

ISSN 2414-3146

Received 16 June 2016 Accepted 6 July 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; coordination polymer; cadmium; oba; Hoba; 3,4'-bpt.

CCDC reference: 1490863

Structural data: full structural data are available from iucrdata.iucr.org

Poly[bis[µ-4-(4-carboxyphenoxy)benzoato](µ-4,4'oxydibenzoato)bis[µ-3-(pyridin-4-yl)-5-(pyridin-3yl)-1*H*-1,2,4-triazole]dicadmium(II)]

Xiao-Jin Qi,* Bing-Nian Yuan and Kang-Long Zhang

Department of Chemical Engineering, Yinchuan College, China University of Mining and Technology, Ningxia 750021, People's Republic of China. *Correspondence e-mail: ajinychedu@163.com

Three kinds of bridging ligands, 4,4'-oxydibenzoate, 4-(4-carboxyphenoxy)benzoate and 3-(pyridin-4-yl)-5-(pyridin-3-yl)-1*H*-1,2,4-triazole, link the Cd^{II} cations to form the title polymeric complex, $[Cd_2(C_{14}H_8O_5)(C_{14}H_9O_5)_2-(C_{12}H_9N_5)_2]_n$, in which each Cd^{II} cation is in a distorted N₂O₅ pentagonalbipyramidal coordination geometry. The 4,4'-oxydibenzoate dianion exhibits point group symmetry 2, with the central O atom located on a twofold rotation axis. Classical N-H···O, O-H···N hydrogen bonds and weak C-H···O hydrogen bonds link the complex molecules into a three-dimensional supramolecular architecture. A solvent-accessible void of 53 (2) Å³ is observed, but no solvent molecule could reasonably located there.

Structure description

Recently, coordination polymers (CPs) have been of interest in the field of crystal engineering, not only because of their potential applications as functional materials for fluorescence, magnetic materials, non-linear optics, ion exchange, catalysis and sorption (Yaghi *et al.*, 2003; Abrahams *et al.*, 1999; Yang *et al.*, 2008), but also because of their intriguing aesthetic structures and topologies (Dong *et al.*, 2007; Huang *et al.*, 2013). Coordination polymeric frameworks can be rationally designed by careful control of many factors such as the solvent system, temperature, pH value, the metal-to-ligand ratio, geometric requirements of metal ions and secondary building-block ligands.

The V-shaped organic aromatic multicarboxylate species, H_2 oba (4,4'-oxydibenzoic acid), have been extensively employed as building blocks to construct coordination polymeric frameworks (Huang *et al.*, 2010; Lan *et al.*, 2008; Yao *et al.*, 2013) because they show various coordination modes with metal ions, which give rise to a great variety of

 $O4-H4\cdots N2^{iii}$

 $C3-H3 \cdot \cdot \cdot O6^{ii}$

 $C25-H25\cdots O3^{iv}$

Table 1 Hydrogen-bond geometry (Å, °).							
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$			
N1-H1···O6 ⁱⁱ	0.86	1.85	2.695 (5)	169			

0.82

0.93

0.93

Symmetry codes: (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y - 1, z.

2.06

2.40

2.37

2.848(5)

3.285 (5)

3.238 (8)

162

158

154

multi-dimensional structures and fascinating topologies. On the other hand, a mixed-ligand strategy is presently a good choice for the construction of coordination polymers. Careful selection of the properties of the secondary ligands, such as shape, functionality, flexibility, angle and symmetry, is therefore key for the rational design of structures and specific chemical and physical properties. In the present case, we have prepared the title compound, $[Cd_2(oba)(Hoba)_2(3,4'-bpt)_2]_n$, using H₂oba and 3,4'-bpt.

