ISSN 2414-3146

Received 22 June 2016 Accepted 6 July 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; zinc(II) complex; NAD⁺/NADH-analogous ligand.

CCDC reference: 1486913

Structural data: full structural data are available from iucrdata.iucr.org

Dichlorido[2-(pyridin-2-yl- κN)benzo[b][1,5]naphthyridine- κN^{1}]zinc

Hideki Ohtsu,^a* Takahiro Oura,^a Mikio Takaoka,^a Kiyoshi Tsuge^a and Koji Tanaka^b

^aGraduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and ^bInstitute for Integrated Cell-Material Science (iCeMS), Kyoto University, Advanced Chemical Technology Center in Kyoto, 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan. *Correspondence e-mail: ohtsu@sci.u-toyama.ac.jp

The coordination environment of the Zn^{II} atom in the title complex, $[ZnCl_2(C_{17}H_{11}N_3)]$, is distorted tetrahedral. The NAD⁺/NADH-analogous ligand is twisted and chelates through one pyridine N atom and one N atom of the benzonaphthyridine ring system. In the crystal, molecules are stacked along the *a* axis and are held together through π - π interactions.

Structure description

Much attention has been paid to transition-metal complexes incorporating the NAD^{+/} NADH-analogous ligand pbn {pbn = 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine, $C_{17}H_{11}N_3$ because these compounds can feature remarkable photo-induced multi-electron storage (Fukushima et al., 2010; Ohtsu & Tanaka, 2012a) and exhibit photo-driven CO₂ reduction abilities (Ohtsu & Tanaka, 2012b; Ohtsu et al., 2015). In this context, the title complex, $[Zn(pbn)Cl_2]$, was prepared. Its molecular structure is shown in Fig. 1. The zinc(II) cation is tetracoordinated by two N atoms of the pbn ligand and two Cl⁻ ions with Zn-N distances of 2.044 (3) and 2.090 (3) Å and Zn-Cl distances of 2.1944 (7) and 2.2313 (10) Å. The quantitative descriptor for fourfold coordination, τ_4 , which can range from $\tau_4 = 1$ for a perfect tetrahedral configuration to $\tau_4 = 0$ for a perfect square-planar configuration (Yang *et al.*, 2007) is $\tau_4 = 0.85$ for the zinc(II) atom by using the equation τ_4 = $(360-(\alpha+\beta))/141$, where α = Cl2-Zn1-N3 [120.36 (7)°] and β = Cl1-Zn1-N1 $[119.35 (6)^{\circ}]$, respectively. Thus, the coordination environment of the zinc(II) atom in [Zn(pbn)Cl₂] is slightly distorted tetrahedral. The pyridine ring and the benzonaphthyridine ring in the pbn ligand are twisted, as revealed by the dihedral angle of $16.36(7)^{\circ}$ between the two least-squares planes.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal, the molecules are stacked along the *a* axis as shown in Fig. 2. The distance between the centroids of the benzonaphthyridine moieties is 3.7369 (4) Å, which is indicative of intermolecular π - π stacking interactions.

Synthesis and crystallization

The NAD⁺/NADH-analogous ligand, 2-(pyridin-2-yl)benzo-[b][1,5]naphthyridine (pbn), was prepared according to the literature protocol (Koizumi & Tanaka, 2005). To a hot methanolic solution (20 ml) of pbn (51.6 mg, 0.20 mmol) was added dropwise $ZnCl_2$ (27.4 mg, 0.20 mmol) in methanol (10 ml), and the resulting hot solution was filtered. After the solution was left to stand for a few days at room temperature, yellow crystals of the title compound were obtained (yield;

Figure 2

The crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.

