

ISSN 2414-3146

Received 6 July 2016 Accepted 18 July 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; nickel complex; phtalate ligand; hydrogen bonding.

CCDC reference: 1494370

Structural data: full structural data are available from iucrdata.iucr.org

Diaquabis[N,N'-(ethane-1,2-diyl)bis(isonicotinamide)- κN]bis(hydrogen phthalato- κO)nickel(II) hexahydrate

Torél Beard and Robert L. LaDuca*

E-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA. *Correspondence e-mail: laduca@msu.edu

In the title solvated coordination complex, $[Ni(C_8H_5O_4)_2(C_{14}H_{14}N_4O_2)_2(H_2O)_2]\cdot 6H_2O$, the Ni^{II} cation is octahedrally coordinated by *trans* carboxylate O-atom donors from two crystallographically distinct monodentate hydrogen phthalate (Hpht⁻) ligands, two *trans* aqua ligands, and *trans* pyridyl N-atom donors from two crystallographically distinct N,N'-(ethane-1,2-diyl)bis-(isonicotinamide) (ebin) ligands. Extensive $O-H\cdots O$ and $O-H\cdots N$ hydrogen-bonding patterns involving the water molecules of crystallization anchor neighboring coordination complexes into a three-dimensional network.

Structure description

The title coordination complex was isolated during an attempt to prepare a nickel phthalate (pht) coordination polymer containing N,N'-(ethane-1,2-diyl)bis(isonicotinamide) (ebin) co-ligands. Nickel phthalate coordination polymers have displayed different structural topologies and property behavior depending on the nature of the neutral nitrogen-base co-ligand. For example, {[(pht)₂Ni(dpa)₂Ni(H₂O)₄]'H₂O}_n (dpa = 4,4'-dipyridylamine) displays a chain structure (Braverman *et al.*, 2007). The compound [Ni(pht)(4-meim)₂(H₂O]_n (4-meim = 4-methylimidazole), likewise with a one-dimensional structure, shows a negative influence on protease enzyme synthesis in fungal cultures *in vivo* (Filippova *et al.*, 2010). [Ni(pht)(1,4-bib)]_n [1,4-bib = 1,4-bis(imidazol-l-ylmethyl)benzene] exhibits a two-dimensional 6³ herringbone topology and has non-linear optical behavior (Zhao *et al.*, 2015). [Ni(pht)(bi)]_n [bbi = 1,1'-(1,4-butanedi-yl)bis(imidazole)] manifests a 4-connected three-dimensional 6⁵8 **cds** topology (Qi *et al.*, 2008).

Figure 1

The coordination complex of the title compound, showing octahedral coordination at the Ni^{II} cation. Displacement ellipsoids are drawn at the 50% probability level and H atom positions are shown as gray sticks.

The asymmetric unit of the title compound contains one Ni^{II} cation, two Hpht⁻ ligands, two aqua ligands, two ebin ligands, thus forming the coordination complex $[Ni(Hpht)_2(e-bin)_2(H_2O)_2]$ (Fig. 1). Six water molecules of crystallization also reside in the asymmetric unit. The Ni^{II} cation is octahedrally coordinated by *trans* carboxylate O atom donors from two monodentate hydrogenphthalato (Hpht) ligands, two *trans* aqua ligands, and *trans* pyridyl N atom donors from two *N,N'*-(ethane-1,2-diyl)bis(isonicotinamide) (ebin) ligands. The two ebin ligands have an *anti*-conformation at their central (ethane-1,2-diyl)diamine moieties [N-C-C-N torsion angles = 179.68 (19) and 179.87 (19)°]. Bond lengths (Table 1) and angles confirm an octahedral coordination environment for the Ni^{II} atom.

Within the complex, intramolecular $O-H\cdots O$ hydrogen bonding is observed between the aqua ligands and the unbound O atoms belonging to the ligated and deprotonated Hpht⁻ carboxylate groups (Table 2). Supramolecular layers parallel to (011) are constructed by $O-H\cdots N$ hydrogen bonding between unligated and protonated Hpht⁻ carboxylate groups and unligated ebin pyridyl N atoms (Fig. 2). Water molecule pairs are anchored to the supramolecular layers by

Figure 2

Supramolecular layer parallel to (011) in the title compound formed by $O-H\cdots N$ hydrogen bonding interactions between unligated Hpht⁻ carboxylate groups and unligated ebin pyridyl nitrogen atoms. H-atom positions were omitted for clarity.

 Table 1

 Selected bond lengths (Å).

Ni1-O13	2.0643 (15)	Ni1-O9	2.1274 (15)
Ni1-014	2.0563 (15)	Ni1-N1	2.1105 (18)
Ni1-O5	2.1045 (15)	Ni1-N5	2.1146 (18)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8−H8···N4 ⁱ	0.84	1.78	2.609 (3)	171
$O11-H11\cdots N8^{ii}$	0.84	1.82	2.660 (3)	176
$O13-H13A\cdots O2W$	0.88	1.90	2.706 (2)	150
O13−H13B···O12	0.88	1.94	2.733 (2)	149
$O14-H14B\cdots O6$	0.88	1.87	2.668 (2)	149
$N2-H2\cdots O1W^{iii}$	0.88	2.02	2.887 (3)	166
N3–H3···O3W ⁱⁱ	0.88	2.02	2.874 (3)	164
$N6-H6\cdots O6W^{iv}$	0.88	1.99	2.844 (3)	164
$O1W-H1WA\cdots O12^{v}$	0.87	1.93	2.801 (2)	177
$O1W-H1WB\cdots O5$	0.87	2.12	2.967 (2)	165
$O2W - H2WA \cdots O12^{v}$	0.87	2.02	2.840 (2)	158
$O2W - H2WB \cdot \cdot \cdot O2^{iii}$	0.87	1.90	2.757 (2)	169
$O3W-H3WA\cdots O5W^{iv}$	0.87	1.98	2.849 (3)	173
O3W−H3WB···O3	0.87	1.91	2.777 (2)	175
$O4W-H4WA\cdots O4$	0.87	1.96	2.800(2)	161
O4W-H4WB···O14 ^{iv}	0.87	1.86	2.706 (2)	165
$O5W-H5WA\cdots O10$	0.87	1.98	2.821 (3)	162
O5W-H5WB···O1 ^{vi}	0.87	1.92	2.776 (2)	169
O6W−H6WA···O6 ^{vii}	0.87	1.90	2.770 (2)	178
$O6W-H6WB\cdots O9$	0.87	2.12	2.977 (2)	167

Symmetry codes: (i) x - 1, y + 1, z - 1; (ii) x + 1, y - 1, z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) -x, -y + 2, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 2; (vii) -x + 1, -y + 2, -z + 1.

 $N-H \cdots O$ hydrogen-bonding acceptance from ebin amide N-H groups, and $O-H \cdots O$ hydrogen-bonding donation to ebin amide C=O groups. Adjacent supramolecular layers aggregate and stack in an *ABAB* pattern along [010] (Fig. 3) by means of $N-H \cdots O$ hydrogen bonding from ebin amide N-H groups to isolated water molecules of crystallization, which in turn provide $O-H \cdots O$ hydrogen-bonding donation to ligated Hpht carboxylate O atoms (Table 2).

Synthesis and crystallization

Ni(NO₃)₂·6H₂O (108 mg, 0.37 mmol), phthalic acid (61 mg, 0.37 mol), ebin (100 mg, 0.37 mol) and 0.75 ml of a 1.0 M

ABAB stacking pattern of supramolecular layer motifs in the title compound, mediated by N-H···O and O-H···O hydrogen bonding patterns involving the water molecules of crystallization situated in the interlamellar regions. H-atom positions were omitted for clarity.

Table 3 Experimental details.

Crystal data Chemical formula Μ.

Crystal system, space group Temperature (K) a, b, c (Å)

 $\substack{lpha,\ eta,\ \gamma\ (^\circ)\ V\ ({
m \AA}^3)}$ Ζ Radiation type $\mu \ (\mathrm{mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption co

[Ni(C₈H₅O₄)₂(C₁₄H₁₄N₄O₂)₂- $(H_2O)_2]\cdot 6H_2O$ 1073.64 Triclinic, $P\overline{1}$ 173 10.2857 (12), 14.3250 (17), 17.794 (2) 71.528 (1), 79.919 (1), 72.784 (1) 2365.7 (5) 2 Μο Κα 0.50 $0.27 \times 0.21 \times 0.10$ Bruker APEXII CCD

Dimacionicici	DIUKEI AI LAII CCD			
Absorption correction	Multi-scan (SADABS; Bruker, 2014)			
T_{\min}, T_{\max}	0.711, 0.745			
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36698, 8669, 6860			
R _{int}	0.039			
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.603			
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.115, 1.05			
No. of reflections	8669			
No. of parameters	680			
H-atom treatment	H-atom parameters constrained			
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.64, -0.64			

Computer programs: APEX2 and SAINT (Bruker, 2014), olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and Crystal Maker (Palmer, 2013).

NaOH solution were placed into 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 278 K. Green crystals of the title compound (106 mg, 53%) yield based on ebin) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

Funding for this work was provided by the Honors College of Michigan State University.

References

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 2353-2362.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Filippova, I. G., Gherco, O. A., Simonov, Y. A., Deseatnic-Ciloci, A. A., Clapco, S. F., Tiurina, J. P. & Baca, S. G. (2010). Polyhedron, 29, 1102-1108.
- Palmer, D. (2013). Crystal Maker. Crystal Maker Software, Bicester, England.
- Qi, Y., Luo, F., Che, Y. & Zheng, J. (2008). Cryst. Growth Des. 8, 606-611.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zhao, N., Deng, Y., Liu, P., An, C. X., Wang, T. X. & Lian, Z. X. (2015). Polyhedron, 85, 607-614.

full crystallographic data

IUCrData (2016). **1**, x161167 [https://doi.org/10.1107/S2414314616011676]

Diaquabis[N,N'-(ethane-1,2-diyl)bis(isonicotinamide)- κN]bis(hydrogen phthalato- κO)nickel(II) hexahydrate

Torél Beard and Robert L. LaDuca

Diaquabis[N,N'-(ethane-1,2-diyl)bis(isonicotinamide)-ĸN]bis(hydrogen phthalato-ĸO)nickel(II) hexahydrate

Crystal data

$[Ni(C_8H_5O_4)_2(C_{14}H_{14}N_4O_2)_2(H_2O)_2]$ ·6H ₂ O
$M_r = 1073.64$
Triclinic, P1
a = 10.2857 (12) Å
b = 14.3250 (17) Å
c = 17.794 (2) Å
$\alpha = 71.528 (1)^{\circ}$
$\beta = 79.919 (1)^{\circ}$
$\gamma = 72.784 (1)^{\circ}$
V = 2365.7 (5) Å ³

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 836.6 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.711, T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ S = 1.058669 reflections 680 parameters 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2 F(000) = 1124 $D_x = 1.507 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9906 reflections $\theta = 2.3-25.3^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 173 K Block, green $0.27 \times 0.21 \times 0.10 \text{ mm}$

36698 measured reflections 8669 independent reflections 6860 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 1.6^\circ$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -21 \rightarrow 21$

Primary atom site location: iterative Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 1.3935P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.64$ e Å⁻³ $\Delta\rho_{min} = -0.64$ e Å⁻³