The asymmetric unit comprises of one independent Cd^{II} cation, one 3,4'-bpt ligand and one Hoba⁻ ligand and a half oba²⁻ ligand. Each Cd^{II} cation is coordinated by two nitrogen atoms, occupying the axial positions, from two different 3,4'bpt ligands and five oxygen atoms, occupying the equatorial positions, from three different oba^{2-} ligands (Fig. 1). This binding mode forms a distorted pentagonal-bipyramid coordination geometry around each metal ion with Cd-N(py)distances of 2.310 (3) and 2.366 (3) Å and Cd-O (carboxylate) distance of 2.274 (3)-2.598 (3) Å, similar to that observed in previously reported Cd^{II} complexes. The oba²⁻ and 3,4'-bpt ligands connect the Cd^{II} cations, forming a three-dimensional framework. The Hoba⁻ ligands are bound only through their carboxylate group to the cation, whereas the carboxyl group is non-coordinating (Fig. 2). Classical N-H···O and O-H···N hydrogen bonds and weak $C-H \cdots O$ interactions (Table 1) link the complex molecules into a three-dimensional supramolecular architecture.

Figure 1 The asymmetric unit of the title complex, with 50% probability displacement ellipsoids.

$\frac{[Cd_2(C_{14}H_8O_5)(C_{14}H_9O_5)_2}{(C_{12}H_9N_5)_2]}$
1441.91
Monoclinic, C2/c
298
27.471 (3), 7.4230 (6), 31.425 (3)
108.428 (3)
6079.5 (9)
4
Μο Κα
0.78
$0.20 \times 0.14 \times 0.11$
Bruker SMART 1000 CCD area-
detector
Multi-scan (SADABS; Bruker, 2007)
0.86, 0.92
14594, 5323, 3773
0.060
0.595
0.047, 0.107, 1.04
5323
421
H-atom parameters constrained
0.65, -0.68

Computer programs: SMART and SAINT (Bruker, 2007) and SHELXTL (Sheldrick, 2008).

Synthesis and crystallization

Table 2

Materials and physical measurements

All reagents and solvents were purchased from commercial sources and used as received. Elemental analysis for carbon, hydrogen and nitrogen were carried out on a Perkin–Elmer elemental analyzer model 240. Infrared spectra were taken on a Bruker Tensor 27 Fourier transform IR spectroscope in the region 4000–400 cm⁻¹, using KBr pellets.

Figure 2 The polymeric structure of the title complex.

Synthesis of $[Cd(Hoba)(oba)_{0.5}(3,4'-bpt)_2]_n$

A mixture of Cd(OAc)₂·H₂O (8 mg, 0.03 mmol), H2oba (7.7 mg, 0.06 mmol), and 3,4'-bpt (6.6 mg, 0.03 mmol) was dissolved in distilled water (7 ml), and then sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 433 K for 5 d under autogenous pressure. Then the mixture was cooled to room temperature at a rate of 5 K h⁻¹, and colourless crystals were obtained in a 42% yield based on Cd^{II}. FT–IR (KBr pellet, cm⁻¹): 3121 (*w*), 1608 (*s*), 1549 (*s*), 1494 (*m*), 1476 (*m*), 1412 (*s*), 1356 (*s*), 1298 (*w*), 1232 (*s*), 1155 (*m*), 873 (*m*), 844 (*w*), 771 (*m*), 694 (*w*).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank the Ningxia Natural Science Foundation of China (grant No. NZ14232).

References

- Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins,
- B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477. Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc.,
- Madison, Wisconsin, USA. Dong, B.-X., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H.-Q.
- & Hu, N.-H. (2007). Inorg. Chem. 46, 5933–5941. Huang, F.-P., Yang, Z.-M., Yao, P.-F., Yu, Q., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z. & Cheng, P. (2013). CrystEngComm, 15, 2657–2668.
- Huang, X.-Y., Yue, K.-F., Jin, J.-C., Liu, J.-Q., Wang, C.-J., Wang, Y.-Y. & Shi, Q.-Z. (2010). *Inorg. Chem. Commun.* **13**, 338–341.
- Lan, Y.-Q., Li, S.-L., Fu, Y.-M., Xu, Y.-H., Li, L., Su, Z.-M. & Fu, Q. (2008). *Dalton Trans.* pp. 6796–6807.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature*, **423**, 705–714.
- Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.
- Yao, P.-F., Ye, C.-J., Huang, F.-P., Bian, H.-D., Yu, Q. & Hu, K. (2013). J. Coord. Chem. 66, 1591–1601.

full crystallographic data

IUCrData (2016). **1**, x161092 [https://doi.org/10.1107/S2414314616010920]