Experimental details.	
Crystal data	
Chemical formula	$[ZnCl_2(C_{17}H_{11}N_3)]$
$M_{\rm r}$	393.58
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	7.90780 (14), 8.27871 (15), 13.4075 (3)
$lpha,eta,\gamma(^\circ)$	73.8395 (7), 79.2764 (7), 68.1246 (7)
$V(Å^3)$	779.00 (3)
Z	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	5.35
Crystal size (mm)	$0.09 \times 0.06 \times 0.02$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.740, 0.899
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflec- tions	9141, 2799, 2338
R _{int}	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.108, 1.08
No. of reflections	2799
No. of parameters	208
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.59, -0.41

Computer programs: RAPID AUTO (Rigaku, 2001), SHELXS97 and SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010), Mercury (Macrae et al., 2008), CrystalMaker (Palmer, 2007) and publCIF (Westrip, 2010).

34.9 mg, 44%). Elemental analysis, found: C 51.92, H 3.17, N 10.73%; calculated for $C_{17}H_{11}Cl_2N_3Zn$: C 51.87, H 2.82, N 10.68%.

Refinement

Table 1

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research B (No. 26288024, KT) and for Scientific Research C (No. 25410067, HO) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

References

- Fukushima, T., Wada, T., Ohtsu, H. & Tanaka, K. (2010). Dalton Trans. 39, 11526–11534.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Koizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891– 5894.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Ohtsu, H. & Tanaka, K. (2012a). Chem. Commun. 48, 1796–1798.

- Ohtsu, H. & Tanaka, K. (2012b). Angew. Chem. Int. Ed. 51, 9792– 9795.
- Ohtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. **313**, 163–167.
- Palmer, D. (2007). CrystalMaker. Crystal Maker, Bicester, Oxfordshire, England.
- Rigaku (2001). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku (2010). *CrystalStructure*. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

full crystallographic data

IUCrData (2016). **1**, x161093 [https://doi.org/10.1107/S2414314616010932]

Dichlorido[2-(pyridin-2-yl- κN)benzo[b][1,5]naphthyridine- κN^{1}]zinc

Hideki Ohtsu, Takahiro Oura, Mikio Takaoka, Kiyoshi Tsuge and Koji Tanaka

Dichlorido[2-(pyridin-2-yl-κN)benzo[b]-1,5-naphthyridine-κN¹]zinc

Crystal data	
$\begin{bmatrix} ZnCl_{2}(C_{17}H_{11}N_{3}) \end{bmatrix}$ $M_{r} = 393.58$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.90780 (14) Å b = 8.27871 (15) Å c = 13.4075 (3) Å $a = 73.8395 (7)^{\circ}$ $\beta = 79.2764 (7)^{\circ}$ $\gamma = 68.1246 (7)^{\circ}$ $V = 779.00 (3) \text{ Å}^{3}$	Z = 2 F(000) = 396.00 $D_x = 1.678 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 6125 reflections $\theta = 3.4-68.1^{\circ}$ $\mu = 5.35 \text{ mm}^{-1}$ T = 173 K Block, yellow $0.09 \times 0.06 \times 0.02 \text{ mm}$
Data collection Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.740, T_{\max} = 0.899$ 9141 measured reflections	2799 independent reflections 2338 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.046$ $\theta_{max} = 68.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 16$
RefinementRefinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ $S = 1.08$ 2799 reflections208 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.065P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.59$ e Å ⁻³ $\Delta\rho_{min} = -0.41$ e Å ⁻³