Nil 0.49745 (3) 0.74721 (2) 0.50914 (2) 0.01646 (10) 01 0.82860 (17) 0.45611 (14) 0.85737 (10) 0.0331 (4) 02 1.51830 (17) 0.27370 (13) 0.80397 (10) 0.0332 (4) 03 0.19602 (17) 1.05743 (14) 0.17927 (10) 0.0352 (5) 04 -0.50372 (17) 1.22484 (13) 0.17927 (10) 0.0318 (4) 05 0.67444 (15) 0.75127 (11) 0.42261 (9) 0.0183 (3) 06 0.70332 (17) 0.90064 (12) 0.42718 (11) 0.0308 (4) 07 0.69349 (17) 0.91897 (13) 0.25517 (10) 0.0331 (4) 08 0.86509 (18) 0.92196 (16) 0.15992 (10) 0.0391 (5) 188 0.8015 0.9572 0.1310 0.059* 09 0.32138 (15) 0.74082 (11) 0.59165 (9) 0.0189 (3) 010 0.0904 (2) 0.57849 (12) 0.60231 (10) 0.0290 (4) 011 0.27474 (18) 0.57567 (14) 0.77595 (10) 0.0311 (4) H11		x	v	Z	$U_{iso}*/U_{eq}$	
01 0.82860 (17) 0.45611 (14) 0.85737 (10) 0.0331 (4) 02 1.51830 (17) 0.27370 (13) 0.80397 (10) 0.0325 (4) 03 0.19602 (17) 1.02743 (14) 0.15063 (10) 0.0352 (5) 04 -0.50372 (17) 1.22484 (13) 0.17927 (10) 0.0318 (4) 05 0.67444 (15) 0.75127 (11) 0.42261 (9) 0.0183 (3) 06 0.7332 (17) 0.90064 (12) 0.42718 (11) 0.0308 (4) 07 0.69349 (17) 0.91897 (13) 0.25517 (10) 0.0308 (4) 08 0.86509 (18) 0.92166 (16) 0.15992 (10) 0.0391 (5) 18 0.8015 0.9572 0.1310 0.0594 09 0.23138 (15) 0.74082 (11) 0.59165 (9) 0.0189 (3) 010 0.0904 (2) 0.57849 (15) 0.86281 (10) 0.0404 (5) 011 0.27474 (18) 0.57567 (14) 0.77595 (10) 0.0351 (4) 111 0.3138 0.5379 0.8167 0.0324^* 012 0.29879 (17) 0.5849 (12) 0.60231 (10) 0.0290 (4) 013 0.50251 (16) 0.61563 (11) 0.44228 (0) 0.0215 (4) $113B$ 0.4390 0.5874 0.5137 0.0324^* 014 0.49020 (16) 0.87908 (11) 0.53467 (9) 0.215 (4) $1144B$ 0.62369 (18) 0.65432 (14) 0.60069 (11) 0.0189 (4) $N2$ 1.01031 (19) 0.41926 (14) 0.7207 (11)	Nil	0 49745 (3)	0 74721 (2)	0 50914 (2)	0.01646 (10)	
022 0.51830 (17) 0.27370 (13) 0.80377 (10) 0.0325 (4) 03 0.19602 (17) 1.05733 (14) 0.15603 (10) 0.0325 (5) 04 -0.50372 (17) 1.22484 (13) 0.17927 (10) 0.0318 (4) 05 0.67444 (15) 0.75127 (11) 0.42261 (9) 0.0338 (4) 07 0.69349 (17) 0.91897 (13) 0.25177 (10) 0.0330 (4) 08 0.86509 (18) 0.9187 (13) 0.25171 (10) 0.0331 (4) 07 0.6334177 0.9187 (13) 0.25171 (10) 0.0331 (4) 08 0.86509 (18) 0.9187 (13) 0.52517 (10) 0.0311 (4) 09 0.32138 (15) 0.74982 (11) 0.59165 (9) 0.0215 (4) 010 0.9904 (2) 0.57567 (14) 0.77595 (10) 0.0331 (4) 011 0.247474 (18) 0.57567 (14) 0.7595 (10) 0.032^* 012 0.29879 (17) 0.58649 (12) 0.60231 (10) 0.0290 (4) 013 $0.$	01	0.13710(0) 0.82860(17)	0.45611 (14)	0.85737(10)	0.0331(4)	
030.19602 (17)1.05743 (14)0.15603 (10)0.0352 (5)04 -0.50372 (17)1.22484 (13)0.17927 (10)0.0318 (4)050.67444 (15)0.75127 (11)0.42961 (9)0.0183 (3)060.70332 (17)0.90064 (12)0.42718 (11)0.0308 (4)070.69349 (17)0.91897 (13)0.25517 (10)0.0330 (4)080.86509 (18)0.92196 (16)0.15992 (10)0.0391 (5)180.80150.95720.13100.059*090.22138 (15)0.74082 (11)0.59165 (9)0.0189 (3)0100.0904 (2)0.57849 (15)0.86281 (10)0.0404 (5)0110.27474 (18)0.57567 (14)0.77959 (10)0.0351 (4)11110.31380.53790.81670.053*0120.29879 (17)0.58649 (12)0.60231 (10)0.0204 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)H13A0.48710.62950.43280.032*1140.49020 (16)0.87908 (11)0.53447 (9)0.0215 (4)H14A0.40990.92300.52530.032*N10.62369 (18)0.65432 (14)0.70027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.7027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.7027 (11)0.0229 (4)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)<	02	1.51830(17)	0.27370(13)	0.80397 (10)	0.0325(4)	
Col -0.50372 (17) 1.22484 (13) 0.17927 (10) 0.0318 (4) 05 0.67444 (15) 0.75127 (11) 0.42961 (9) 0.0138 (3) 06 0.70332 (17) 0.90064 (12) 0.42961 (9) 0.0338 (4) 07 0.69349 (17) 0.91897 (13) 0.25517 (10) 0.0330 (4) 08 0.86509 (18) 0.92196 (16) 0.15992 (10) 0.0394 (5) 09 0.32138 (15) 0.74082 (11) 0.59165 (9) 0.0189 (3) 010 0.0904 (2) 0.57849 (15) 0.86281 (10) 0.04044 (5) 011 0.27474 (18) 0.57567 (14) 0.77595 (10) 0.05314 (4) 013 0.52051 (16) 0.61563 (11) 0.48228 (0.032* 013 0.4371 0.6295 0.4328 $0.0332*$ 014 0.49020 (16) 0.87908 (11) 0.5347 (9) 0.02154 (4) 0.14 0.49020 (16) 0.87908 (11) 0.5347 (9) 0.0214 (4) 0.14 0.49020 (16) 0.87908 (11)	03	0.19602(17)	1.05743(14)	0 15603 (10)	0.0352(1)	
0.50.57127 (1)0.42961 (9)0.0183 (3)060.70332 (17)0.90064 (12)0.42218 (11)0.0038 (4)070.69349 (17)0.91897 (13)0.25517 (10)0.0330 (4)080.86509 (18)0.92196 (16)0.15992 (10)0.0391 (5)180.86509 (18)0.92196 (16)0.15992 (10)0.0498 (3)090.32138 (15)0.74082 (11)0.59165 (9)0.0489 (3)0100.0904 (2)0.57849 (15)0.86281 (10)0.0404 (5)0110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)0120.29879 (17)0.85849 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)11380.43700.85740.51370.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)11480.55440.90710.50470.032*11490.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)121.04580.43050.70250.028*N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)131.27650.21630.91350.031*N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4) <tr< td=""><td>04</td><td>-0.50372(17)</td><td>1 22484 (13)</td><td>0.17927 (10)</td><td>0.0318(4)</td><td></td></tr<>	04	-0.50372(17)	1 22484 (13)	0.17927 (10)	0.0318(4)	
O6 0.70332 (17) 0.90064 (12) 0.42718 (11) 0.0308 (4) $O7$ 0.69349 (17) 0.91987 (13) 0.25517 (10) 0.0330 (4) $O8$ 0.86509 (18) 0.92196 (16) 0.15992 (10) 0.0391 (5) $B8$ 0.8015 0.9572 0.1310 $0.059*$ $O9$ 0.32138 (15) 0.74082 (11) 0.59165 (9) 0.0189 (3) $O10$ 0.0904 (2) 0.57567 (14) 0.77595 (10) 0.0351 (4) $O11$ 0.27474 (18) 0.57567 (14) 0.77595 (10) 0.02351 (4) $O13$ 0.50251 (16) 0.61563 (11) 0.48298 (9) 0.0215 (4) $O13$ 0.50251 (16) 0.61563 (11) 0.48298 (9) 0.0215 (4) $O13$ 0.50251 (16) 0.61563 (11) 0.4328 $0.032*$ $O14$ 0.49020 (16) 0.87908 (11) 0.53467 (9) 0.0215 (4) $O14$ 0.49020 (16) 0.87908 (11) 0.5047 $0.032*$ $N14$ 0.62369 (18) 0.65432 (14) 0.7027 (11) 0.0229 (4) $N2$ 1.01031 (19) 0.41926 (14) 0.77027 (11) 0.0229 (4) $N2$ 1.01031 (19) 0.41926 (14) 0.77027 (11) 0.0229 (4) $N3$ 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0257 (5) $N3$ 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0257 (5) $N4$ 1.6880 (2) 0.03666 (17) 1.05794 (13) 0.0340 (5) $N5$ 0.37401 (18) 0.83994 (14)	05	0.67444(15)	0.75127(11)	0.42961 (9)	0.0183(3)	
Co 0.1232 (17) 0.01897 (12) 0.02517 (10) 0.0330 (4)07 0.6934 (17) 0.91897 (13) 0.22517 (10) 0.0391 (5)18 0.8015 0.9572 0.1310 $0.059*$ 09 0.32138 (15) 0.74082 (11) 0.59165 (9) 0.0189 (3)010 0.0904 (2) 0.57849 (15) 0.86281 (10) 0.0404 (5)011 0.27474 (18) 0.57567 (14) 0.77595 (10) 0.0351 (4)111 0.3138 0.5379 0.8167 $0.053*$ 012 0.29879 (17) 0.58649 (12) 0.60231 (10) 0.0290 (4)013 0.50251 (16) 0.61563 (11) 0.48298 (9) 0.0215 (4)113A 0.4871 0.6295 0.4328 $0.032*$ 014 0.49020 (16) 0.87908 (11) 0.53467 (9) 0.0215 (4)114B 0.5544 0.9071 0.5047 $0.032*$ 114B 0.5544 0.9071 0.5047 $0.032*$ N1 0.62369 (18) 0.65432 (14) 0.60069 (11) 0.0189 (4)N2 1.01031 (19) 0.41926 (14) 0.7027 (11) 0.0229 (4)N2 1.01031 (19) 0.41926 (14) 0.7027 (11) 0.0227 (5)N3 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0257 (5)N4 1.6880 (2) 0.0366 (17) 1.05794 (13) 0.0340 (5)N5 0.37401 (18) 0.83994 (14) 0.41590 (11) 0.0184 (4)N6 0.00097 (19) 1.07507 (14) <td>06</td> <td>0.07111(13) 0.70332(17)</td> <td>0.90064(12)</td> <td>0.12901(9) 0.42718(11)</td> <td>0.0308(4)</td> <td></td>	06	0.07111(13) 0.70332(17)	0.90064(12)	0.12901(9) 0.42718(11)	0.0308(4)	
OS0.8650 (18)0.92196 (16)0.15992 (10)0.0391 (5)H80.80150.95720.13100.059*O90.32138 (15)0.74082 (11)0.59165 (9)0.0189 (3)O100.0904 (2)0.57849 (15)0.86281 (10)0.04044 (5)O110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)H110.31380.53790.81670.053*O120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)O130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)H13A0.48710.62950.43280.032*O140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)H14B0.55440.90710.50470.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N31.3188 (2)0.24783 (15)0.86972 (12)0.028*N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.032*N7 $-0.2954 (2)$ 1.24525 (15)0.12505 (12)0.0266 (5	07	0.69349(17)	0.91897(13)	0.12710(11) 0.25517(10)	0.0330(4)	
ConstructionConstructionConstructionH80.80150.95720.13100.059*O90.32138 (15)0.74082 (11)0.59165 (9)0.0189 (3)O100.0904 (2)0.57849 (15)0.86281 (10)0.04041 (5)O110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)H110.31380.53790.81670.053*O120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)O130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)H13A0.43900.58740.51370.032*O140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)H14A0.40900.92300.52530.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)H21.04580.43050.72050.028*N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)H31.27650.21630.91350.031*N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.22624 (11)0.0215 (4)H6 -0.0409 1.05840.28420.026*N7 -0.2473 1.27550.08350.032*N8 $-0.6137 (2)$ 1.24525 (15)0.12505 (12)0.0266 (5)	08	0.86509 (18)	0.92196 (16)	0.25917(10) 0.15992(10)	0.0391(5)	
No0.83150.74082 (11)0.55165 (9)0.0189 (3)0100.0904 (2)0.57849 (15)0.86281 (10)0.0404 (5)0110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)1110.31380.53790.81670.053*0120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)113A0.48710.62950.43280.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)114A0.40920.92300.52530.032*0140.62569 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6 -0.409 1.05840.28420.026*N7 $-0.2954 (2)$ 1.2455 (15)0.12505 (12)0.0226 (5)H7 -0.2473 1.27550.08350.032* <t< td=""><td>H8</td><td>0.8015</td><td>0.9572</td><td>0.1310</td><td>0.059*</td><td></td></t<>	H8	0.8015	0.9572	0.1310	0.059*	
O10.0100.0102 (1)0.0102 (1)0.0103 (1)0110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)1110.31380.53790.81670.053*0120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)113A0.48710.62950.43280.032*113B0.43900.58740.51370.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)114A0.40990.92300.52530.032*114B0.55440.90710.50470.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0129 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.833994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6 -0.0409 1.05840.28420.026*N7 -0.2473 1.27550.08350.032*N8 $-0.6137 (2)$ 1.45381 (16) $-0.09158 (13)$ 0.0354 (5)C10.77449 (2)0.592	09	0.32138(15)	0.74082(11)	0.59165 (9)	0.000	
0100.001(2)0.001(1)0.001(1)0.001(1)0110.27474 (18)0.57567 (14)0.77595 (10)0.0351 (4)1110.31380.53790.81670.053*0120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)113A0.48710.62950.43280.032*113B0.43900.58740.51370.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)114B0.55440.90710.50470.032*114B0.55440.90710.50470.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)H21.04580.43050.72050.028*N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0216*N7 -0.2954 (2)1.24525 (15)0.12505 (12)0.026*N7 -0.2954 (2)1.24525 (15)0.12505 (12)0.026*N8 -0.6137 (2)1.25550.08350.032*N8 -0.6137 (2)1.25520.12505 (12)0.026*N7 -0.22473 1.27550.0835 <t< td=""><td>010</td><td>0.02150(15) 0.0904(2)</td><td>0.74002(11) 0.57849(15)</td><td>0.86281(10)</td><td>0.0404(5)</td><td></td></t<>	010	0.02150(15) 0.0904(2)	0.74002(11) 0.57849(15)	0.86281(10)	0.0404(5)	
0110.1147 (16)0.1350 (14)0.1353 (16)0.053 (14)1110.31380.53790.81670.053*0120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)113A0.48710.62950.43280.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)114B0.55440.90710.50470.032*114B0.55440.90710.50470.032*114B0.55440.90710.50470.032*114B0.62369 (18)0.65432 (14)0.70027 (11)0.0189 (4)121.0031 (19)0.41926 (14)0.77027 (11)0.0229 (4)121.04580.43050.72050.028*131.27650.21630.91350.031*141.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)150.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)16-0.04091.05840.28420.026*17-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)17-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)18-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)190.77070.58880.53120.027*120.8340 (2)0.53183 (16)0.72011 (13)0.0144 (5)1410.77070.58880.53120.027*	011	0.0907(2)	0.57567(14)	0.30201(10) 0.77595(10)	0.0351(4)	
Init0.1150.0170.0000120.29879 (17)0.58649 (12)0.60231 (10)0.0290 (4)0130.50251 (16)0.61563 (11)0.48298 (9)0.0215 (4)H13A0.48710.62950.43280.032*0140.49020 (16)0.87908 (11)0.53467 (9)0.0215 (4)H14A0.40990.92300.52530.032*H14B0.55440.90710.50470.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)H21.04580.43050.72050.028*N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)H31.27650.21630.91350.031*N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.5922 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53183 (16)0.72011 (13)0.0194 (5)	H11	0.3138	0.5379	0.8167	0.053*	
012 $0.5029 (11)$ $0.5039 (12)$ $0.5029 (16)$ $0.0215 (4)$ 113A $0.5025 (16)$ $0.6155 (11)$ $0.4828 (9)$ $0.0215 (4)$ 113B 0.4390 0.5874 0.5137 $0.032*$ 014 $0.49020 (16)$ $0.87908 (11)$ $0.53467 (9)$ $0.0215 (4)$ 114B 0.5544 0.9071 0.5047 $0.032*$ 114B 0.5544 0.9071 0.5047 $0.032*$ 114B 0.5544 0.9071 0.5047 $0.0229 (4)$ 12 1.0458 0.4305 0.7205 $0.028*$ N1 $0.62369 (18)$ $0.65432 (14)$ $0.77027 (11)$ $0.0229 (4)$ 12 1.0458 0.4305 0.7205 $0.028*$ N3 $1.3188 (2)$ $0.24783 (15)$ $0.86972 (12)$ $0.0257 (5)$ H3 1.2765 0.2163 0.9135 $0.031*$ N4 $1.6880 (2)$ $0.03666 (17)$ $1.05794 (13)$ $0.0340 (5)$ N5 $0.37401 (18)$ $0.83994 (14)$ $0.41590 (11)$ $0.0184 (4)$ N6 $0.00097 (19)$ 1.07584 0.2842 $0.026*$ N7 $-0.2954 (2)$ $1.24525 (15)$ $0.12505 (12)$ $0.0266 (5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137 (2)$ $1.45381 (16)$ $-0.09158 (13)$ $0.0324 (5)$ C1 $0.7744 (2)$ $0.53183 (16)$ $0.72011 (13)$ $0.0214 (5)$ H2A 0.9198 0.4908 0.6264 $0.026*$ C3 $0.7964 (2)$ 0.5318	012	0.29879 (17)	0.5379 0 58649 (12)	0.60231 (10)	0.000	
O15 $0.6251(10)$ $0.6150(11)$ $0.64250(5)$ $0.64250(5)$ H13A 0.4390 0.5874 0.5137 $0.032*$ O14 $0.49020(16)$ $0.87908(11)$ $0.53467(9)$ $0.0215(4)$ H14A 0.4099 0.9230 0.5253 $0.032*$ H14B 0.5544 0.9071 0.5047 $0.032*$ N1 $0.62369(18)$ $0.65432(14)$ $0.60069(11)$ $0.0189(4)$ N2 $1.01031(19)$ $0.41926(14)$ $0.77027(11)$ $0.0229(4)$ H2 1.0458 0.4305 0.7205 $0.028*$ N3 $1.3188(2)$ $0.24783(15)$ $0.86972(12)$ $0.0257(5)$ H3 1.2765 0.2163 0.9135 $0.031*$ N4 $1.6880(2)$ $0.0366(17)$ $1.05794(13)$ $0.0340(5)$ N5 $0.37401(18)$ $0.83994(14)$ $0.41590(11)$ $0.0184(4)$ N6 $0.00097(19)$ $1.07507(14)$ $0.23624(11)$ $0.0215(4)$ H6 -0.0409 1.0584 0.2842 $0.026*$ N7 $-0.2954(2)$ $1.24525(15)$ $0.12505(12)$ $0.0266(5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137(2)$ $1.45381(16)$ $-0.09158(13)$ $0.0354(5)$ C1 $0.7449(2)$ $0.59222(17)$ $0.58465(14)$ $0.0222(5)$ H1 0.7707 0.5898 0.5312 $0.027*$ C2 $0.8340(2)$ $0.53179(17)$ $0.64121(13)$ $0.0194(5)$ C4 $0.6697(2)$ $0.59523(17)$ $0.$	012	0.29879(17) 0.50251(16)	0.50049(12)	0.00231(10) 0.48208(0)	0.0230(4)	