Poly[bis[*µ*-4-(4-carboxyphenoxy)benzoato](*µ*-4,4'-oxydibenzoato)bis-[*µ*-3-(pyridin-4-yl)-5-(pyridin-3-yl)-1*H*-1,2,4-triazole]dicadmium(II)]

Xiao-Jin Qi, Bing-Nian Yuan and Kang-Long Zhang

 $\label{eq:poly_loss} Poly[bis[\mu-4-(4-carboxyphenoxy)benzoato](\mu-4,4'-oxydibenzoato)bis[\mu-3-(pyridin-4-yl)-5-(pyridin-3-yl)-1H-1,2,4-triazole]dicadmium(II)]$

Crystal data

 $[Cd_{2}(C_{14}H_{8}O_{5})(C_{14}H_{9}O_{5})_{2}(C_{12}H_{9}N_{5})_{2}]$ $M_{r} = 1441.91$ Monoclinic, C2/cHall symbol: -C 2yc a = 27.471 (3) Å b = 7.4230 (6) Å c = 31.425 (3) Å $\beta = 108.428$ (3)° V = 6079.5 (9) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.86, T_{\max} = 0.92$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.107$ S = 1.045323 reflections 421 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2904 $D_x = 1.575 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3641 reflections $\theta = 2.4-24.3^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.20 \times 0.14 \times 0.11 \text{ mm}$

