

ISSN 2414-3146

Received 29 June 2016 Accepted 2 July 2016

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; 6-nitro-2*H*-indazolyl; ester; hydrogen bonds.

CCDC reference: 1489667

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 2-(6-nitro-2H-indazol-2-yl)acetate

Fatima-Zahra Rejouani,^a* Souad Mojahidi,^a El Mostapha Rakib,^a Abdelouahed Mdeghri Alaoui,^a Mohamed Saadi^b and Lahcen El Ammari^b

^aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and ^bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: f_rejouani@yahoo.com

In the title compound, $C_{11}H_{11}N_3O_4$, the indazolyl ring and the nitro group are nearly coplanar, with the greatest deviation from their mean plane being 0.103 (2) Å. The mean plane through the acetate group is almost perpendicular to the indazolyl ring, subtending a dihedral angle of 88.05 (7)°. In the crystal, molecules are linked by $C-H\cdots O$ and $C-H\cdots N$ non-classical hydrogen bonds to form supramolecular layers that stack along the *a* axis.

Structure description

Indazolyl derivatives have been used widely in medicinal chemistry (Gaikwad *et al.*, 2015) and drug discovery (Jennings & Tennant *et al.*, 2007). They exhibit a broad range of biological activities including HIV protease inhibition (Han *et al.*, 1998), anti-inflammatory (Rosati *et al.*, 2007) anti-microbial (Li *et al.*, 2003), antispermatogenic (Takahashi *et al.*, 2011) antiplatelet (Lee *et al.*, 2001) and anticancer activities (Abbassi *et al.*, 2012, 2014).

The molecule of the title compound is built up from an indazolyl ring (C1–C7/N2/N3) linked to a nitro group and to an ethyl acetate groups as shown in Fig. 1. The nitro group and indazolyl cycle are nearly coplanar with the greatest deviation from the mean plane being 0.103 (2) Å for the O1 atom. The mean plan through the acetate moieties is almost perpendicular to the indazolyl ring as indicated by the dihedral angle of 88.05 (7)° between them.

The crystal structure cohesion is ensured by $C-H\cdots O$ and $C-H\cdots N$ hydrogen interactions (Table 1), which form supramolecular layers that stack along the *a* axis.

Figure 1

Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Synthesis and crystallization

To a solution of 6-nitroindazole (6.13 mmol) in THF (30 ml) was added K_2CO_3 (9.2 mmol). After 15 min at 298 K, ethyl bromoacetate (6.13 mmol) was added dropwise. The solution was refluxed with stirring for 6 h and the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO₄ and the solvent evaporated *in vacuo*. The resulting residue was purified by column chromatography (EtOAc/ hexane 3/7). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (m.p. 338 K, yield 65%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for the financial support.

References

- Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). *Eur. J. Med. Chem.* **57**, 240–249.
- Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). *Eur. J. Med. Chem.* **90**, 707–731.
- Han, W., Pelletier, J. C. & Hodge, C. N. (1998). Bioorg. Med. Chem. Lett. 8, 3615–3620.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C7-H7\cdots O3^{i}$ $C8-H84\cdots N2^{ii}$	0.93	2.54	3.2743 (18) 3.4650 (19)	137 149
$C8-H8B\cdots O3^{iii}$	0.97	2.34	3.2525 (18)	157

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) x, y - 1, z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{11}H_{11}N_3O_4$
M _r	249.23
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
a, b, c (Å)	31.808 (3), 4.6312 (4), 19.0381 (16)
β (°)	122.839 (3)
$V(Å^3)$	2356.3 (3)
Ζ	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.11
Crystal size (mm)	$0.35 \times 0.31 \times 0.25$
Data collection	
Diffractometer	Bruker X8 APEX
Absorption correction	Multi-scan (SADABS; Sheldrick, 2015b)
T_{\min}, T_{\max}	0.626, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25389, 3324, 2517
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.694
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.140, 1.03
No. of reflections	3324
No. of parameters	163
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.20, -0.19

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

- Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829– 1838.
- Lee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749.
- Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rosati, O., Curini, M., Marcotullio, M. C., Macchiarulo, A., Perfumi, M., Mattioli, L., Rismondo, F. & Cravotto, G. (2007). *Bioorg. Med. Chem.* 15, 3463–3473.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Takahashi, H., Shinoyama, M., Komine, T., Nagao, M., Suzuki, M., Tsuchida, H. & Katsuyama, K. (2011). *Bioorg. Med. Chem. Lett.* 21, 1758–1762.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x161074 [https://doi.org/10.1107/S2414314616010749]

Ethyl 2-(6-nitro-2H-indazol-2-yl)acetate

Fatima-Zahra Rejouani, Souad Mojahidi, El Mostapha Rakib, Abdelouahed Mdeghri Alaoui, Mohamed Saadi and Lahcen El Ammari