III III 0.471 0.0225 0.4725 0.4725 0.022 113B 0.4390 0.5874 0.5137 $0.032*$ 014 0.49920 (16) 0.87908 (11) 0.53467 (9) 0.0215 (4)H14B 0.5544 0.9071 0.5047 $0.032*$ N1 0.62369 (18) 0.65432 (14) 0.60069 (11) 0.0189 (4)N2 1.01031 (19) 0.41926 (14) 0.77027 (11) 0.0229 (4)H2 1.0458 0.4305 0.7205 $0.028*$ N3 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0257 (5)H3 1.2765 0.2163 0.9135 $0.031*$ N4 1.6880 (2) 0.03666 (17) 1.05794 (13) 0.0340 (5)N5 0.37401 (18) 0.83994 (14) 0.41590 (11) 0.0184 (4)N6 0.0097 (19) 1.07507 (14) 0.22624 (11) 0.0215 (4)H6 -0.0409 1.0584 0.2842 $0.026*$ N7 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 (5)H7 -0.2473 1.2755 0.0835 $0.032*$ N8 -0.6137 (2) 1.45381 (16) -0.09158 (13) 0.0354 (5)C1 0.7449 (2) 0.59222 (17) 0.58465 (14) 0.0222 (5)H1 0.7707 0.5898 0.5312 $0.027*$ C2 0.8340 (2) 0.53183 (16) 0.72011 (13) 0.0194 (5)C4 0.6697 (2) 0.59753 (17) 0.73731 (14) 0.0225 (5) <td>H13A</td> <td>0.4871</td> <td>0.6295</td> <td>0.4328</td> <td>0.032*</td> <td></td>	H13A	0.4871	0.6295	0.4328	0.032*	
In D $0.49020 (16)$ 0.50374 $0.513467 (9)$ $0.021 (4)$ H14A 0.4099 0.9230 0.5253 $0.032*$ H14B 0.5544 0.9071 0.5047 $0.032*$ N1 $0.62369 (18)$ $0.65432 (14)$ $0.60069 (11)$ $0.0189 (4)$ N2 $1.01031 (19)$ $0.41926 (14)$ $0.77027 (11)$ $0.0229 (4)$ H2 1.0458 0.4305 0.7205 $0.028*$ N3 $1.3188 (2)$ $0.24783 (15)$ $0.86972 (12)$ $0.0257 (5)$ H3 1.2765 0.2163 0.9135 $0.031*$ N4 $1.6880 (2)$ $0.03666 (17)$ $1.05794 (13)$ $0.0340 (5)$ N5 $0.37401 (18)$ $0.83994 (14)$ $0.41590 (11)$ $0.0184 (4)$ N6 $0.00097 (19)$ $1.07507 (14)$ 0.2842 $0.026*$ N7 $-0.2954 (2)$ $1.24525 (15)$ $0.12505 (12)$ $0.0266 (5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137 (2)$ $1.45381 (16)$ $-0.09158 (13)$ $0.0354 (5)$ C1 $0.7449 (2)$ $0.59222 (17)$ $0.58465 (14)$ $0.0222 (5)$ H1 0.7707 0.5898 0.5312 $0.027*$ C2 $0.8340 (2)$ $0.53183 (16)$ $0.72011 (13)$ $0.0194 (5)$ C4 $0.6697 (2)$ $0.59523 (17)$ $0.73731 (14)$ $0.0226 (5)$ H4 0.6400 0.5975 0.7905 $0.027*$ C5 $0.5880 (2)$ 0.6974 0.6897 $0.0226 (5)$ H5 0.502	H13R	0.4390	0.5874	0.5137	0.032*	
0110.1702 (10)0.0170 (11)0.0017 (11)0.0017 (11)114B0.55440.90710.50470.032*N10.62369 (18)0.65432 (14)0.60069 (11)0.0189 (4)N21.01031 (19)0.41926 (14)0.77027 (11)0.0229 (4)H21.04580.43050.72050.028*N31.3188 (2)0.24783 (15)0.86972 (12)0.0257 (5)H31.27650.21630.91350.031*N41.6880 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59122 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0	014	0.49020 (16)	0.87908 (11)	0.5157 0.53467 (9)	0.032 0.0215 (4)	
Inimit 0.7526 0.5257 0.0225 114B 0.5544 0.9071 0.5047 $0.032*$ N1 $0.62369 (18)$ $0.65432 (14)$ $0.60069 (11)$ $0.0189 (4)$ N2 $1.01031 (19)$ $0.41926 (14)$ $0.77027 (11)$ $0.0229 (4)$ H2 1.0458 0.4305 0.7205 $0.028*$ N3 $1.3188 (2)$ $0.24783 (15)$ $0.86972 (12)$ $0.0257 (5)$ H3 1.2765 0.2163 0.9135 $0.031*$ N4 $1.6880 (2)$ $0.03666 (17)$ $1.05794 (13)$ $0.0340 (5)$ N5 $0.37401 (18)$ $0.83994 (14)$ $0.41590 (11)$ $0.0184 (4)$ N6 $0.00097 (19)$ $1.07507 (14)$ $0.23624 (11)$ $0.0215 (4)$ H6 -0.0409 1.0584 0.2842 $0.026*$ N7 $-0.2954 (2)$ $1.24525 (15)$ $0.12505 (12)$ $0.0266 (5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137 (2)$ $1.45381 (16)$ $-0.09158 (13)$ $0.0354 (5)$ C1 $0.7449 (2)$ $0.5922 (17)$ $0.58465 (14)$ $0.0222 (5)$ H1 0.707 0.5898 0.5312 $0.027*$ C2 $0.8340 (2)$ $0.53179 (17)$ $0.64121 (13)$ $0.014 (5)$ H2A 0.9198 0.4908 0.6264 $0.026*$ C3 $0.7964 (2)$ $0.59523 (17)$ $0.73731 (14)$ $0.0225 (5)$ H4 0.6400 0.5975 0.7905 $0.027*$ C5 $0.5880 (2)$ $0.64540 (17)$ <td>H14A</td> <td>0.4099</td> <td>0.9230</td> <td>0.5253</td> <td>0.032*</td> <td></td>	H14A	0.4099	0.9230	0.5253	0.032*	
Introd 0.0544 0.0541 0.0547 0.0547 0.0547 N1 0.62369 (18) 0.65432 (14) 0.60069 (11) 0.0189 (4)N2 1.01031 (19) 0.41926 (14) 0.77027 (11) 0.0229 (4)H2 1.0458 0.4305 0.7205 $0.028*$ N3 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0257 (5)H3 1.2765 0.2163 0.9135 $0.031*$ N4 1.6880 (2) 0.03666 (17) 1.05794 (13) 0.0340 (5)N5 0.37401 (18) 0.83994 (14) 0.41590 (11) 0.0184 (4)N6 0.00097 (19) 1.07507 (14) 0.23624 (11) 0.0216 (4)H6 -0.0409 1.0584 0.2842 $0.026*$ N7 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 (5)H7 -0.2473 1.2755 0.0835 $0.032*$ N8 -0.6137 (2) 1.45381 (16) -0.09158 (13) 0.0354 (5)C1 0.7449 (2) 0.59222 (17) 0.58465 (14) 0.0222 (5)H1 0.7707 0.5898 0.5312 $0.027*$ C2 0.8340 (2) 0.53179 (17) 0.64121 (13) 0.0194 (5)H2A 0.9198 0.4908 0.6264 $0.026*$ C3 0.7964 (2) 0.59523 (17) 0.73731 (14) 0.0225 (5)H4 0.6400 0.5975 0.7905 $0.027*$ C5 0.5880 (2) 0.65450 (17) 0.6787 (13) 0.0204 (5) <tr< td=""><td>H14R</td><td>0.5544</td><td>0.9071</td><td>0.5047</td><td>0.032*</td><td></td></tr<>	H14R	0.5544	0.9071	0.5047	0.032*	
N2 $1.01031 (19)$ $0.01926 (14)$ $0.77027 (11)$ $0.0229 (4)$ H2 1.0458 0.4305 0.7205 $0.0228*$ N3 $1.3188 (2)$ $0.24783 (15)$ $0.86972 (12)$ $0.0257 (5)$ H3 1.2765 0.2163 0.9135 $0.031*$ N4 $1.6880 (2)$ $0.03666 (17)$ $1.05794 (13)$ $0.0340 (5)$ N5 $0.37401 (18)$ $0.83994 (14)$ $0.41590 (11)$ $0.0184 (4)$ N6 $0.00097 (19)$ $1.07507 (14)$ $0.23624 (11)$ $0.0215 (4)$ H6 -0.0409 1.0584 0.2842 $0.026*$ N7 $-0.2954 (2)$ $1.24525 (15)$ $0.12505 (12)$ $0.0266 (5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137 (2)$ $1.45381 (16)$ $-0.09158 (13)$ $0.0354 (5)$ C1 $0.7449 (2)$ $0.59222 (17)$ $0.58465 (14)$ $0.0222 (5)$ H1 0.7707 0.5898 0.5312 $0.027*$ C2 $0.8340 (2)$ $0.53179 (17)$ $0.64121 (13)$ $0.0214 (5)$ H2A 0.9198 0.4908 0.6264 $0.026*$ C3 $0.7964 (2)$ $0.59523 (17)$ $0.73731 (14)$ $0.0225 (5)$ H4 0.6400 0.5975 0.7905 $0.027*$ C5 $0.5880 (2)$ $0.65450 (17)$ 0.6897 $0.025*$ C6 $0.8811 (2)$ $0.4900 (18)$ $0.83455 (14)$ $0.0219 (5)$ C7 $1.0928 (2)$ $0.34900 (18)$ $0.83455 (14)$ $0.0219 (5)$ <td>N1</td> <td>0.62369 (18)</td> <td>0.5671 0.65432(14)</td> <td>0.60069 (11)</td> <td>0.032 0.0189 (4)</td> <td></td>	N1	0.62369 (18)	0.5671 0.65432(14)	0.60069 (11)	0.032 0.0189 (4)	
12 1.0458 0.4305 0.7205 0.0228^* 13 1.3188 (2) 0.24783 (15) 0.86972 (12) 0.0227 13 1.2765 0.2163 0.9135 0.031^* 14 1.6880 (2) 0.03666 (17) 1.05794 (13) 0.0340 15 0.37401 (18) 0.83994 (14) 0.41590 (11) 0.0184 16 0.00097 (19) 1.07507 (14) 0.23624 (11) 0.0215 16 -0.0409 1.0584 0.2842 0.026^* 17 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 17 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 17 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 17 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 17 -0.2954 (2) 1.24525 (15) 0.12505 (13) 0.0324 17 -0.2473 1.2755 0.0835 0.032^* 188 -0.6137 (2) 0.59222 (17) 0.58465 (14) 0.0222 111 0.7707 0.5898 0.5312 0.027^* 122 0.8340 (2) 0.59523 (17) 0.73731 (14) 0.0226 112 0.6977 0.59525 0.7905	N2	1 01031 (19)	0.41926 (14)	0 77027 (11)	0.0229(4)	
N31.3188 (2) $0.24783 (15)$ $0.86972 (12)$ $0.0257 (5)$ H31.2765 0.2163 0.9135 $0.031*$ N41.6880 (2) $0.03666 (17)$ $1.05794 (13)$ $0.0340 (5)$ N5 $0.37401 (18)$ $0.83994 (14)$ $0.41590 (11)$ $0.0184 (4)$ N6 $0.00097 (19)$ $1.07507 (14)$ $0.23624 (11)$ $0.0215 (4)$ H6 -0.0409 1.0584 0.2842 $0.026*$ N7 $-0.2954 (2)$ $1.24525 (15)$ $0.12505 (12)$ $0.0266 (5)$ H7 -0.2473 1.2755 0.0835 $0.032*$ N8 $-0.6137 (2)$ $1.45381 (16)$ $-0.09158 (13)$ $0.0354 (5)$ C1 $0.7449 (2)$ $0.59222 (17)$ $0.58465 (14)$ $0.0222 (5)$ H1 0.7707 0.5898 0.5312 $0.027*$ C2 $0.8340 (2)$ $0.53179 (17)$ $0.64121 (13)$ $0.0214 (5)$ H2A 0.9198 0.4908 0.6264 $0.026*$ C3 $0.7964 (2)$ $0.59523 (17)$ $0.73731 (14)$ $0.0225 (5)$ H4 0.6400 0.5975 0.7905 $0.027*$ C5 $0.5880 (2)$ $0.65450 (17)$ $0.67687 (13)$ $0.0204 (5)$ H5 0.5025 0.6974 0.6897 $0.025*$ C6 $0.8811 (2)$ $0.44660 (17)$ $0.78795 (14)$ $0.0219 (5)$ C7 $1.0928 (2)$ $0.34900 (18)$ $0.83455 (14)$ $0.0246 (5)$	H2	1.0458	0.4305	0.7205	0.0225 (1)	
H3 1.2765 0.2163 0.9135 0.031* H3 1.6880 (2) 0.03666 (17) 1.05794 (13) 0.0340 (5) N5 0.37401 (18) 0.83994 (14) 0.41590 (11) 0.0184 (4) N6 0.00097 (19) 1.07507 (14) 0.23624 (11) 0.0215 (4) H6 -0.0409 1.0584 0.2842 0.026* N7 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 (5) H7 -0.2473 1.2755 0.0835 0.032* N8 -0.6137 (2) 1.45381 (16) -0.09158 (13) 0.0354 (5) C1 0.7449 (2) 0.59222 (17) 0.58465 (14) 0.0222 (5) H1 0.7707 0.5898 0.5312 0.027* C2 0.8340 (2) 0.53179 (17) 0.64121 (13) 0.0214 (5) H2A 0.9198 0.4908 0.6264 0.026* C3 0.7964 (2) 0.53183 (16) 0.72011 (13) 0.0194 (5) C4 0.6697 (2) 0.59523 (17) 0.73731 (14) 0.0225 (5) H4 0.6400 0.5975 0.7905	N3	1 3188 (2)	0.24783(15)	0.86972(12)	0.0257(5)	
N41.680 (2)0.03666 (17)1.05794 (13)0.0340 (5)N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0144 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.34900 (18)0.83455 (14)0.0219 (5)	H3	1.2765	0.2163	0.9135	0.031*	
N50.37401 (18)0.83994 (14)0.41590 (11)0.0184 (4)N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.34900 (18)0.83455 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	N4	1.6880 (2)	0.03666(17)	1.05794 (13)	0.0340(5)	
N60.00097 (19)1.07507 (14)0.23624 (11)0.0215 (4)H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	N5	0.37401(18)	0.83994(14)	0 41590 (11)	0.0184(4)	
H6-0.04091.05840.28420.026*N7-0.2954 (2)1.24525 (15)0.12505 (12)0.0266 (5)H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	N6	0.00097 (19)	1.07507 (14)	0.23624 (11)	0.0215 (4)	
N7 -0.2954 (2) 1.24525 (15) 0.12505 (12) 0.0266 (5) H7 -0.2473 1.2755 0.0835 0.032* N8 -0.6137 (2) 1.45381 (16) -0.09158 (13) 0.0354 (5) C1 0.7449 (2) 0.59222 (17) 0.58465 (14) 0.0222 (5) H1 0.7707 0.5898 0.5312 0.027* C2 0.8340 (2) 0.53179 (17) 0.64121 (13) 0.0214 (5) H2A 0.9198 0.4908 0.6264 0.026* C3 0.7964 (2) 0.53183 (16) 0.72011 (13) 0.0194 (5) C4 0.6697 (2) 0.59523 (17) 0.73731 (14) 0.0225 (5) H4 0.6400 0.5975 0.7905 0.027* C5 0.5880 (2) 0.65450 (17) 0.67687 (13) 0.0204 (5) H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	H6	-0.0409	1.0584	0.2842	0.026*	
H7-0.24731.27550.08350.032*N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	N7	-0.2954(2)	1.24525 (15)	0.12505(12)	0.0266 (5)	
N8-0.6137 (2)1.45381 (16)-0.09158 (13)0.0354 (5)C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	H7	-0.2473	1.2755	0.0835	0.032*	
C10.7449 (2)0.59222 (17)0.58465 (14)0.0222 (5)H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	N8	-0.6137(2)	1.45381 (16)	-0.09158(13)	0.0354 (5)	
H10.77070.58980.53120.027*C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	C1	0.7449 (2)	0.59222 (17)	0.58465 (14)	0.0222 (5)	
C20.8340 (2)0.53179 (17)0.64121 (13)0.0214 (5)H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	H1	0.7707	0.5898	0.5312	0.027*	
H2A0.91980.49080.62640.026*C30.7964 (2)0.53183 (16)0.72011 (13)0.0194 (5)C40.6697 (2)0.59523 (17)0.73731 (14)0.0225 (5)H40.64000.59750.79050.027*C50.5880 (2)0.65450 (17)0.67687 (13)0.0204 (5)H50.50250.69740.68970.025*C60.8811 (2)0.46600 (17)0.78795 (14)0.0219 (5)C71.0928 (2)0.34900 (18)0.83455 (14)0.0246 (5)	C2	0.8340(2)	0.53179 (17)	0.64121 (13)	0.0214 (5)	
C3 0.7964 (2) 0.53183 (16) 0.72011 (13) 0.0194 (5) C4 0.6697 (2) 0.59523 (17) 0.73731 (14) 0.0225 (5) H4 0.6400 0.5975 0.7905 0.027* C5 0.5880 (2) 0.65450 (17) 0.67687 (13) 0.0204 (5) H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	H2A	0.9198	0.4908	0.6264	0.026*	
C4 0.6697 (2) 0.59523 (17) 0.73731 (14) 0.0225 (5) H4 0.6400 0.5975 0.7905 0.027* C5 0.5880 (2) 0.65450 (17) 0.67687 (13) 0.0204 (5) H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	C3	0.7964(2)	0.53183 (16)	0.72011 (13)	0.0194 (5)	
H4 0.6400 0.5975 0.7905 0.027* C5 0.5880 (2) 0.65450 (17) 0.67687 (13) 0.0204 (5) H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	C4	0.6697 (2)	0.59523 (17)	0.73731 (14)	0.0225 (5)	
C5 0.5880 (2) 0.65450 (17) 0.67687 (13) 0.0204 (5) H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	H4	0.6400	0.5975	0.7905	0.027*	
H5 0.5025 0.6974 0.6897 0.025* C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	C5	0.5880 (2)	0.65450 (17)	0.67687 (13)	0.0204 (5)	
C6 0.8811 (2) 0.46600 (17) 0.78795 (14) 0.0219 (5) C7 1.0928 (2) 0.34900 (18) 0.83455 (14) 0.0246 (5)	H5	0.5025	0.6974	0.6897	0.025*	
C7 $1.0928 (2)$ $0.34900 (18)$ $0.83455 (14)$ $0.0246 (5)$	C6	0.8811(2)	0.46600(17)	0.78795(14)	0.0219 (5)	
	C7	1.0928 (2)	0.34900 (18)	0.83455 (14)	0.0246 (5)	
H7A 1.0571 0.2880 0.8585 0.030*	H7A	1.0571	0.2880	0.8585	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7B	1.0858	0.3825	0.8765	0.030*
C8	1.2404 (2)	0.31724 (18)	0.80369 (14)	0.0247 (5)
H8A	1.2482	0.2829	0.7622	0.030*
H8B	1.2767	0.3780	0.7797	0.030*
C9	1.4533 (2)	0.23228 (18)	0.86387 (14)	0.0235 (5)
C10	1.5292 (2)	0.16153 (17)	0.93421 (14)	0.0244 (5)
C11	1.6701 (3)	0.1322 (2)	0.92201 (16)	0.0360 (7)
H11A	1.7150	0.1548	0.8708	0.043*
C12	1.7447 (3)	0.0699 (2)	0.98459 (16)	0.0413 (7)
H12	1.8414	0.0496	0.9751	0.050*
C13	1 5523 (3)	0.06410(19)	1 07036 (15)	0.0289(6)
H13	1 5106	0.0403	1 1223	0.0203 (0)
C14	1 4696 (3)	0.12619(18)	1.01016(14)	0.0269 (6)
H14	1 3730	0.12019 (10)	1.0210	0.0209 (0)
C15	0.4203(2)	0.84744(17)	0.33952(14)	0.032
H15	0.5086	0.8070	0.33752 (14)	0.0211(3)
C16	0.3000	0.0070	0.3270 0.27700 (14)	0.023
U16	0.3449 (2)	0.91105 (18)	0.227709 (14)	0.0230 (3)
H10 C17	0.3829 0.2124 (2)	0.9100	0.2237 0.20291 (12)	0.028°
C17	0.2134(2)	0.90837(17)	0.29281(13)	0.0197(3)
	0.1040 (2)	0.95989 (17)	0.3/180 (13)	0.0209 (5)
H18	0.0749	0.9969	0.3855	0.025*
019	0.24/8 (2)	0.89696 (17)	0.43065 (14)	0.0222 (5)
HI9	0.2142	0.8936	0.4844	0.02/*
C20	0.1352 (2)	1.03773 (17)	0.22313 (14)	0.0227 (5)
C21	-0.0749 (2)	1.14415 (18)	0.16946 (14)	0.0240 (5)
H21A	-0.0615	1.1101	0.1272	0.029*
H21B	-0.0392	1.2053	0.1473	0.029*
C22	-0.2266(2)	1.17618 (19)	0.19489 (14)	0.0258 (5)
H22A	-0.2637	1.1156	0.2165	0.031*
H22B	-0.2413	1.2110	0.2368	0.031*
C23	-0.4296 (2)	1.26325 (17)	0.12320 (14)	0.0235 (5)
C24	-0.4899 (2)	1.33226 (18)	0.04703 (15)	0.0254 (5)
C25	-0.4141 (3)	1.3655 (2)	-0.02330 (15)	0.0330 (6)
H25	-0.3171	1.3472	-0.0254	0.040*
C26	-0.4795 (3)	1.4256 (2)	-0.09107 (16)	0.0382 (7)
H26	-0.4253	1.4472	-0.1390	0.046*
C27	-0.6881 (3)	1.4218 (2)	-0.02409 (16)	0.0344 (6)
H27	-0.7848	1.4414	-0.0241	0.041*
C28	-0.6311(3)	1.3610(2)	0.04669 (16)	0.0327 (6)
H28	-0.6878	1.3397	0.0936	0.039*
C29	0.7415 (2)	0.81806 (17)	0.41064 (13)	0.0196 (5)
C30	0.8842 (2)	0.78887 (16)	0.37059 (14)	0.0190 (5)
C31	0.9853 (2)	0.72325 (18)	0.41893 (15)	0.0243 (5)
H31	0.9616	0.6968	0.4741	0.029*
C32	1,1202 (2)	0.69546 (18)	0.38840 (16)	0.0283 (6)
H32	1.1883	0.6519	0.4227	0.034*
C33	1.1552 (2)	0.73139 (19)	0.30775(16)	0.0285 (6)
Н33	1 2472	0 7122	0.2863	0.0205 (0)
1155	1,47/4	0./122	0.2005	0.054