14594 measured reflections 5323 independent reflections 3773 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -31 \rightarrow 32$ $k = -8 \rightarrow 8$ $l = -37 \rightarrow 32$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0453P)^2 + 0.9862P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.65$ e Å⁻³ $\Delta\rho_{min} = -0.68$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.289097 (11)	0.46259 (5)	0.030672 (11)	0.02920 (13)
N1	0.07438 (13)	0.7187 (5)	-0.01858 (12)	0.0294 (9)
H1	0.0956	0.7252	-0.0336	0.035*
N2	0.02470 (13)	0.7750 (5)	-0.03350 (12)	0.0297 (9)
N3	0.04482 (12)	0.6626 (5)	0.03668 (11)	0.0267 (9)
N4	0.22153 (13)	0.4928 (5)	0.05906 (12)	0.0293 (10)
N5	0.36097 (13)	0.3577 (6)	0.01178 (12)	0.0329 (10)
O1	0.28217 (12)	0.1455 (5)	0.04089 (10)	0.0358 (8)
O2	0.23531 (11)	-0.0955 (5)	0.03804 (10)	0.0361 (8)
O3	0.42338 (18)	0.7322 (6)	0.35543 (14)	0.0800 (14)
O4	0.47900 (14)	0.5180 (5)	0.38766 (13)	0.0539 (10)
H4	0.4907	0.5968	0.4064	0.081*
05	0.32055 (18)	0.0274 (6)	0.24857 (12)	0.0777 (15)
O6	0.35603 (11)	0.7166 (5)	0.06091 (10)	0.0342 (8)
07	0.33973 (12)	0.5070 (5)	0.10412 (10)	0.0381 (9)
08	0.5000	0.9873 (7)	0.2500	0.090 (2)
C1	0.00927 (15)	0.7377 (6)	0.00170 (15)	0.0281 (11)
C2	0.08526 (15)	0.6516 (6)	0.02293 (14)	0.0251 (10)
C3	0.17640 (15)	0.5611 (6)	0.03435 (14)	0.0300 (11)
Н3	0.1727	0.5992	0.0053	0.036*
C4	0.13503 (15)	0.5775 (6)	0.05022 (14)	0.0271 (11)
C5	0.14072 (18)	0.5158 (7)	0.09313 (15)	0.0409 (14)
Н5	0.1134	0.5217	0.1046	0.049*
C6	0.18669 (18)	0.4467 (8)	0.11829 (16)	0.0470 (15)
H6	0.1912	0.4054	0.1472	0.056*
C7	0.22616 (18)	0.4386 (7)	0.10063 (16)	0.0382 (13)
H7	0.2576	0.3933	0.1184	0.046*
C8	0.37231 (16)	0.3992 (7)	-0.02542 (15)	0.0333 (12)
H8	0.3474	0.4559	-0.0488	0.040*
C9	0.41953 (16)	0.3614 (7)	-0.03072 (15)	0.0359 (12)
Н9	0.4259	0.3930	-0.0571	0.043*
C10	0.45670 (16)	0.2770 (6)	0.00319 (14)	0.0274 (11)
C11	0.44514 (17)	0.2305 (7)	0.04141 (16)	0.0358 (12)
H11	0.4692	0.1722	0.0650	0.043*
C12	0.39741 (18)	0.2718 (7)	0.04391 (17)	0.0400 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	0.3899	0.2378	0.0696	0.048*
C13	0.26637 (16)	0.0196 (7)	0.06003 (15)	0.0281 (11)