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.41698 (5)	0.98623 (4)	0.82997 (3)	0.03376 (16)	
Cl1	0.18049 (10)	1.23090 (9)	0.79219 (6)	0.0427 (2)	
C12	0.66287 (9)	1.01287 (9)	0.87332 (5)	0.0407 (2)	
N1	0.5368 (3)	0.8306 (3)	0.71983 (16)	0.0297 (5)	
N2	0.8589 (3)	0.7866 (3)	0.48422 (17)	0.0339 (6)	
N3	0.3436 (3)	0.7661 (3)	0.90061 (16)	0.0296 (5)	
C1	0.5507 (4)	0.6619 (4)	0.7581 (2)	0.0295 (6)	
C2	0.6749 (4)	0.5228 (4)	0.7104 (2)	0.0355 (7)	
C3	0.7792 (4)	0.5637 (4)	0.6216 (2)	0.0353 (7)	
C4	0.9435 (4)	1.0064 (5)	0.3483 (2)	0.0387 (7)	
C5	0.9299 (4)	1.1799 (5)	0.3057 (3)	0.0411 (7)	
C6	0.8138 (4)	1.3189 (4)	0.3550 (3)	0.0414 (7)	
C7	0.7110 (4)	1.2813 (4)	0.4452 (3)	0.0380 (7)	
C8	0.6182 (4)	1.0558 (4)	0.5861 (2)	0.0319 (6)	
C9	0.7600 (4)	0.7458 (4)	0.5748 (2)	0.0316 (6)	
C10	0.6373 (4)	0.8776 (4)	0.6281 (2)	0.0293 (6)	
C11	0.8396 (4)	0.9589 (4)	0.4439 (2)	0.0333 (6)	
C12	0.7194 (4)	1.1003 (4)	0.4934 (2)	0.0315 (6)	
C13	0.4260 (4)	0.6276 (4)	0.8532 (2)	0.0312 (6)	
C14	0.3886 (4)	0.4706 (4)	0.8888 (2)	0.0342 (7)	
C15	0.2615 (4)	0.4546 (4)	0.9738 (3)	0.0366 (7)	
C16	0.1745 (4)	0.5958 (4)	1.0209 (2)	0.0373 (7)	
C17	0.2187 (4)	0.7500 (4)	0.9823 (2)	0.0345 (7)	
H2	0.6843	0.4018	0.7408	0.0426*	
H3	0.8650	0.4713	0.5907	0.0424*	
H4	1.0231	0.9157	0.3141	0.0465*	
H5	0.9994	1.2086	0.2417	0.0493*	
H6	0.8081	1.4389	0.3246	0.0496*	
H7	0.6325	1.3755	0.4771	0.0455*	
H8	0.5371	1.1459	0.6204	0.0383*	
H14	0.4495	0.3741	0.8554	0.0411*	
H15	0.2345	0.3468	0.9993	0.0439*	
H16	0.0858	0.5877	1.0788	0.0447*	
H17	0.1588	0.8478	1.0148	0.0414*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0323 (3)	0.0270 (3)	0.0444 (3)	-0.00862 (17)	0.00031 (17)	-0.01653 (17)
Cl1	0.0410 (4)	0.0304 (4)	0.0549 (5)	-0.0030 (3)	-0.0077 (4)	-0.0175 (4)
Cl2	0.0381 (4)	0.0379 (5)	0.0531 (5)	-0.0139 (4)	-0.0040 (3)	-0.0200 (4)
N1	0.0269 (11)	0.0267 (12)	0.0378 (12)	-0.0069 (10)	-0.0034 (9)	-0.0140 (10)
N2	0.0269 (12)	0.0359 (14)	0.0384 (12)	-0.0062 (10)	-0.0027 (10)	-0.0141 (10)
N3	0.0305 (12)	0.0244 (12)	0.0370 (12)	-0.0080 (10)	-0.0033 (10)	-0.0135 (9)
C1	0.0268 (13)	0.0276 (14)	0.0363 (14)	-0.0063 (11)	-0.0048 (11)	-0.0134 (11)

