2   | 1.3576       | 0.0674       | 0.2803       | 0.050*      |
| N3   | 1.6377 (3)   | 0.3126 (3)   | 0.1851 (3)   | 0.0713 (14) |
| 01   | 1.1943 (3)   | 0.5897 (3)   | 0.0367 (2)   | 0.0657 (11) |
| O2   | 1.0750 (2)   | 0.4536 (2)   | 0.16015 (17) | 0.0458 (8)  |
| C11  | 1.44831 (14) | 1.04501 (10) | 0.09004 (10) | 0.0869 (6)  |
| Br1  | 0.95687 (4)  | 0.14674 (5)  | 0.03007 (4)  | 0.0779 (2)  |
| Br2  | 1.79124 (5)  | 0.85467 (5)  | 0.10269 (4)  | 0.0916 (3)  |
| S    | 0.98089 (9)  | 0.45031 (11) | 0.10350 (8)  | 0.0537 (4)  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-----------|-----------|-----------|--------------|--------------|-----------------|
| C1  | 0.047 (3) | 0.035 (3) | 0.046 (3) | 0.004 (2)    | 0.015 (2)    | 0.004 (2)       |
| C2  | 0.057 (3) | 0.040 (3) | 0.054 (3) | -0.002 (3)   | 0.022 (3)    | -0.013 (3)      |
| C3  | 0.052 (3) | 0.029 (3) | 0.081 (4) | 0.002 (2)    | 0.037 (3)    | 0.000 (3)       |
| C4  | 0.057 (3) | 0.045 (3) | 0.068 (4) | 0.008 (3)    | 0.016 (3)    | 0.023 (3)       |
| C5  | 0.040 (3) | 0.046 (3) | 0.059 (4) | 0.005 (2)    | 0.001 (2)    | 0.013 (3)       |
| C6  | 0.031 (2) | 0.030 (2) | 0.050 (3) | 0.003 (2)    | 0.005 (2)    | 0.008 (2)       |
| C7  | 0.035 (3) | 0.038 (3) | 0.044 (3) | -0.001 (2)   | 0.003 (2)    | 0.007 (2)       |
| C8  | 0.032 (2) | 0.029 (2) | 0.035 (3) | -0.0015 (19) | 0.001 (2)    | 0.002 (2)       |
| C9  | 0.030 (2) | 0.035 (3) | 0.028 (3) | -0.0016 (19) | 0.003 (2)    | -0.004 (2)      |
| C10 | 0.027 (2) | 0.034 (2) | 0.037 (3) | -0.0016 (19) | 0.005 (2)    | 0.002 (2)       |
| C11 | 0.038 (3) | 0.046 (3) | 0.040 (3) | -0.004 (2)   | 0.004 (2)    | -0.005 (3)      |
| C12 | 0.050 (3) | 0.051 (3) | 0.046 (3) | -0.005 (3)   | 0.017 (3)    | 0.008 (3)       |
| C13 | 0.038 (3) | 0.045 (3) | 0.065 (4) | -0.010 (2)   | 0.012 (3)    | -0.005 (3)      |
| C14 | 0.039 (3) | 0.055 (3) | 0.052 (4) | -0.013 (2)   | -0.006 (2)   | -0.001 (3)      |
| C15 | 0.038 (3) | 0.048 (3) | 0.040 (3) | -0.007 (2)   | -0.001 (2)   | 0.006 (2)       |
| C16 | 0.024 (2) | 0.034 (2) | 0.034 (3) | 0.0017 (19)  | 0.0025 (19)  | 0.000 (2)       |
| C17 | 0.033 (3) | 0.045 (3) | 0.047 (3) | -0.003 (2)   | 0.003 (2)    | 0.011 (2)       |
| C18 | 0.030 (2) | 0.029 (2) | 0.030 (3) | 0.003 (2)    | -0.0008 (19) | -0.002 (2)      |