C14	0.28350 (16)	0.0110 (6)	0.11004 (14)	0.0293 (11)
C15	0.32486 (16)	0.1127 (7)	0.13509 (14)	0.0302 (11)
H15	0.3438	0.1778	0.1206	0.036*
C16	0.33845 (17)	0.1191 (7)	0.18129 (15)	0.0364 (12)
H16	0.3668	0.1859	0.1978	0.044*
C17	0.3099 (2)	0.0266 (8)	0.20264 (16)	0.0498 (15)
C18	0.2697 (2)	-0.0800 (9)	0.17870 (17)	0.0587 (17)
H18	0.2514	-0.1467	0.1936	0.070*
C19	0.25647 (19)	-0.0883 (8)	0.13231 (16)	0.0464 (14)
H19	0.2293	-0.1608	0.1161	0.056*
C20	0.4371 (2)	0.5775 (9)	0.35748 (18)	0.0476 (15)
C21	0.40777 (19)	0.4321 (8)	0.32755 (15)	0.0398 (13)
C22	0.3641 (2)	0.4764 (9)	0.29242 (19)	0.0603 (17)
H22	0.3544	0.5964	0.2870	0.072*
C23	0.3352 (2)	0.3426 (11)	0.2656 (2)	0.0687 (19)
H23	0.3056	0.3721	0.2424	0.082*
C24	0.3501 (2)	0.1671 (9)	0.27310 (17)	0.0544 (17)
C25	0.3937 (2)	0.1211 (9)	0.30754 (18)	0.0581 (16)
H25	0.4041	0.0016	0.3126	0.070*
C26	0.4211 (2)	0.2561 (8)	0.33417 (17)	0.0524 (15)
H26	0.4502	0.2258	0.3578	0.063*
C27	0.36363 (15)	0.6449 (7)	0.09910 (15)	0.0288 (11)
C28	0.40157 (17)	0.7291 (7)	0.13951 (15)	0.0318 (11)
C29	0.42965 (17)	0.8779 (8)	0.13527 (17)	0.0414 (13)
H29	0.4256	0.9248	0.1069	0.050*
C30	0.46327 (19)	0.9576 (8)	0.17205 (18)	0.0502 (14)
H30	0.4826	1.0563	0.1688	0.060*
C31	0.4681 (2)	0.8909 (9)	0.21363 (18)	0.0572 (17)
C32	0.4408 (3)	0.7453 (9)	0.21871 (19)	0.078 (2)
H32	0.4447	0.7002	0.2472	0.094*
C33	0.4070 (2)	0.6642 (8)	0.18155 (18)	0.0624 (18)
H33	0.3879	0.5652	0.1851	0.075*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.01983 (18)	0.0412 (2)	0.0273 (2)	-0.00041 (17)	0.00838 (13)	-0.00007 (17)
N1	0.0235 (19)	0.040 (3)	0.028 (2)	0.0058 (18)	0.0120 (17)	0.0039 (18)
N2	0.0222 (19)	0.038 (3)	0.032 (2)	0.0040 (18)	0.0123 (17)	0.0012 (18)
N3	0.0226 (19)	0.032 (3)	0.031 (2)	0.0021 (17)	0.0163 (17)	0.0016 (18)
N4	0.0228 (19)	0.035 (3)	0.030 (2)	0.0053 (17)	0.0094 (16)	-0.0018 (17)
N5	0.026 (2)	0.041 (3)	0.034 (2)	0.0002 (19)	0.0129 (18)	-0.0012 (19)
O1	0.046 (2)	0.036 (2)	0.0262 (18)	0.0050 (17)	0.0135 (15)	0.0043 (15)
O2	0.0327 (17)	0.047 (2)	0.0252 (17)	-0.0099 (17)	0.0040 (14)	-0.0013 (16)
O3	0.102 (4)	0.046 (3)	0.071 (3)	0.013 (3)	-0.003(3)	-0.005 (2)
O4	0.048 (2)	0.051 (3)	0.055 (3)	0.000 (2)	0.0047 (19)	-0.0138 (19)