Ethyl 2-(6-nitro-2H-indazol-2-yl)acetate

Crystal data

C11H11N3O4 $M_r = 249.23$ Monoclinic, C2/ca = 31.808 (3) Å *b* = 4.6312 (4) Å *c* = 19.0381 (16) Å $\beta = 122.839 (3)^{\circ}$ V = 2356.3 (3) Å³ Z = 8F(000) = 1040

Data collection

Bruker X8 APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ϕ and ϕ scans Absorption correction: multi-scan (SADABS: Sheldrick, 2015b) $T_{\rm min} = 0.626, \ T_{\rm max} = 0.746$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.044$ H-atom parameters constrained $wR(F^2) = 0.140$ *S* = 1.03 where $P = (F_0^2 + 2F_c^2)/3$ 3324 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 163 parameters $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 1.405 {\rm Mg} {\rm m}^{-3}$ Melting point: 338 K Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3324 reflections $\theta = 2.1 - 29.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.31 \times 0.25 \text{ mm}$

25389 measured reflections 3324 independent reflections 2517 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$ $\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ $h = -44 \rightarrow 44$ $k = -6 \rightarrow 6$ $l = -24 \rightarrow 26$

 $w = 1/[\sigma^2(F_0^2) + (0.0714P)^2 + 0.8343P]$

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.33711 (5)	0.4119 (3)	0.46597 (8)	0.0418 (3)	
C2	0.37402 (5)	0.6087 (3)	0.52132 (8)	0.0466 (3)	
H2	0.3723	0.7029	0.5628	0.056*	
C3	0.41254 (5)	0.6530(3)	0.51054 (8)	0.0472 (3)	
C4	0.41682 (5)	0.5172 (4)	0.44835 (10)	0.0570 (4)	
H4	0.4443	0.5553	0.4447	0.068*	
C5	0.38093 (6)	0.3310 (4)	0.39402 (10)	0.0580 (4)	
Н5	0.3831	0.2427	0.3522	0.070*	
C6	0.34001 (5)	0.2737 (3)	0.40226 (8)	0.0454 (3)	
C7	0.29814 (5)	0.0965 (3)	0.36243 (9)	0.0508 (3)	
H7	0.2884	-0.0244	0.3171	0.061*	
C8	0.22800 (5)	0.0023 (3)	0.38266 (9)	0.0516 (3)	
H8A	0.2282	-0.0198	0.4335	0.062*	
H8B	0.2252	-0.1883	0.3594	0.062*	
C9	0.18351 (5)	0.1819 (3)	0.32093 (8)	0.0432 (3)	
C10	0.09600 (6)	0.2351 (4)	0.25660 (11)	0.0614 (4)	
H10A	0.0955	0.4089	0.2845	0.074*	
H10B	0.0940	0.2908	0.2058	0.074*	
C11	0.05359 (6)	0.0510 (5)	0.23640 (13)	0.0792 (6)	
H11A	0.0230	0.1540	0.2005	0.119*	
H11B	0.0542	-0.1199	0.2084	0.119*	
H11C	0.0557	-0.0022	0.2870	0.119*	
N1	0.45222 (5)	0.8546 (3)	0.56789 (8)	0.0608 (3)	
N2	0.29646 (4)	0.3270 (3)	0.46565 (7)	0.0482 (3)	
N3	0.27453 (4)	0.1349 (2)	0.40251 (7)	0.0467 (3)	
O1	0.48852 (5)	0.8813 (4)	0.56230 (9)	0.0909 (5)	
O2	0.44763 (5)	0.9839 (4)	0.61888 (9)	0.0884 (4)	
03	0.18539 (4)	0.3901 (2)	0.28551 (7)	0.0644 (3)	
O4	0.14227 (3)	0.0744 (2)	0.31126 (6)	0.0532 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0379 (6)	0.0444 (6)	0.0440 (6)	0.0005 (5)	0.0229 (5)	0.0021 (5)
C2	0.0426 (6)	0.0519 (7)	0.0444 (6)	-0.0045 (5)	0.0231 (5)	-0.0024 (5)
C3	0.0372 (6)	0.0517 (7)	0.0465 (6)	-0.0025 (5)	0.0186 (5)	0.0082 (5)
C4	0.0456 (7)	0.0720 (9)	0.0616 (8)	0.0004 (7)	0.0345 (7)	0.0075 (7)
C5	0.0575 (8)	0.0695 (9)	0.0609 (8)	0.0013 (7)	0.0411 (7)	-0.0033 (7)
C6	0.0449 (7)	0.0453 (6)	0.0479 (7)	0.0034 (5)	0.0263 (6)	0.0013 (5)
C7	0.0528 (7)	0.0472 (7)	0.0520 (7)	-0.0009 (6)	0.0282 (6)	-0.0068 (6)
C8	0.0432 (7)	0.0446 (7)	0.0594 (8)	-0.0074 (5)	0.0229 (6)	0.0013 (6)
C9	0.0454 (7)	0.0394 (6)	0.0433 (6)	-0.0058 (5)	0.0230 (5)	-0.0063 (5)
C10	0.0529 (8)	0.0542 (8)	0.0715 (10)	0.0136 (7)	0.0301 (7)	0.0105 (7)
C11	0.0435 (8)	0.0896 (13)	0.0937 (13)	0.0143 (8)	0.0302 (9)	0.0275 (11)
N1	0.0453 (7)	0.0706 (8)	0.0555 (7)	-0.0128 (6)	0.0202 (6)	0.0064 (6)