C34	1.0555 (2)	0.79525 (18)	0.25885 (15)	0.0265 (5)
H34	1.0796	0.8193	0.2034	0.032*
C35	0.9196 (2)	0.82543 (17)	0.28905 (14)	0.0213 (5)
C36	0.8142 (2)	0.89364 (18)	0.23390 (14)	0.0232 (5)
C37	0.2565 (2)	0.67276 (17)	0.61349 (13)	0.0195 (5)
C38	0.1105 (2)	0.70516 (16)	0.64827 (13)	0.0181 (5)
C39	0.0192 (2)	0.77089 (18)	0.59354 (15)	0.0246 (5)
H39	0.0522	0.7923	0.5392	0.030*
C40	-0.1189 (2)	0.80629 (18)	0.61587 (16)	0.0289 (6)
H40	-0.1794	0.8498	0.5770	0.035*
C41	-0.1671 (2)	0.77775 (19)	0.69473 (16)	0.0298 (6)
H41	-0.2606	0.8028	0.7109	0.036*
C42	-0.0782(2)	0.71239 (19)	0.75005 (15)	0.0271 (5)
H42	-0.1120	0.6927	0.8044	0.032*
C43	0.0599 (2)	0.67453 (17)	0.72839 (14)	0.0207 (5)
C44	0.1433 (3)	0.60501 (18)	0.79508 (15)	0.0278 (6)
O4W	-0.49901 (19)	1.07984 (13)	0.32827 (10)	0.0323 (4)
H4WA	-0.4802	1.1218	0.2829	0.048*
H4WB	-0.4931	1.1032	0.3668	0.048*
O3W	0.1356 (2)	1.17819 (17)	0.00369 (11)	0.0541 (6)
H3WA	0.0704	1.2325	0.0054	0.081*
H3WB	0.1499	1.1397	0.0519	0.081*
O1W	0.83173 (16)	0.56557 (13)	0.38217 (10)	0.0274 (4)
H1WA	0.7929	0.5169	0.3887	0.041*
H1WB	0.7728	0.6161	0.3964	0.041*
O5W	0.0946 (2)	0.65345 (14)	0.99086 (10)	0.0366 (5)
H5WA	0.0906	0.6184	0.9597	0.055*
H5WB	0.1169	0.6123	1.0371	0.055*
O2W	0.48153 (18)	0.58540 (14)	0.34348 (10)	0.0329 (4)
H2WA	0.5469	0.5297	0.3480	0.049*
H2WB	0.4933	0.6283	0.2974	0.049*
O6W	0.17069 (16)	0.94119 (13)	0.61888 (10)	0.0261 (4)
H6WA	0.2117	0.9901	0.6035	0.039*
H6WB	0.2260	0.8865	0.6090	0.039*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01450 (16)	0.01641 (16)	0.01615 (17)	-0.00139 (12)	-0.00291 (11)	-0.00300 (12)
013	0.0255 (9)	0.0189 (8)	0.0199 (8)	-0.0066 (7)	-0.0021 (7)	-0.0043 (7)
01	0.0246 (9)	0.0459 (11)	0.0160 (9)	0.0034 (8)	-0.0024 (7)	-0.0027 (8)
O14	0.0180 (8)	0.0185 (8)	0.0253 (9)	-0.0025 (6)	-0.0008 (7)	-0.0051 (7)
O2	0.0245 (9)	0.0380 (10)	0.0236 (10)	-0.0010 (8)	-0.0017 (8)	0.0000 (8)
O12	0.0252 (9)	0.0218 (9)	0.0394 (11)	-0.0065 (7)	0.0058 (8)	-0.0122 (8)
O3	0.0251 (9)	0.0472 (11)	0.0170 (9)	0.0041 (8)	-0.0021 (7)	0.0009 (8)
O4	0.0224 (9)	0.0372 (10)	0.0278 (10)	-0.0011 (8)	-0.0028 (8)	-0.0039 (8)
O5	0.0147 (8)	0.0184 (8)	0.0197 (8)	-0.0039 (6)	-0.0012 (6)	-0.0029 (6)
O6	0.0314 (10)	0.0231 (9)	0.0383 (11)	-0.0099 (8)	0.0106 (8)	-0.0137 (8)