05	0.114(4)	0.000 (4)	0.027(2)	0.057(2)	0.019(2)	0.007(2)
05	0.114(4)	0.090 (4)	0.027(2)	-0.057(3)	0.018(2)	-0.007(2)
00	0.0272(10)	0.051(2)	0.0250(18)	0.0008(10)	0.0097(14)	0.0039 (16)
0/	0.0352 (18)	0.042(3)	0.0345 (19)	-0.0109 (17)	0.0066 (15)	-0.0044 (16)
08	0.103 (5)	0.037 (4)	0.072 (4)	0.000	-0.055 (4)	0.000
CI	0.021 (2)	0.027 (3)	0.039 (3)	0.001 (2)	0.013 (2)	-0.003 (2)
C2	0.024 (2)	0.021 (3)	0.033 (3)	0.001 (2)	0.012 (2)	0.002 (2)
C3	0.025 (2)	0.037 (3)	0.027 (2)	0.002 (2)	0.008 (2)	0.002 (2)
C4	0.025 (2)	0.028 (3)	0.030 (3)	0.005 (2)	0.0101 (19)	0.004 (2)
C5	0.033 (3)	0.060 (4)	0.033 (3)	0.013 (3)	0.016 (2)	0.006 (3)
C6	0.044 (3)	0.070 (4)	0.032 (3)	0.019 (3)	0.020 (2)	0.022 (3)
C7	0.034 (3)	0.040 (4)	0.040 (3)	0.014 (2)	0.011 (2)	0.009 (2)
C8	0.026 (2)	0.042 (3)	0.032 (3)	0.005 (2)	0.010 (2)	0.001 (2)
C9	0.031 (3)	0.050 (4)	0.030 (3)	0.006 (2)	0.015 (2)	0.005 (2)
C10	0.026 (2)	0.028 (3)	0.030 (3)	-0.003 (2)	0.012 (2)	-0.004 (2)
C11	0.026 (2)	0.044 (4)	0.038 (3)	0.000 (2)	0.011 (2)	0.001 (2)
C12	0.038 (3)	0.047 (4)	0.041 (3)	0.007 (3)	0.021 (2)	0.008 (3)
C13	0.021 (2)	0.034 (3)	0.028 (3)	0.009 (2)	0.007 (2)	0.001 (2)
C14	0.027 (2)	0.033 (3)	0.028 (2)	0.001 (2)	0.009 (2)	0.001 (2)
C15	0.031 (2)	0.036 (3)	0.025 (2)	0.001 (2)	0.011 (2)	0.004 (2)
C16	0.036 (3)	0.039 (3)	0.032 (3)	-0.010 (2)	0.007 (2)	-0.002 (2)
C17	0.067 (4)	0.055 (4)	0.025 (3)	-0.019 (3)	0.012 (3)	0.000 (3)
C18	0.072 (4)	0.075 (5)	0.033 (3)	-0.032 (4)	0.022 (3)	-0.003 (3)
C19	0.047 (3)	0.053 (4)	0.040 (3)	-0.025 (3)	0.016 (3)	-0.006 (3)
C20	0.054 (4)	0.049 (4)	0.043 (3)	-0.003 (3)	0.020 (3)	-0.003 (3)
C21	0.046 (3)	0.045 (4)	0.031 (3)	0.001 (3)	0.016 (2)	-0.003 (3)
C22	0.070 (4)	0.059 (4)	0.045 (3)	0.013 (3)	0.008 (3)	-0.004(3)
C23	0.058 (4)	0.090 (6)	0.049 (4)	0.002 (4)	0.003 (3)	-0.010 (4)
C24	0.075 (4)	0.063 (5)	0.028 (3)	-0.025 (4)	0.020 (3)	-0.007 (3)
C25	0.086 (4)	0.050 (4)	0.034 (3)	-0.010 (4)	0.012 (3)	-0.001(3)
C26	0.058 (4)	0.052 (4)	0.039 (3)	-0.001(3)	0.004 (3)	0.001 (3)
C27	0.017 (2)	0.042 (3)	0.028 (3)	0.005 (2)	0.0072 (19)	-0.006(2)
C28	0.031 (2)	0.032 (3)	0.028 (3)	0.003 (2)	0.002 (2)	0.004 (2)
C29	0.035 (3)	0.047 (4)	0.041 (3)	-0.002(3)	0.010 (2)	0.001 (3)
C30	0.037 (3)	0.047 (4)	0.058 (4)	-0.013 (3)	0.002 (3)	0.000 (3)
C31	0.053 (3)	0.043 (4)	0.048 (4)	0.001 (3)	-0.024(3)	-0.008(3)
C32	0.115 (5)	0.062 (5)	0.028 (3)	-0.024 (4)	-0.019(3)	0.014 (3)
C33	0.077 (4)	0.056 (4)	0.039 (3)	-0.030 (4)	-0.003 (3)	0.010 (3)
			(-)			- (-)