| C19 | 0.028 (2) | 0.030 (2) | 0.038 (3) | 0.0032 (19)  | 0.003 (2)    | -0.002 (2)      |
| C20 | 0.034 (3) | 0.036 (3) | 0.041 (3) | 0.000 (2)    | 0.000 (2)    | 0.002 (2)       |
| C21 | 0.036 (3) | 0.034 (3) | 0.035 (3) | 0.001 (2)    | 0.011 (2)    | -0.003 (2)      |
| C22 | 0.029 (2) | 0.030 (2) | 0.033 (3) | 0.0021 (19)  | 0.007 (2)    | -0.002 (2)      |

| C23 | 0.037 (3)   | 0.033 (3)   | 0.041 (3)   | 0.005 (2)    | 0.001 (2)    | 0.000 (2)    |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C24 | 0.032 (3)   | 0.042 (3)   | 0.057 (3)   | 0.000 (2)    | 0.002 (2)    | -0.008 (3)   |
| C25 | 0.044 (3)   | 0.047 (3)   | 0.060 (4)   | -0.017 (2)   | 0.006 (3)    | -0.009 (3)   |
| C26 | 0.053 (3)   | 0.037 (3)   | 0.045 (3)   | -0.008(2)    | 0.014 (3)    | 0.004 (2)    |
| C27 | 0.074 (4)   | 0.091 (5)   | 0.097 (5)   | 0.037 (4)    | -0.022 (4)   | -0.006 (4)   |
| C28 | 0.060 (4)   | 0.153 (7)   | 0.112 (6)   | -0.043 (4)   | 0.013 (4)    | -0.005 (5)   |
| N1  | 0.0240 (18) | 0.030 (2)   | 0.042 (2)   | -0.0013 (16) | -0.0044 (16) | 0.0012 (17)  |
| N2  | 0.045 (2)   | 0.040 (2)   | 0.039 (2)   | 0.0005 (18)  | -0.0018 (19) | 0.0119 (18)  |
| N3  | 0.035 (3)   | 0.071 (3)   | 0.108 (4)   | 0.011 (2)    | 0.000 (3)    | 0.019 (3)    |
| 01  | 0.047 (2)   | 0.055 (2)   | 0.092 (3)   | -0.0101 (17) | -0.034 (2)   | 0.021 (2)    |
| O2  | 0.0327 (17) | 0.0505 (19) | 0.053 (2)   | -0.0011 (14) | -0.0076 (15) | -0.0094 (16) |
| Cl1 | 0.1126 (13) | 0.0388 (8)  | 0.1155 (14) | -0.0208 (8)  | 0.0667 (11)  | -0.0138 (8)  |
| Br1 | 0.0487 (3)  | 0.0751 (4)  | 0.1063 (5)  | -0.0023 (3)  | -0.0312 (3)  | -0.0132 (4)  |
| Br2 | 0.0821 (5)  | 0.0819 (5)  | 0.1114 (6)  | -0.0496 (4)  | 0.0096 (4)   | 0.0078 (4)   |
| S   | 0.0351 (7)  | 0.0641 (9)  | 0.0608 (9)  | -0.0025 (6)  | -0.0066 (6)  | -0.0133 (7)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—C6   | 1.383 (6) | C16—C17  | 1.423 (6) |  |
|---------|-----------|----------|-----------|--|
| C1—C2   | 1.386 (6) | C17—N3   | 1.139 (5) |  |
| C1—H1A  | 0.9300    | C18—N1   | 1.352 (5) |  |
| C2—C3   | 1.365 (7) | C18—C19  | 1.443 (6) |  |
| C2—H2A  | 0.9300    | C19—C20  | 1.371 (5) |  |
| C3—C4   | 1.367 (7) | C19—C22  | 1.440 (5) |  |
| C3—C11  | 1.737 (5) | C20—N2   | 1.353 (5) |  |
| C4—C5   | 1.370 (6) | C20—H20  | 0.9300    |  |