O7	0.0204 (9)	0.0369 (10)	0.0299 (10)	0.0001 (8)	-0.0027 (8)	-0.0001 (8)
08	0.0274 (10)	0.0565 (13)	0.0185 (9)	-0.0002 (9)	-0.0046 (8)	0.0015 (9)
09	0.0156 (8)	0.0175 (8)	0.0220 (8)	-0.0048 (6)	-0.0019 (6)	-0.0029 (6)
O10	0.0447 (12)	0.0505 (12)	0.0189 (10)	-0.0125 (10)	-0.0028 (8)	0.0001 (9)
011	0.0278 (10)	0.0392 (11)	0.0286 (10)	-0.0014 (8)	-0.0122 (8)	0.0022 (8)
N1	0.0173 (10)	0.0184 (10)	0.0206 (10)	-0.0040 (8)	-0.0012 (8)	-0.0057 (8)
N2	0.0206 (10)	0.0265 (11)	0.0164 (10)	-0.0004(9)	-0.0056 (8)	-0.0019 (8)
N3	0.0204 (11)	0.0264 (11)	0.0213 (11)	-0.0007(9)	-0.0041 (8)	0.0018 (9)
N4	0.0329 (13)	0.0377 (13)	0.0256 (12)	-0.0008 (10)	-0.0106 (10)	-0.0045 (10)
N5	0.0151 (9)	0.0181 (10)	0.0209 (10)	-0.0025 (8)	-0.0017 (8)	-0.0056 (8)
N6	0.0180 (10)	0.0247 (10)	0.0164 (10)	-0.0017(8)	-0.0044 (8)	-0.0003(8)
N7	0.0236 (11)	0.0284 (11)	0.0210 (11)	-0.0025(9)	-0.0079(9)	0.0015 (9)
N8	0.0419 (14)	0.0304(12)	0.0319 (13)	-0.0065(11)	-0.0149(11)	-0.0024(10)
C1	0.0207(12)	0.0231(12)	0.0195(12)	-0.0008(10)	-0.0018(10)	-0.0059(10)
C2	0.0183(12)	0.0213(12)	0.0210(12)	0 0005 (9)	-0.0027(9)	-0.0056(10)
C3	0.0103(12) 0.0193(12)	0.0213(12) 0.0172(11)	0.0210(12) 0.0195(12)	-0.0003(9)	-0.0028(9)	-0.0022(9)
C4	0.0199(12) 0.0220(12)	0.0172(11) 0.0254(13)	0.0195(12)	-0.0034(10)	0.0020(9)	-0.0052(10)
C5	0.0220(12)	0.0234(13) 0.0221(12)	0.0100(12)	-0.0009(0)	-0.0011(9)	-0.0052(10)
C5 C6	0.0130(11) 0.0209(12)	0.0221(12) 0.0224(12)	0.0205(12)	-0.0009(9)	-0.0029(10)	-0.0037(10)
C0 C7	0.0209(12) 0.0227(12)	0.0224(12)	0.0190(12)	-0.0032(10)	-0.0023(10)	-0.0038(10)
C°	0.0227(13)	0.0230(13)	0.0201(12)	-0.0014(10)	-0.0075(10) -0.0056(10)	-0.0007(10)
	0.0218(12) 0.0258(12)	0.0240(13)	0.0208(12)	0.0007(10)	-0.0030(10)	-0.0011(10)
C9	0.0258(15)	0.0214(12)	0.0195(13)	0.0000(10)	-0.0033(10)	-0.0054(10)
C10	0.0275(13)	0.0214 (12)	0.0223(13)	0.0000 (10)	-0.0074(10)	-0.0066(10)
CII	0.0246 (14)	0.0495 (17)	0.0231 (14)	0.0003 (12)	-0.0030 (11)	-0.0040 (12)
C12	0.0268 (15)	0.0543 (18)	0.0294 (15)	0.0038 (13)	-0.0063 (12)	-0.0048 (13)
C13	0.0376 (15)	0.0273 (13)	0.0209 (13)	-0.0082 (11)	-0.0066 (11)	-0.0035 (10)
C14	0.0266 (13)	0.0272 (13)	0.0251 (13)	-0.0055 (11)	-0.0052 (11)	-0.0048 (11)
C15	0.0158 (11)	0.0216 (12)	0.0229 (12)	-0.0007 (9)	-0.0019 (9)	-0.0061 (10)
C16	0.0195 (12)	0.0276 (13)	0.0173 (12)	-0.0015 (10)	-0.0015 (9)	-0.0042 (10)
C17	0.0204 (12)	0.0179 (11)	0.0196 (12)	-0.0040 (9)	-0.0043 (9)	-0.0033 (9)
C18	0.0161 (11)	0.0217 (12)	0.0206 (12)	0.0000 (9)	-0.0013 (9)	-0.0049 (10)
C19	0.0198 (12)	0.0240 (12)	0.0194 (12)	-0.0017 (10)	-0.0010 (10)	-0.0056 (10)
C20	0.0233 (13)	0.0217 (12)	0.0186 (12)	-0.0017 (10)	-0.0043 (10)	-0.0022 (10)
C21	0.0216 (12)	0.0261 (13)	0.0194 (12)	-0.0011 (10)	-0.0069 (10)	-0.0016 (10)
C22	0.0239 (13)	0.0275 (13)	0.0191 (12)	-0.0015 (10)	-0.0059 (10)	0.0005 (10)
C23	0.0239 (13)	0.0212 (12)	0.0227 (13)	0.0005 (10)	-0.0054 (10)	-0.0068 (10)
C24	0.0269 (13)	0.0227 (12)	0.0276 (14)	-0.0009 (10)	-0.0114 (11)	-0.0088 (10)
C25	0.0321 (15)	0.0357 (15)	0.0284 (14)	-0.0087 (12)	-0.0116 (12)	-0.0006 (11)
C26	0.0398 (16)	0.0424 (17)	0.0288 (15)	-0.0149 (13)	-0.0115 (12)	0.0032 (12)
C27	0.0244 (14)	0.0378 (16)	0.0385 (16)	0.0027 (12)	-0.0125 (12)	-0.0122 (13)
C28	0.0260 (14)	0.0362 (15)	0.0315 (15)	-0.0005 (12)	-0.0048 (11)	-0.0093 (12)
C29	0.0191 (12)	0.0207 (12)	0.0171 (12)	-0.0039(10)	-0.0031 (9)	-0.0030 (9)
C30	0.0166 (11)	0.0175 (11)	0.0243 (12)	-0.0060(9)	-0.0018(9)	-0.0064(9)
C31	0.0252 (13)	0.0224 (12)	0.0245 (13)	-0.0064 (10)	-0.0047 (10)	-0.0038 (10)
C32	0.0206 (13)	0.0244 (13)	0.0377 (15)	-0.0011 (10)	-0.0115 (11)	-0.0053(11)
C33	0.0161 (12)	0.0289 (14)	0.0397 (16)	-0.0049(10)	0.0005 (11)	-0.0110(12)
C34	0.0227(13)	0.0289 (13)	0.0258 (13)	-0.0085(11)	0.0018 (10)	-0.0054(11)
C35	0.0194(12)	0.0211(12)	0.0244 (13)	-0.0058(10)	-0.0028(10)	-0.0070(10)
	······································	····			()	