C2	0.0332 (15)	0.0286 (15)	0.0444 (16)	-0.0053 (12)	-0.0044 (12)	-0.0144 (12)
C3	0.0295 (14)	0.0298 (15)	0.0470 (16)	-0.0026 (12)	-0.0034 (12)	-0.0199 (13)
C4	0.0303 (15)	0.0482 (19)	0.0376 (15)	-0.0103 (13)	-0.0051 (12)	-0.0126 (14)
C5	0.0336 (16)	0.053 (2)	0.0352 (15)	-0.0153 (14)	-0.0045 (12)	-0.0067 (14)
C6	0.0390 (17)	0.0384 (17)	0.0460 (17)	-0.0156 (14)	-0.0125 (13)	0.0004 (14)
C7	0.0316 (15)	0.0359 (17)	0.0470 (17)	-0.0092 (13)	-0.0080 (13)	-0.0107 (13)
C8	0.0289 (14)	0.0264 (15)	0.0420 (15)	-0.0055 (12)	-0.0055 (12)	-0.0142 (12)
C9	0.0257 (14)	0.0333 (16)	0.0382 (14)	-0.0056 (12)	-0.0064 (11)	-0.0154 (12)
C10	0.0239 (13)	0.0305 (15)	0.0360 (14)	-0.0065 (11)	-0.0046 (11)	-0.0142 (11)
C11	0.0261 (14)	0.0385 (16)	0.0364 (14)	-0.0093 (12)	-0.0064 (11)	-0.0105 (12)
C12	0.0246 (14)	0.0357 (16)	0.0353 (14)	-0.0082 (12)	-0.0068 (11)	-0.0103 (12)
C13	0.0261 (14)	0.0314 (15)	0.0375 (14)	-0.0080 (12)	-0.0066 (11)	-0.0104 (12)
C14	0.0337 (15)	0.0287 (15)	0.0414 (15)	-0.0069 (12)	-0.0066 (12)	-0.0127 (12)
C15	0.0376 (16)	0.0311 (16)	0.0451 (16)	-0.0158 (13)	-0.0084 (13)	-0.0062 (13)
C16	0.0343 (15)	0.0421 (18)	0.0379 (15)	-0.0145 (13)	-0.0029 (12)	-0.0111 (13)
C17	0.0285 (14)	0.0373 (16)	0.0408 (15)	-0.0089 (13)	-0.0032 (12)	-0.0168 (13)

Geometric parameters (Å, °)

Zn1—Cl1	2.1944 (7)	C8—C10	1.385 (4)
Zn1—Cl2	2.2313 (10)	C8—C12	1.385 (4)
Zn1—N1	2.090 (3)	C9—C10	1.425 (4)
Zn1—N3	2.044 (3)	C11—C12	1.444 (4)
N1—C1	1.317 (4)	C13—C14	1.376 (5)
N1-C10	1.376 (4)	C14—C15	1.384 (4)
N2-C9	1.347 (4)	C15—C16	1.375 (5)
N2-C11	1.337 (4)	C16—C17	1.385 (5)
N3—C13	1.356 (4)	C2—H2	0.950
N3—C17	1.344 (4)	С3—Н3	0.950
C1—C2	1.426 (4)	C4—H4	0.950
C1—C13	1.489 (4)	С5—Н5	0.950
С2—С3	1.353 (4)	С6—Н6	0.950
С3—С9	1.424 (4)	С7—Н7	0.950
C4—C5	1.361 (5)	C8—H8	0.950
C4—C11	1.428 (4)	C14—H14	0.950
С5—С6	1.419 (5)	C15—H15	0.950
С6—С7	1.354 (4)	C16—H16	0.950
C7—C12	1.438 (5)	С17—Н17	0.950
Zn1…C8	3.354 (3)	Cl2····H14 ^{vi}	2.8000
N1…C3	2.795 (4)	Cl2…H15 ^v	2.8859
N2…C8	2.832 (4)	Cl2···H17 ⁱⁱⁱ	2.9212
N3…C15	2.764 (5)	N2…H3 ^{viii}	2.6908
C1…C8	3.590 (4)	N2…H8 ⁱ	3.4609
C1…C9	2.767 (4)	N3····H5 ⁱ	3.5104
C2…C10	2.758 (4)	N3…H15 ^v	3.5289
C2…C14	3.028 (4)	C1…H16 ^v	3.5650
C4…C7	2.808 (5)	C2····H4 ^{viii}	3.5916