| C4—H4   | 0.9300    | C21—N2   | 1.380 (5) |  |
| C5—C6   | 1.384 (6) | C21—C26  | 1.386 (6) |  |
| С5—Н5   | 0.9300    | C21—C22  | 1.405 (6) |  |
| С6—С7   | 1.485 (6) | C22—C23  | 1.400 (5) |  |
| C7—O1   | 1.235 (5) | C23—C24  | 1.368 (6) |  |
| С7—С8   | 1.456 (6) | С23—Н23  | 0.9300    |  |
| C8—N1   | 1.379 (5) | C24—C25  | 1.397 (6) |  |
| C8—C9   | 1.395 (5) | C24—Br1  | 1.893 (4) |  |
| C9—C16  | 1.414 (6) | C25—C26  | 1.370 (6) |  |
| C9—C10  | 1.479 (6) | C25—H25  | 0.9300    |  |
| C10-C11 | 1.373 (6) | C26—H26  | 0.9300    |  |
| C10—C15 | 1.392 (6) | C27—S    | 1.777 (6) |  |
| C11—C12 | 1.381 (6) | C27—H27A | 0.9600    |  |
| C11—H11 | 0.9300    | C27—H27B | 0.9600    |  |
| C12—C13 | 1.377 (6) | С27—Н27С | 0.9600    |  |
| С12—Н12 | 0.9300    | C28—S    | 1.750 (6) |  |
| C13—C14 | 1.368 (6) | C28—H28A | 0.9600    |  |
| C13—Br2 | 1.898 (4) | C28—H28B | 0.9600    |  |
| C14—C15 | 1.384 (6) | C28—H28C | 0.9600    |  |
| C14—H14 | 0.9300    | N1—H1    | 0.8600    |  |
| C15—H15 | 0.9300    | N2—H2    | 0.8600    |  |
| C16—C18 | 1.399 (5) | O2—S     | 1.508 (3) |  |

| C6—C1—C2    | 119.9 (4) | N1-C18-C16    | 106.4 (3) |
|-------------|-----------|---------------|-----------|
| C6—C1—H1A   | 120.0     | N1-C18-C19    | 123.5 (4) |
| C2—C1—H1A   | 120.0     | C16—C18—C19   | 130.1 (4) |
| C3—C2—C1    | 119.0 (5) | C20—C19—C22   | 106.3 (4) |
| C3—C2—H2A   | 120.5     | C20—C19—C18   | 124.5 (4) |
| C1—C2—H2A   | 120.5     | C22—C19—C18   | 129.3 (4) |
| C2—C3—C4    | 121.8 (4) | N2—C20—C19    | 110.5 (4) |
| C2—C3—Cl1   | 119.0 (5) | N2-C20-H20    | 124.7     |
| C4—C3—Cl1   | 119.2 (4) | C19—C20—H20   | 124.7     |
| C3—C4—C5    | 119.3 (5) | N2-C21-C26    | 129.5 (4) |
| C3—C4—H4    | 120.3     | N2-C21-C22    | 107.9 (4) |
| C5—C4—H4    | 120.3     | C26—C21—C22   | 122.6 (4) |
| C4—C5—C6    | 120.3 (5) | C23—C22—C21   | 118.5 (4) |
| C4—C5—H5    | 119.8     | C23—C22—C19   | 135.0 (4) |
| С6—С5—Н5    | 119.8     | C21—C22—C19   | 106.5 (3) |
| C1—C6—C5    | 119.5 (4) | C24—C23—C22   | 118.3 (4) |
| C1—C6—C7    | 121.2 (4) | C24—C23—H23   | 120.9     |
| C5—C6—C7    | 119.3 (4) | С22—С23—Н23   | 120.9     |
| O1—C7—C8    | 119.4 (4) | C23—C24—C25   | 122.5 (4) |
| O1—C7—C6    | 120.7 (4) | C23—C24—Br1   | 119.4 (4) |
| C8—C7—C6    | 119.9 (4) | C25—C24—Br1   | 118.1 (3) |