C36	0.0249 (13)	0.0224 (12)	0.0209 (13)	-0.0067 (10)	-0.0022 (10)	-0.0035 (10)
C37	0.0202 (12)	0.0197 (12)	0.0158 (11)	-0.0022 (10)	-0.0036 (9)	-0.0029 (9)
C38	0.0180 (11)	0.0154 (11)	0.0218 (12)	-0.0058 (9)	-0.0047 (9)	-0.0034 (9)
C39	0.0241 (13)	0.0241 (12)	0.0240 (13)	-0.0069 (10)	-0.0060 (10)	-0.0019 (10)
C40	0.0207 (13)	0.0236 (13)	0.0421 (16)	-0.0007 (10)	-0.0150 (11)	-0.0067 (11)
C41	0.0154 (12)	0.0284 (14)	0.0467 (17)	-0.0037 (10)	-0.0019 (11)	-0.0143 (12)
C42	0.0243 (13)	0.0324 (14)	0.0253 (13)	-0.0109 (11)	0.0051 (10)	-0.0100 (11)
C43	0.0191 (12)	0.0198 (12)	0.0228 (12)	-0.0063 (9)	-0.0031 (10)	-0.0039 (10)
C44	0.0304 (14)	0.0247 (13)	0.0302 (15)	-0.0092 (11)	-0.0078 (11)	-0.0056 (11)
O4W	0.0384 (11)	0.0338 (10)	0.0227 (9)	-0.0029 (8)	-0.0055 (8)	-0.0099 (8)
O3W	0.0371 (12)	0.0618 (15)	0.0275 (11)	0.0107 (10)	0.0018 (9)	0.0124 (10)
O1W	0.0231 (9)	0.0268 (9)	0.0323 (10)	-0.0067 (7)	0.0031 (7)	-0.0109 (8)
O5W	0.0392 (11)	0.0400 (11)	0.0198 (9)	-0.0005 (9)	-0.0067 (8)	-0.0004 (8)
O2W	0.0363 (11)	0.0298 (10)	0.0230 (10)	0.0019 (8)	-0.0049 (8)	-0.0027 (8)
O6W	0.0214 (9)	0.0245 (9)	0.0307 (10)	-0.0071 (7)	0.0035 (7)	-0.0074 (8)