C5…C12	2.806 (4)	C2…H7 ⁱ	3.5369
C6…C11	2.829 (5)	C2…H16 ^v	3.4158
C9…C12	2.748 (4)	C3…H4 ^{viii}	3.5936
C10…C11	2.743 (4)	C3····H6 ^{iv}	3.4625
C13…C16	2.735 (4)	C3····H7 ^{ix}	3.3748
C14…C17	2.721 (5)	C3····H7 ⁱ	3.5525
Cl1····C4 ⁱ	3.543 (4)	C4····H3 ^{viii}	3.5778
Cl1····C16 ⁱⁱ	3.550 (3)	C7…H3 ^{vi}	3.4319
Cl2…C17 ⁱⁱⁱ	3.554 (4)	C7…H7 ^{vii}	3.3738
N2···C6 ^{iv}	3.384 (5)	C8…H4 ^{iv}	3.4607
N2····C7 ^{iv}	3.501 (4)	C9…H3 ^{viii}	3.5701
N3…C14 ^v	3.514 (4)	C9…H5 ^{iv}	3.5510
N3…C15 ^v	3.453 (4)	C9…H6 ^{iv}	3.5360
C1···C6 ⁱ	3.433 (5)	C9…H8 ⁱ	3.5466
$C1$ ··· $C7^{i}$	3 550 (5)	C10····H5 ^{iv}	3 3836
C4…Cl1 ⁱ	3 543 (4)	C11····H3 ^{viii}	3 5598
C4···C8 ^{iv}	3 550 (5)	$C12\cdots H4^{iv}$	3 5206
$C4\cdots C12^{iv}$	3,421(5)	C13H5 ⁱ	3 4659
$C5 \cdots C9^{iv}$	3 478 (5)	C13···H6 ⁱ	3 5412
C5C10 ^{iv}	3,522 (5)	$C14H5^{i}$	3 5878
$C5C13^{i}$	3.322(3)	$C14 \cdot H5$	3 2800
C6N2 ^{iv}	3.404 (4)	$C15H16^{x}$	3.1200
	3 /33 (5)	C16H2v	3.5826
	3.433(3)	C16H15x	3.1414
	3.477(3)		2 5 9 0 2
	5.498(3)	C17H14v	5.5802 2.2074
C7 - C1	5.301(4)	C17. H17	5.5974 2.5522
C^{2}	5.550(5)	$U_1 / \dots H_1 / \dots$	5.5522 2.2656
	5.550 (5) 2.478 (5)		3.2030
	3.4/8 (5) 2.477 (5)		3.5826
	3.477 (5)		2.9524
	3.522 (5)		3.5908
	3.435 (5)		3.3215
	3.528 (5)		3.5191
	3.564 (5)		2.6908
	3.421 (5)		3.5778
$C12\cdots C10^{1}$	3.435 (5)		3.4319
	3.564 (5)	H3····C9 ^{vm}	3.5701
$C13\cdots C5^{i}$	3.464 (4)	H3····C11 ^{vin}	3.5598
C13····C6 ¹	3.498 (5)	H3····H3 ^{vin}	2.9792
C13…C15 ^v	3.458 (5)	H3····H4 ^{viii}	2.9517
C13···C16 ^v	3.484 (4)	H3····H6 ^{iv}	3.3951
C14…N3 ^v	3.514 (4)	H3····H7 ^{ix}	3.0208
C14…C17 ^v	3.461 (4)	H4…Cl1 ⁱ	3.0609
C15…N3 ^v	3.453 (4)	H4…Cl2 ^{iv}	3.2821
C15…C13 ^v	3.458 (5)	H4…C2 ^{viii}	3.5916
C16····Cl1 ⁱⁱ	3.550 (3)	H4…C3 ^{viii}	3.5936
C16…C13 ^v	3.484 (4)	H4····C8 ^{iv}	3.4607
C17…Cl2 ⁱⁱⁱ	3.554 (4)	$H4\cdots C12^{iv}$	3.5206