data reports

N2	0.0430 (6)	0.0540 (6)	0.0507 (6)	-0.0083 (5)	0.0275 (5)	-0.0079 (5)
N3	0.0413 (5)	0.0433 (5)	0.0522 (6)	-0.0040 (4)	0.0231 (5)	-0.0022 (5)
01	0.0569 (7)	0.1261 (12)	0.0900 (9)	-0.0356 (7)	0.0402 (7)	-0.0075 (8)
O2	0.0756 (8)	0.1017 (10)	0.0873 (9)	-0.0404 (8)	0.0438 (7)	-0.0381 (8)
O3	0.0602 (6)	0.0561 (6)	0.0687 (7)	-0.0068 (5)	0.0296 (6)	0.0132 (5)
O4	0.0417 (5)	0.0527 (5)	0.0620 (6)	0.0017 (4)	0.0260 (5)	0.0095 (4)

Geometric parameters (Å, °)

C1—N2	1.3485 (15)	C8—C9	1.5073 (19)	
C1—C2	1.4062 (18)	C8—H8A	0.9700	
C1—C6	1.4182 (17)	C8—H8B	0.9700	
C2—C3	1.3631 (17)	C9—O3	1.1964 (16)	
C2—H2	0.9300	C9—O4	1.3195 (15)	
C3—C4	1.411 (2)	C10-C11	1.460 (2)	
C3—N1	1.4703 (18)	C10—O4	1.4634 (17)	
C4—C5	1.355 (2)	C10—H10A	0.9700	
C4—H4	0.9300	C10—H10B	0.9700	
C5—C6	1.4177 (18)	C11—H11A	0.9600	
С5—Н5	0.9300	C11—H11B	0.9600	
С6—С7	1.3881 (18)	C11—H11C	0.9600	
C7—N3	1.3411 (17)	N1—O2	1.2150 (19)	
С7—Н7	0.9300	N101	1.2218 (17)	
C8—N3	1.4504 (16)	N2—N3	1.3468 (16)	
N2-C1-C2	126.96 (11)	C9—C8—H8B	109.4	
N2-C1-C6	111.80 (11)	H8A—C8—H8B	108.0	
C2-C1-C6	121.23 (11)	O3—C9—O4	125.13 (13)	
C3—C2—C1	115.98 (12)	O3—C9—C8	124.84 (12)	
C3—C2—H2	122.0	O4—C9—C8	110.03 (11)	
C1—C2—H2	122.0	C11—C10—O4	108.64 (13)	
C2—C3—C4	124.25 (13)	C11—C10—H10A	110.0	
C2-C3-N1	117.61 (13)	O4C10H10A	110.0	
C4—C3—N1	118.14 (12)	C11—C10—H10B	110.0	
C5—C4—C3	119.96 (12)	O4—C10—H10B	110.0	
C5—C4—H4	120.0	H10A—C10—H10B	108.3	
C3—C4—H4	120.0	C10-C11-H11A	109.5	
C4—C5—C6	118.62 (13)	C10-C11-H11B	109.5	
C4—C5—H5	120.7	H11A—C11—H11B	109.5	
С6—С5—Н5	120.7	C10-C11-H11C	109.5	
C7—C6—C5	135.79 (13)	H11A-C11-H11C	109.5	
C7—C6—C1	104.23 (11)	H11B—C11—H11C	109.5	
C5—C6—C1	119.96 (12)	O2—N1—O1	123.26 (14)	
N3—C7—C6	106.16 (12)	O2—N1—C3	118.66 (12)	
N3—C7—H7	126.9	O1—N1—C3	118.08 (15)	
С6—С7—Н7	126.9	N3—N2—C1	103.17 (10)	
N3—C8—C9	111.32 (11)	C7—N3—N2	114.63 (11)	
N3—C8—H8A	109.4	C7—N3—C8	127.07 (12)	

C9—C8—H8A	109.4	N2—N3—C8	118.25 (11)
N3—C8—H8B	109.4	C9—O4—C10	116.59 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	<i>D</i> —H··· <i>A</i>
C7—H7····O3 ⁱ	0.93	2.54	3.2743 (18)	137
C8—H8A···N2 ⁱⁱ	0.97	2.59	3.4650 (19)	149
C8—H8 <i>B</i> ···O3 ⁱⁱⁱ	0.97	2.34	3.2525 (18)	157

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*+1; (iii) *x*, *y*-1, *z*.