| N1—C8—C9    | 107.8 (3) | C26—C25—C24   | 120.1 (4) |
| N1—C8—C7    | 118.1 (4) | C26—C25—H25   | 119.9     |
| C9—C8—C7    | 134.0 (4) | C24—C25—H25   | 119.9     |
| C8—C9—C16   | 105.8 (3) | C25—C26—C21   | 117.8 (4) |
| C8—C9—C10   | 127.7 (4) | C25—C26—H26   | 121.1     |
| C16—C9—C10  | 126.4 (4) | C21—C26—H26   | 121.1     |
| C11—C10—C15 | 118.3 (4) | S—C27—H27A    | 109.5     |
| С11—С10—С9  | 122.2 (4) | S—C27—H27B    | 109.5     |
| C15—C10—C9  | 119.4 (4) | H27A—C27—H27B | 109.5     |
| C10-C11-C12 | 121.6 (4) | S—C27—H27C    | 109.5     |
| C10—C11—H11 | 119.2     | H27A—C27—H27C | 109.5     |
| C12—C11—H11 | 119.2     | H27B—C27—H27C | 109.5     |
| C13—C12—C11 | 118.6 (5) | S—C28—H28A    | 109.5     |
| C13—C12—H12 | 120.7     | S—C28—H28B    | 109.5     |
| C11—C12—H12 | 120.7     | H28A—C28—H28B | 109.5     |
| C14—C13—C12 | 121.7 (4) | S—C28—H28C    | 109.5     |
| C14—C13—Br2 | 120.0 (4) | H28A—C28—H28C | 109.5     |
| C12—C13—Br2 | 118.3 (4) | H28B—C28—H28C | 109.5     |
| C13—C14—C15 | 118.8 (4) | C18—N1—C8     | 111.0 (3) |
| C13—C14—H14 | 120.6     | C18—N1—H1     | 124.5     |
| C15—C14—H14 | 120.6     | C8—N1—H1      | 124.5     |
| C14—C15—C10 | 121.0 (4) | C20—N2—C21    | 108.9 (3) |
| C14—C15—H15 | 119.5     | C20—N2—H2     | 125.6     |
| C10—C15—H15 | 119.5     | C21—N2—H2     | 125.6     |
| C18—C16—C9  | 109.0 (3) | O2—S—C28      | 104.7 (3) |
| C18—C16—C17 | 124.5 (4) | O2—S—C27      | 105.9 (2) |

| C9—C16—C17      | 126.2 (4)  | C28—S—C27       | 99.0 (3)   |
|-----------------|------------|-----------------|------------|
| N3—C17—C16      | 178.3 (5)  |                 |            |
|                 |            |                 |            |
| C6—C1—C2—C3     | -0.6 (7)   | C8—C9—C16—C17   | 171.9 (4)  |
| C1—C2—C3—C4     | 3.0 (7)    | C10-C9-C16-C17  | -6.5 (7)   |
| C1—C2—C3—C11    | -176.2 (3) | C18—C16—C17—N3  | 59 (18)    |
| C2—C3—C4—C5     | -2.4 (8)   | C9-C16-C17-N3   | -114 (18)  |
| Cl1—C3—C4—C5    | 176.7 (4)  | C9-C16-C18-N1   | 2.5 (5)    |
| C3—C4—C5—C6     | -0.5 (7)   | C17—C16—C18—N1  | -171.4 (4) |
| C2-C1-C6-C5     | -2.3 (7)   | C9-C16-C18-C19  | -175.2 (4) |
| C2-C1-C6-C7     | 178.3 (4)  | C17—C16—C18—C19 | 11.0 (7)   |
| C4—C5—C6—C1     | 2.8 (7)    | N1-C18-C19-C20  | -154.1 (4) |
| C4—C5—C6—C7     | -177.7 (4) | C16-C18-C19-C20 | 23.2 (7)   |