C17…C14 ^v	3.461 (4)	H4…H2 ^{viii}	2.9524
Zn1…H8	2.9018	H4····H3 ^{viii}	2.9517
Zn1…H17	3.1467	H4····H8 ^{iv}	3.5627
Cl1…H8	3.2804	H5…Cl2 ^{iv}	3.0437
Cl2…H8	3.4733	H5…N3 ⁱ	3.5104
N1…H2	3.2434	H5…C9 ^{iv}	3.5510
N1…H8	2.5801	H5…C10 ^{iv}	3.3836
N2…H3	2.5905	H5…C13 ⁱ	3.4659
N2…H4	2.5706	H5····C14 ⁱ	3.5878
N3…H14	3.2371	H5…H15 ^{xi}	3.5494
N3…H16	3.2419	H5…H16 ^{xi}	3.5093
C1…H3	3.2683	H6…Cl1 ^{vii}	2.7717
C1…H14	2.7054	H6····C3 ^{iv}	3.4625
C2…H14	2.7354	H6…C9 ^{iv}	3.5360
С4…Н6	3.2714	H6…C13 ⁱ	3.5412
С5…Н7	3.2644	H6···C14 ⁱ	3.2800
С6…Н4	3.2782	H6…H3 ^{iv}	3.3951
С7…Н5	3.2533	H6…H14 ⁱ	3.1252
С7…Н8	2.6727	H7···C2 ⁱ	3.5369
С8…Н7	2.6759	H7···C3 ^{vi}	3.3748
С9…Н2	3.2665	H7···C3 ⁱ	3.5525
С9…Н8	3.2900	H7····C7 ^{vii}	3.3738
С10…Н3	3.3015	H7…H3 ^{vi}	3.0208
С11…Н5	3.2816	H7…H7 ^{vii}	2.4550
С11…Н7	3.3392	H8…N2 ⁱ	3.4609
С11…Н8	3.3004	H8…C9 ⁱ	3.5466
С12…Н4	3.3234	H8…H2 ^{vi}	3.5908
С12…Н6	3.2881	H8····H4 ^{iv}	3.5627
С13…Н2	2.7408	H14···· $Zn1$ ^{ix}	3.4282
C13…H15	3.2430	H14…Cl1 ^{ix}	3.1240
C13…H17	3.1793	H14…Cl2 ^{ix}	2.8000
C14…H2	2.7638	H14…C17 ^v	3.3974
C14…H16	3.2462	H14····H6 ⁱ	3.1252
C15…H17	3.2283	H14…H17 ^v	3.4623
C16…H14	3.2430	H15…Cl1 ^{ix}	3.3230
C17…H15	3.2383	H15…Cl2 ^v	2.8859
H2…H3	2.3072	H15…N3 ^v	3.5289
H2…H14	2.2180	H15…C16 ^x	3.1414
H4…H5	2.2965	H15····H5 ^{xii}	3.5494
Н5…Н6	2.3581	H15…H16 ^x	2.7302
Н6…Н7	2.2969	H16…Cl1 ⁱⁱ	2.7231
H7…H8	2.5235	H16····C1 ^v	3.5650
H14…H15	2.3422	H16…C2 ^v	3.4158
H15…H16	2.3379	H16…C15 ^x	3.1201
H16…H17	2.3279	H16…C16 ^x	3.5802
$Zn1\cdots H14^{vi}$	3.4282	H16…H2 ^v	3.3215
Cl1···H4 ⁱ	3.0609	H16····H5 ^{xii}	3.5093
Cl1····H6 ^{vii}	2.7717	H16…H15 ^x	2.7302