Geometric parameters (Å, °)

Ni1—013	2.0643 (15)	C12—H12	0.9500	
Ni1-014	2.0563 (15)	C13—H13	0.9500	
Nil—O5	2.1045 (15)	C13—C14	1.389 (3)	
Ni1-09	2.1274 (15)	C14—H14	0.9500	
Ni1—N1	2.1105 (18)	C15—H15	0.9500	
Ni1—N5	2.1146 (18)	C15—C16	1.383 (3)	
O13—H13A	0.8839	C16—H16	0.9500	
O13—H13B	0.8835	C16—C17	1.390 (3)	
O1—C6	1.240 (3)	C17—C18	1.387 (3)	
O14—H14A	0.8832	C17—C20	1.505 (3)	
O14—H14B	0.8831	C18—H18	0.9500	
O2—C9	1.233 (3)	C18—C19	1.377 (3)	
O12—C37	1.250 (3)	C19—H19	0.9500	
O3—C20	1.235 (3)	C21—H21A	0.9900	
O4—C23	1.230 (3)	C21—H21B	0.9900	
O5—C29	1.269 (3)	C21—C22	1.519 (3)	
O6—C29	1.243 (3)	C22—H22A	0.9900	
O7—C36	1.213 (3)	C22—H22B	0.9900	
O8—H8	0.8400	C23—C24	1.510 (3)	
O8—C36	1.311 (3)	C24—C25	1.379 (4)	
O9—C37	1.265 (3)	C24—C28	1.388 (3)	
O10—C44	1.223 (3)	С25—Н25	0.9500	
011—H11	0.8400	C25—C26	1.390 (3)	
O11—C44	1.309 (3)	С26—Н26	0.9500	
N1-C1	1.344 (3)	С27—Н27	0.9500	
N1C5	1.342 (3)	C27—C28	1.396 (4)	
N2—H2	0.8800	C28—H28	0.9500	
N2-C6	1.332 (3)	C29—C30	1.515 (3)	
N2C7	1.465 (3)	C30—C31	1.389 (3)	
N3—H3	0.8800	C30—C35	1.399 (3)	

N3—C8	1.462 (3)	C31—H31	0.9500
N3—C9	1.326 (3)	C31—C32	1.387 (3)
N4—C12	1.332 (3)	С32—Н32	0.9500
N4—C13	1.331 (3)	C32—C33	1.384 (4)
N5—C15	1.340 (3)	С33—Н33	0.9500
N5—C19	1.346 (3)	C33—C34	1.378 (3)
N6—H6	0.8800	C34—H34	0.9500
N6—C20	1.332 (3)	C34—C35	1.399 (3)
N6—C21	1.457 (3)	C35—C36	1.494 (3)
N7—H7	0.8800	C37—C38	1.516 (3)
N7—C22	1.462 (3)	C38—C39	1.390 (3)
N7—C23	1.332 (3)	C38—C43	1.405 (3)
N8—C26	1.320 (3)	С39—Н39	0.9500
N8—C27	1.332 (4)	C39—C40	1.392 (3)
C1—H1	0.9500	C40—H40	0.9500
C1—C2	1.380 (3)	C40—C41	1.377 (4)
C2—H2A	0.9500	C41—H41	0.9500
C2—C3	1.389 (3)	C41—C42	1.380 (3)
C3—C4	1.397 (3)	C42—H42	0.9500
C3—C6	1.505 (3)	C42—C43	1.395 (3)
C4—H4	0.9500	C43—C44	1.496 (3)
C4—C5	1.378 (3)	O4W—H4WA	0.8702
С5—Н5	0.9500	O4W—H4WB	0.8704
С7—Н7А	0.9900	O3W—H3WA	0.8695
С7—Н7В	0.9900	O3W—H3WB	0.8701
C7—C8	1.507 (3)	O1W—H1WA	0.8696
C8—H8A	0.9900	O1W—H1WB	0.8703
C8—H8B	0.9900	O5W—H5WA	0.8698
C9—C10	1.507 (3)	O5W—H5WB	0.8699
C10—C11	1.383 (3)	O2W—H2WA	0.8698
C10—C14	1.385 (3)	O2W—H2WB	0.8693
C11—H11A	0.9500	O6W—H6WA	0.8703
C11—C12	1.374 (3)	O6W—H6WB	0.8695
O13—Ni1—O5	85.98 (6)	C17—C16—H16	120.2
O13—Ni1—O9	93.90 (6)	C16—C17—C20	117.9 (2)
O13—Ni1—N1	87.30 (7)	C18—C17—C16	117.6 (2)
O13—Ni1—N5	92.43 (7)	C18—C17—C20	124.4 (2)
O14—Ni1—O13	179.32 (6)	C17—C18—H18	120.4
O14—Ni1—O5	94.34 (6)	C19—C18—C17	119.2 (2)
O14—Ni1—O9	85.80 (6)	C19—C18—H18	120.4
O14—Ni1—N1	93.30 (7)	N5-C19-C18	123.5 (2)
O14—Ni1—N5	86.97 (7)	N5—C19—H19	118.3
O5—Ni1—O9	178.69 (6)	C18—C19—H19	118.3
O5—Ni1—N1	88.57 (7)	O3—C20—N6	122.1 (2)
O5—Ni1—N5	90.42 (6)	O3—C20—C17	119.6 (2)
N1—Ni1—O9	90.12 (7)	N6—C20—C17	118.2 (2)
N1—Ni1—N5	178.97 (7)	N6—C21—H21A	109.4

N5—Ni1—O9	90.89 (6)	N6-C21-H21B	109.4
Ni1—O13—H13A	110.3	N6-C21-C22	111.26 (19)
Ni1—O13—H13B	109.9	H21A—C21—H21B	108.0
H13A—O13—H13B	108.6	C22—C21—H21A	109.4
Ni1—O14—H14A	110.1	C22—C21—H21B	109.4
Ni1—O14—H14B	110.2	N7—C22—C21	108.02 (19)
H14A—O14—H14B	108.7	N7—C22—H22A	110.1
C29—O5—Ni1	126.89 (14)	N7—C22—H22B	110.1
С36—О8—Н8	109.5	C21—C22—H22A	110.1
C37—O9—Ni1	127.79 (14)	C21—C22—H22B	110.1
C44—O11—H11	109.5	H22A—C22—H22B	108.4
C1—N1—Ni1	120.89 (15)	04—C23—N7	123.1 (2)
C5—N1—Ni1	122.14 (15)	$04-C^{23}-C^{24}$	1198(2)
C5-N1-C1	116.97 (19)	N7—C23—C24	117.0(2)
C6—N2—H2	120.4	C_{25} C_{24} C_{23}	1245(2)
C6-N2-C7	119 3 (2)	$C_{25} = C_{24} = C_{28}$	127.5(2) 117.6(2)
C7_N2_H2	120.4	C_{28} C_{24} C_{23}	117.0(2) 117.9(2)
C8—N3—H3	119.9	$C_{24} = C_{25} = H_{25}$	120.0
C9_N3_H3	119.9	$C_{24} = C_{25} = C_{26}$	120.0(3)
C9-N3-C8	120.2(2)	$C_{24} = C_{25} = C_{26}$	120.0 (5)
C_{13} N4 C_{12}	120.2(2) 1180(2)	N8-C26-C25	120.0 122.7(3)
C15 - N5 - Ni1	121.35(14)	N8—C26—H26	118.6
C15 - N5 - C19	117 24 (19)	C_{25} C_{26} H_{26}	118.6
C19 N5 Vil	121.24(15)	N8_C27_H27	118.0
C_{20} N6 H6	121.35 (13)	N8-C27-C28	110.7 123.3(2)
$C_{20} - N_{6} - C_{21}$	118 59 (19)	$C_{28} = C_{27} = H_{27}$	123.5 (2)
$C_{20} = N_0 = C_{21}$	120.7	$C_{26} = C_{27} = H_{27}$	118.4
$C_{22} N_{7} H_{7}$	110 4	$C_{24} = C_{28} = C_{27}$	120.7
$C_{22} = N_7 = H_7$	119.4	$C_{27} = C_{28} = H_{28}$	120.7
$C_{23} N_{7} C_{22}$	117.4	05-029-030	115 87 (19)
$C_{25} = 10^{-10} C_{22}$	121.2(2) 1179(2)	05 - 029 - 05	115.07(19) 125.4(2)
N1_C1_H1	117.5 (2)	$06 - C^{29} - C^{30}$	123.4(2) 118.5(2)
N1 - C1 - C2	123.9(2)	C_{31} C_{30} C_{29}	117.1(2)
$C_2 - C_1 - H_1$	118.1	$C_{31} = C_{30} = C_{35}$	117.1(2) 118.8(2)
C1 - C2 - H2A	120.5	$C_{35} = C_{30} = C_{29}$	1241(2)
C1 - C2 - C3	1190(2)	C_{30} C_{31} H_{31}	119.3
$C_1 = C_2 = C_3$ $C_3 = C_2 = H_2 \Delta$	120.5	C_{32} C_{31} C_{30}	117.5 121.4(2)
$C_{2} = C_{2} = C_{12}$	1174(2)	$C_{32} = C_{31} = C_{30}$	121.4 (2)
$C_2 = C_3 = C_4$	117.4(2) 1243(2)	$C_{31} = C_{32} = H_{32}$	120.1
$C_{2} = C_{3} = C_{6}$	124.3(2) 1183(2)	C_{33} C_{32} C_{31} C_{32} C_{31}	120.1 119.8(2)
C_{4}	110.5 (2)	C_{33} C_{32} H_{32}	119.8 (2)
C_{5} C_{4} C_{3}	120.1 119.8(2)	C32—C32—H32	120.1
$C_{5} = C_{4} = C_{5}$	119.8 (2)	$C_{32} = C_{33} = C_{33}$	120.3 110 A (2)
N1-C5-C4	123.0(2)	$C_{34} = C_{33} = C_{32}$	120.3
N1_C5_H5	123.0 (2)	C_{33} C_{34} H_{34}	110.3
C4-C5-H5	118.5	$C_{33} - C_{34} - C_{35}$	121 4 (2)
01	122 6 (2)	C35_C34_H34	1193
01 - C6 - C3	122.0(2) 119 5 (2)	$C_{30} - C_{37} - C_{36}$	121 1 (2)
	11/10 (4)		14111 (4)