| C1—C6—C7—O1     | 140.8 (5)  | N1-C18-C19-C22  | 27.7 (7)   |
| C5—C6—C7—O1     | -38.6 (7)  | C16-C18-C19-C22 | -155.0 (4) |
| C1—C6—C7—C8     | -40.5 (6)  | C22-C19-C20-N2  | -0.1 (5)   |
| C5—C6—C7—C8     | 140.0 (4)  | C18—C19—C20—N2  | -178.6 (4) |
| O1—C7—C8—N1     | -23.6 (7)  | N2-C21-C22-C23  | -179.5 (4) |
| C6—C7—C8—N1     | 157.8 (4)  | C26—C21—C22—C23 | 1.1 (6)    |
| O1—C7—C8—C9     | 152.9 (5)  | N2-C21-C22-C19  | 1.6 (5)    |
| C6—C7—C8—C9     | -25.8 (8)  | C26—C21—C22—C19 | -177.8 (4) |
| N1-C8-C9-C16    | 0.5 (5)    | C20—C19—C22—C23 | -179.5 (5) |
| C7—C8—C9—C16    | -176.2 (5) | C18—C19—C22—C23 | -1.1 (8)   |
| N1—C8—C9—C10    | 178.9 (4)  | C20-C19-C22-C21 | -1.0 (5)   |
| C7—C8—C9—C10    | 2.1 (8)    | C18—C19—C22—C21 | 177.5 (4)  |
| C8—C9—C10—C11   | -50.7 (6)  | C21—C22—C23—C24 | 0.7 (6)    |
| C16—C9—C10—C11  | 127.4 (5)  | C19—C22—C23—C24 | 179.2 (5)  |
| C8—C9—C10—C15   | 126.0 (5)  | C22—C23—C24—C25 | -1.4 (7)   |
| C16—C9—C10—C15  | -56.0 (6)  | C22—C23—C24—Br1 | 177.8 (3)  |
| C15—C10—C11—C12 | -2.7 (7)   | C23—C24—C25—C26 | 0.3 (7)    |
| C9—C10—C11—C12  | 174.0 (4)  | Br1-C24-C25-C26 | -178.9 (4) |
| C10-C11-C12-C13 | 0.1 (7)    | C24—C25—C26—C21 | 1.5 (7)    |
| C11—C12—C13—C14 | 2.2 (7)    | N2-C21-C26-C25  | 178.5 (4)  |
| C11—C12—C13—Br2 | -177.9 (3) | C22—C21—C26—C25 | -2.2 (7)   |
| C12—C13—C14—C15 | -1.8 (7)   | C16—C18—N1—C8   | -2.2 (5)   |
| Br2—C13—C14—C15 | 178.3 (3)  | C19—C18—N1—C8   | 175.7 (4)  |
| C13—C14—C15—C10 | -0.9 (7)   | C9—C8—N1—C18    | 1.1 (5)    |
| C11—C10—C15—C14 | 3.1 (7)    | C7—C8—N1—C18    | 178.4 (4)  |
| C9—C10—C15—C14  | -173.7 (4) | C19—C20—N2—C21  | 1.1 (5)    |
| C8—C9—C16—C18   | -1.8 (5)   | C26—C21—N2—C20  | 177.6 (4)  |
| C10-C9-C16-C18  | 179.8 (4)  | C22—C21—N2—C20  | -1.7 (5)   |

### Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|------|-------|-----------|-------------------------|
| N1—H1…O2 | 0.86 | 2.08  | 2.812 (4) | 143                     |

|                                                    |      |      |           | data reports |
|----------------------------------------------------|------|------|-----------|--------------|
| N2—H2···O2 <sup>i</sup>                            | 0.86 | 1.96 | 2.813 (4) | 170          |
| Symmetry code: (i) $-x+5/2$ , $y-1/2$ , $-z+1/2$ . |      |      |           |              |