Cl1····H14 ^{vi}	3.1240	H16…H16 ^x	3.5584
Cl1····H15 ^{vi}	3.3230	H17…Cl1 ⁱⁱ	3.4786
Cl1····H16 ⁱⁱ	2.7231	H17…Cl2 ⁱⁱⁱ	2.9212
Cl1···H17 ⁱⁱ	3.4786	H17…C17 ⁱⁱ	3.5522
Cl2···H2 ^{vi}	3.2656	$H17\cdots H2^{v}$	3.5191
Cl2···H4 ^{iv}	3 2821	$H17\cdots H14^{v}$	3 4623
Cl2···H5 ^{iv}	3.0437	H17H17	2.8125
	5.0157	,	2.0120
Cl1—Zn1—Cl2	117.48 (4)	C7—C12—C8	122.6 (3)
Cl1—Zn1—N1	119.35 (6)	C7—C12—C11	118.8 (3)
Cl1—Zn1—N3	112.79 (7)	C8—C12—C11	118.5 (3)
Cl2—Zn1—N1	100.96 (7)	N3—C13—C1	115.2 (3)
C12— $Zn1$ — $N3$	120.36 (7)	N3-C13-C14	121.5 (3)
N1—Zn1—N3	79.60 (9)	C1C13C14	123.2(3)
Zn1-N1-C1	112.42 (17)	C13—C14—C15	119.4 (3)
Zn1-N1-C10	125.4 (2)	C14—C15—C16	119.5 (3)
C1—N1—C10	119.8 (3)	C15—C16—C17	118.7(3)
C9—N2—C11	117.8 (3)	N_{3} C17 C16	122.2(3)
Zn1 - N3 - C13	113.79 (17)	C1	120.136
$Z_{n1} = N_{3} = C_{17}$	127.4(2)	$C_3 - C_2 - H_2$	120.142
C13 - N3 - C17	118.7(3)	C2—C3—H3	120.126
N1-C1-C2	122.0(3)	C9-C3-H3	120 130
N1-C1-C13	1122.0(3) 115.4(3)	C5-C4-H4	119.588
C_{2} C_{1} C_{13}	122.6 (3)	C11—C4—H4	119 590
C1 - C2 - C3	1197(3)	C4—C5—H5	119.377
$C_2 - C_3 - C_9$	119.7 (3)	C6—C5—H5	119.371
C5-C4-C11	120.8 (3)	C5—C6—H6	119.860
C4—C5—C6	121.3 (3)	C7—C6—H6	119.865
C5-C6-C7	120.3(3)	C6—C7—H7	119.612
C6-C7-C12	120.8 (3)	C12—C7—H7	119.611
C10—C8—C12	118.8 (3)	C10—C8—H8	120.577
N2—C9—C3	119.6 (3)	C12—C8—H8	120.580
N2-C9-C10	122.8 (3)	C13—C14—H14	120.314
$C_{3}-C_{9}-C_{10}$	117.6 (3)	C15—C14—H14	120.313
N1-C10-C8	119.8 (3)	C14—C15—H15	120.273
N1—C10—C9	121.0 (3)	C16—C15—H15	120.274
C8-C10-C9	119.2 (3)	C15—C16—H16	120.642
N2-C11-C4	119.1 (3)	C17—C16—H16	120.644
N2-C11-C12	122.9 (3)	N3—C17—H17	118.876
C4—C11—C12	118.0 (3)	С16—С17—Н17	118.876
Cl1—Zn1—N1—C1	-126.99 (12)	N1—C1—C13—C14	163.5 (3)
Cl1—Zn1—N1—C10	70.47 (18)	C2-C1-C13-N3	167.5 (3)
Cl1—Zn1—N3—C13	126.73 (12)	C2-C1-C13-C14	-15.5 (5)
Cl1—Zn1—N3—C17	-49.2 (2)	C13—C1—C2—C3	177.3 (3)
Cl2—Zn1—N1—C1	102.62 (14)	C1—C2—C3—C9	-2.0 (5)
Cl2—Zn1—N1—C10	-59.92 (16)	C2—C3—C9—N2	-177.4 (3)
Cl2—Zn1—N3—C13	-87.57 (15)	C2-C3-C9-C10	3.8 (5)