	117.9(2)	C24 $C25$ $C20$	110.1.(2)
N2 - C0 - C3 $N2 - C7 + H74$	117.8 (2)	$C_{34} = C_{35} = C_{30}$	119.1(2) 110.8(2)
$N_2 = C_7 = H_7 R$	109.5	07 036 08	119.8(2)
N2 - C7 - C8	109.5	07 - 036 - 035	123.4(2)
$H_{1} = C_{1} = C_{0}$	110.00 (19)	0^{-1}	123.3(2)
$\Pi/A - C / - \Pi/B$	100.1	$0_{0} - 0_{0} - 0_{0}$	115.1(2)
C_{0} C_{1} H_{1}	109.5	012 - 037 - 09	123.3(2)
$C_0 - C_1 - H_1 B$	109.5	012 - 000 = 000000000000000000000000000000	116.6(2)
	108.95 (19)	09-037-038	115.42(19)
$N_{2} = C_{0} = H_{0} A$	109.9	$C_{39} = C_{30} = C_{37}$	113.1(2)
$N_3 = C_8 = H_8 B$	109.9	$C_{39} = C_{38} = C_{43}$	118.1(2)
C/-C8-H8A	109.9	$C_{43} = C_{38} = C_{37}$	126.81 (19)
C/-C8-H8B	109.9	C38—C39—H39	119.0
H8A—C8—H8B	108.3	$C_{38} = C_{39} = C_{40}$	122.0 (2)
02—C9—N3	122.9 (2)	С40—С39—Н39	119.0
02	118.9 (2)	C39—C40—H40	120.3
N3—C9—C10	118.1 (2)	C41—C40—C39	119.5 (2)
C11—C10—C9	116.9 (2)	C41—C40—H40	120.3
C11—C10—C14	117.7 (2)	C40—C41—H41	120.3
C14—C10—C9	125.4 (2)	C40—C41—C42	119.4 (2)
C10—C11—H11A	120.3	C42—C41—H41	120.3
C12—C11—C10	119.4 (2)	C41—C42—H42	119.1
C12—C11—H11A	120.3	C41—C42—C43	121.8 (2)
N4—C12—C11	123.1 (3)	C43—C42—H42	119.1
N4—C12—H12	118.4	C38—C43—C44	125.3 (2)
C11—C12—H12	118.4	C42—C43—C38	119.1 (2)
N4—C13—H13	118.8	C42—C43—C44	115.6 (2)
N4—C13—C14	122.4 (2)	O10-C44-O11	123.0 (2)
C14—C13—H13	118.8	O10-C44-C43	121.3 (2)
C10—C14—C13	119.4 (2)	O11—C44—C43	115.7 (2)
C10-C14-H14	120.3	H4WA—O4W—H4WB	109.4
C13—C14—H14	120.3	H3WA—O3W—H3WB	109.5
N5—C15—H15	118.6	H1WA—O1W—H1WB	109.5
N5—C15—C16	122.7 (2)	H5WA—O5W—H5WB	109.5
C16—C15—H15	118.6	H2WA—O2W—H2WB	109.6
C15—C16—H16	120.2	H6WA—O6W—H6WB	109.4
C15—C16—C17	119.7 (2)		
Ni1—O5—C29—O6	-10.8(3)	C15—N5—C19—C18	1.4 (3)
Ni1-05-C29-C30	163.86 (14)	C15—C16—C17—C18	1.6 (3)
Ni1-09-C37-012	14.7 (3)	C15—C16—C17—C20	179.8 (2)
Ni1 -09 $-C37$ $-C38$	-158.76(14)	$C_{16} - C_{17} - C_{18} - C_{19}$	0.6(3)
$N_{1} - N_{1} - C_{1} - C_{2}$	178 04 (17)	$C_{16} - C_{17} - C_{20} - O_{3}$	-138(3)
$N_{1} - N_{1} - C_{5} - C_{4}$	-17925(17)	$C_{16} - C_{17} - C_{20} - N_{6}$	165.5(2)
$N_{1} - N_{5} - C_{15} - C_{16}$	-17637(17)	C17 - C18 - C19 - N5	-2.2.(4)
Ni1—N5—C19—C18	178 78 (17)	C18 - C17 - C20 - O3	164 2 (2)
02-C9-C10-C11	-119(3)	C18 - C17 - C20 - N6	-164(3)
02 - C9 - C10 - C14	166 1 (2)	C19 N5 C15 C16	10(3)
012 037 038 020	-101.6(2)	$C_{10} = 0.00 = 0.00 = 0.00 = 0.000 = 0.000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.0000000 = 0.0000000 = 0.00000000$	178 2 (2)
012 - 037 - 030 - 037	101.0 (2)	$C_{20} = 100 = C_{21} = C_{22}$	1/0.2 (2)

O12—C37—C38—C43	77.4 (3)	C20-C17-C18-C19	-177.4 (2)
O4—C23—C24—C25	-168.7 (2)	C21—N6—C20—O3	-2.2 (4)
O4—C23—C24—C28	8.5 (3)	C21—N6—C20—C17	178.4 (2)
O5-C29-C30-C31	-77.1 (3)	C22—N7—C23—O4	0.9 (4)
O5—C29—C30—C35	104.3 (3)	C22—N7—C23—C24	-177.5 (2)
O6—C29—C30—C31	98.0 (3)	C23—N7—C22—C21	161.1 (2)
O6—C29—C30—C35	-80.7 (3)	C23—C24—C25—C26	177.3 (2)
O9—C37—C38—C39	72.3 (3)	C23—C24—C28—C27	-177.8 (2)
O9—C37—C38—C43	-108.7 (3)	C24—C25—C26—N8	0.5 (4)
N1—C1—C2—C3	2.0 (4)	C25—C24—C28—C27	-0.3 (4)
N2-C7-C8-N3	179.68 (19)	C26—N8—C27—C28	0.5 (4)
N3—C9—C10—C11	168.7 (2)	C27—N8—C26—C25	-0.8 (4)
N3—C9—C10—C14	-13.3 (4)	C28—C24—C25—C26	0.1 (4)
N4—C13—C14—C10	-0.1 (4)	C29—C30—C31—C32	-177.3 (2)
N5-C15-C16-C17	-2.5 (4)	C29—C30—C35—C34	178.4 (2)
N6-C21-C22-N7	179.87 (19)	C29—C30—C35—C36	-3.2 (3)
N7—C23—C24—C25	9.7 (4)	C30—C31—C32—C33	-1.7 (4)
N7—C23—C24—C28	-173.1 (2)	C30—C35—C36—O7	-2.0 (4)
N8—C27—C28—C24	0.0 (4)	C30—C35—C36—O8	179.0 (2)
C1—N1—C5—C4	0.4 (3)	C31—C30—C35—C34	-0.3 (3)
C1—C2—C3—C4	-1.0 (3)	C31—C30—C35—C36	178.1 (2)
C1—C2—C3—C6	177.0 (2)	C31—C32—C33—C34	0.6 (4)
C2—C3—C4—C5	-0.1 (3)	C32—C33—C34—C35	0.6 (4)
C2-C3-C6-O1	-165.9 (2)	C33—C34—C35—C30	-0.8(4)
C2—C3—C6—N2	13.2 (3)	C33—C34—C35—C36	-179.2 (2)
C3—C4—C5—N1	0.4 (4)	C34—C35—C36—O7	176.4 (2)
C4—C3—C6—O1	12.2 (3)	C34—C35—C36—O8	-2.6(3)
C4—C3—C6—N2	-168.8 (2)	C35—C30—C31—C32	1.5 (3)
C5—N1—C1—C2	-1.7 (3)	C37—C38—C39—C40	179.0 (2)
C6—N2—C7—C8	-171.2 (2)	C37—C38—C43—C42	179.8 (2)
C6—C3—C4—C5	-178.3 (2)	C37—C38—C43—C44	1.4 (4)
C7—N2—C6—O1	3.3 (4)	C38—C39—C40—C41	1.6 (4)
C7—N2—C6—C3	-175.7 (2)	C38—C43—C44—O10	-176.8 (2)
C8—N3—C9—O2	-0.5 (4)	C38—C43—C44—O11	3.5 (3)
C8—N3—C9—C10	178.9 (2)	C39—C38—C43—C42	-1.2 (3)
C9—N3—C8—C7	-160.6 (2)	C39—C38—C43—C44	-179.6 (2)
C9—C10—C11—C12	178.3 (2)	C39—C40—C41—C42	-1.7 (4)
C9—C10—C14—C13	-177.6 (2)	C40—C41—C42—C43	0.3 (4)
C10-C11-C12-N4	-0.9 (5)	C41—C42—C43—C38	1.2 (4)
C11—C10—C14—C13	0.4 (4)	C41—C42—C43—C44	179.7 (2)
C12—N4—C13—C14	-0.6 (4)	C42—C43—C44—O10	4.8 (3)
C13—N4—C12—C11	1.1 (4)	C42—C43—C44—O11	-174.9 (2)
C14—C10—C11—C12	0.1 (4)	C43—C38—C39—C40	-0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O8—H8…N4 ⁱ	0.84	1.78	2.609 (3)	171

O11—H11…N8 ⁱⁱ	0.84	1.82	2.660 (3)	176
O13—H13A···O2W	0.88	1.90	2.706 (2)	150
O13—H13 <i>B</i> …O12	0.88	1.94	2.733 (2)	149
O14—H14 <i>B</i> ···O6	0.88	1.87	2.668 (2)	149
N2—H2····O1 <i>W</i> ⁱⁱⁱ	0.88	2.02	2.887 (3)	166
N3—H3····O3 <i>W</i> ⁱⁱ	0.88	2.02	2.874 (3)	164
N6—H6···O6 W^{iv}	0.88	1.99	2.844 (3)	164
O1 <i>W</i> —H1 <i>WA</i> ···O12 ^v	0.87	1.93	2.801 (2)	177
O1 <i>W</i> —H1 <i>WB</i> ···O5	0.87	2.12	2.967 (2)	165
O2 <i>W</i> —H2 <i>WA</i> ···O12 ^v	0.87	2.02	2.840 (2)	158
O2 <i>W</i> —H2 <i>WB</i> ···O2 ⁱⁱⁱ	0.87	1.90	2.757 (2)	169
$O3W$ — $H3WA$ ··· $O5W^{iv}$	0.87	1.98	2.849 (3)	173
O3 <i>W</i> —H3 <i>WB</i> ···O3	0.87	1.91	2.777 (2)	175
O4 <i>W</i> —H4 <i>WA</i> ···O4	0.87	1.96	2.800(2)	161
O4W—H4WB····O14 ^{iv}	0.87	1.86	2.706 (2)	165
O5 <i>W</i> —H5 <i>WA</i> ···O10	0.87	1.98	2.821 (3)	162
O5 <i>W</i> —H5 <i>WB</i> ···O1 ^{vi}	0.87	1.92	2.776 (2)	169
O6 <i>W</i> —H6 <i>WA</i> ···O6 ^{vii}	0.87	1.90	2.770 (2)	178
O6 <i>W</i> —H6 <i>WB</i> ···O9	0.87	2.12	2.977 (2)	167

Symmetry codes: (i) *x*-1, *y*+1, *z*-1; (ii) *x*+1, *y*-1, *z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) -*x*, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*+2; (vii) -*x*+1, -*y*+2, -*z*+1.