C12 - 7n1 - N3 - C17	96 51 (17)	C5-C4-C11-N2	-1789(3)
N1— $Zn1$ — $N3$ — $C13$	9.13 (14)	C5-C4-C11-C12	0.3 (5)
N1 - Zn1 - N3 - C17	-166.8(2)	C11—C4—C5—C6	0.6 (5)
N3—Zn1—N1—C1	-16.58(15)	C4—C5—C6—C7	-1.2(5)
N3—Zn1—N1—C10	-179.12 (18)	C5—C6—C7—C12	0.8 (5)
Zn1—N1—C1—C2	-160.27 (19)	C6—C7—C12—C8	179.3 (3)
Zn1—N1—C1—C13	20.7 (3)	C6—C7—C12—C11	0.1 (5)
Zn1—N1—C10—C8	-20.7 (4)	C10—C8—C12—C7	-178.7 (3)
Zn1—N1—C10—C9	159.93 (17)	C10-C8-C12-C11	0.5 (5)
C1—N1—C10—C8	177.9 (3)	C12-C8-C10-N1	-179.4 (3)
C1—N1—C10—C9	-1.4 (4)	C12—C8—C10—C9	-0.1 (5)
C10—N1—C1—C2	3.4 (5)	N2-C9-C10-N1	179.1 (3)
C10—N1—C1—C13	-175.7 (3)	N2-C9-C10-C8	-0.2 (5)
C9—N2—C11—C4	179.6 (3)	C3—C9—C10—N1	-2.1(5)
C9—N2—C11—C12	0.4 (5)	C3—C9—C10—C8	178.5 (3)
C11—N2—C9—C3	-178.7 (3)	N2-C11-C12-C7	178.5 (3)
C11—N2—C9—C10	0.1 (5)	N2-C11-C12-C8	-0.7 (5)
Zn1—N3—C13—C1	-1.2 (3)	C4—C11—C12—C7	-0.7 (5)
Zn1—N3—C13—C14	-178.26 (17)	C4—C11—C12—C8	-179.9(3)
Zn1—N3—C17—C16	177.10 (16)	N3—C13—C14—C15	1.2 (4)
C13—N3—C17—C16	1.4 (4)	C1—C13—C14—C15	-175.6 (3)
C17—N3—C13—C1	175.1 (2)	C13—C14—C15—C16	0.1 (5)
C17—N3—C13—C14	-2.0 (4)	C14—C15—C16—C17	-0.7 (5)
N1—C1—C2—C3	-1.7 (5)	C15—C16—C17—N3	-0.0 (5)
N1—C1—C13—N3	-13.5 (4)		

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+2; (iv) -x+2, -y+2, -z+1; (v) -x+1, -y+1, -z+2; (vi) x, y+1, z; (vii) -x+1, -y+3, -z+1; (viii) -x+2, -y+1, -z+1; (ix) x, y-1, z; (vi) -x+2, -y+2, -z+1; (vi) -x+2, -y+1, -z+2; (vi) x, y+1, z; (vii) -x+2, -y+3, -z+1; (viii) -x+2, -y+1, -z+2; (vi) x, y+1, z; (vii) -x+2, -y+3, -z+1; (viii) -x+2, -y+1, -z+2; (vi) x, y+1, z; (vii) -x+2, -y+3, -z+1; (viii) -x+2, -y+1, -z+2; (vi) -x+2, -y+3, -z+1; (viii) -x+2, -y+1, -z+2; (vi) -x+3, -x+3, -x+3, -x+3; (vi) -x+3, -x+3