Geometric parameters (Å, °)

Cd1—O1	2.391 (4)	С8—Н8	0.9300
Cd1-O1 ⁱ	2.598 (3)	C9—C10	1.372 (6)
Cd1-O2 ⁱ	2.274 (3)	С9—Н9	0.9300
Cd106	2.595 (3)	C10—C11	1.380 (6)
Cd1—O7	2.311 (3)	C10-C1 ^{iv}	1.488 (5)
Cd1—N4	2.310 (3)	C11—C12	1.373 (6)
Cd1—N5	2.366 (3)	C11—H11	0.9300
N1—C2	1.339 (5)	C12—H12	0.9300

N1—H1 0.8600 $C14$ — $C19$ N2—C1 1.333 (5) $C14$ — $C15$ N3—C2 1.316 (5) $C15$ — $C16$ N3—C1 1.339 (5) $C15$ —H15N4—C7 1.334 (6) $C16$ — $C17$ N4—C3 1.337 (5) $C16$ —H16N5—C12 1.338 (6) $C17$ — $C18$ N5—C8 1.337 (5) $C18$ — $C19$ $O1$ — $C13$ 1.260 (5) $C18$ —H18 $O1$ — $Cd1^i$ 2.598 (3) $C19$ —H19 $O2$ — $C13$ 1.250 (5) $C20$ — $C21$ $O2$ —Cd1^i 2.274 (3) $C21$ — $C26$ $O3$ — $C20$ 1.205 (7) $C21$ — $C22$ $O4$ —C4 0.8200 $C22$ —H22	$\begin{array}{c} 1.383 \ (6) \\ 1.384 \ (6) \\ 1.381 \ (6) \\ 0.9300 \\ 1.368 \ (6) \\ 0.9300 \\ 1.373 \ (7) \\ 1.388 \ (7) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.490 \ (8) \\ 1.355 \ (7) \end{array}$
N2C1 $1.333 (5)$ C14C15N3C2 $1.316 (5)$ C15C16N3C1 $1.339 (5)$ C15H15N4C7 $1.334 (6)$ C16C17N4C3 $1.337 (5)$ C16H16N5C12 $1.338 (6)$ C17C18N5C8 $1.337 (5)$ C18C19O1C13 $1.260 (5)$ C18H18O1Cd1i $2.598 (3)$ C19H19O2C13 $1.250 (5)$ C20C21O2Cd1i $2.274 (3)$ C21C26O3C20 $1.205 (7)$ C21C22O4C20 $1.315 (6)$ C22C23O4H4 0.8200 C22H22	1.384 (6) 1.381 (6) 0.9300 1.368 (6) 0.9300 1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N3-C2 1.316 (5)C15-C16N3-C1 1.339 (5)C15-H15N4-C7 1.334 (6)C16-C17N4-C3 1.337 (5)C16-H16N5-C12 1.338 (6)C17-C18N5-C8 1.337 (5)C18-C19O1-C13 1.260 (5)C18-H18O1-Cd1i 2.598 (3)C19-H19O2-C13 1.250 (5)C20-C21O2-Cd1i 2.274 (3)C21-C26O3-C20 1.205 (7)C21-C22O4-C20 1.315 (6)C22-C23O4-H4 0.8200 C22-H22	1.381 (6) 0.9300 1.368 (6) 0.9300 1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N3C1 $1.339 (5)$ C15H15N4C7 $1.334 (6)$ C16C17N4C3 $1.337 (5)$ C16H16N5C12 $1.338 (6)$ C17C18N5C8 $1.337 (5)$ C18C19O1C13 $1.260 (5)$ C18H18O1Cd1i $2.598 (3)$ C19H19O2C13 $1.250 (5)$ C20C21O2Cd1i $2.274 (3)$ C21C26O3C20 $1.205 (7)$ C21C22O4C20 $1.315 (6)$ C22C23O4H4 0.8200 C22H22	0.9300 1.368 (6) 0.9300 1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N4—C7 $1.334 (6)$ C16—C17N4—C3 $1.337 (5)$ C16—H16N5—C12 $1.338 (6)$ C17—C18N5—C8 $1.337 (5)$ C18—C19O1—C13 $1.260 (5)$ C18—H18O1—Cd1i $2.598 (3)$ C19—H19O2—C13 $1.250 (5)$ C20—C21O2—Cd1i $2.274 (3)$ C21—C26O3—C20 $1.205 (7)$ C21—C22O4—C20 $1.315 (6)$ C22—C23O4—H4 0.8200 C22—H22	1.368 (6) 0.9300 1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N4—C3 $1.337 (5)$ C16—H16N5—C12 $1.338 (6)$ C17—C18N5—C8 $1.337 (5)$ C18—C19O1—C13 $1.260 (5)$ C18—H18O1—Cd1i $2.598 (3)$ C19—H19O2—C13 $1.250 (5)$ C20—C21O2—Cd1i $2.274 (3)$ C21—C26O3—C20 $1.205 (7)$ C21—C22O4—C20 $1.315 (6)$ C22—C23O4—H4 0.8200 C22—H22	0.9300 1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N5C12 $1.338 (6)$ C17C18N5C8 $1.337 (5)$ C18C19O1C13 $1.260 (5)$ C18H18O1Cd1i $2.598 (3)$ C19H19O2C13 $1.250 (5)$ C20C21O2Cd1i $2.274 (3)$ C21C26O3C20 $1.205 (7)$ C21C22O4C20 $1.315 (6)$ C22C23O4H4 0.8200 C22H22	1.373 (7) 1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
N5—C8 $1.337 (5)$ C18—C19O1—C13 $1.260 (5)$ C18—H18O1—Cd1i $2.598 (3)$ C19—H19O2—C13 $1.250 (5)$ C20—C21O2—Cd1i $2.274 (3)$ C21—C26O3—C20 $1.205 (7)$ C21—C22O4—C20 $1.315 (6)$ C22—C23O4—H4 0.8200 C22—H22	1.388 (7) 0.9300 0.9300 1.490 (8) 1.355 (7)
$O1-C13$ 1.260 (5) $C18-H18$ $O1-Cd1^i$ 2.598 (3) $C19-H19$ $O2-C13$ 1.250 (5) $C20-C21$ $O2-Cd1^i$ 2.274 (3) $C21-C26$ $O3-C20$ 1.205 (7) $C21-C22$ $O4-C20$ 1.315 (6) $C22-C23$ $O4-H4$ 0.8200 $C22-H22$	0.9300 0.9300 1.490 (8) 1.355 (7)
O1Cd1i2.598 (3)C19H19O2C131.250 (5)C20C21O2Cd1i2.274 (3)C21C26O3C201.205 (7)C21C22O4C201.315 (6)C22C23O4H40.8200C22H22	0.9300 1.490 (8) 1.355 (7)
O2-C131.250 (5)C20-C21O2-Cd1i2.274 (3)C21-C26O3-C201.205 (7)C21-C22O4-C201.315 (6)C22-C23O4-H40.8200C22-H22	1.490 (8) 1.355 (7)
O2Cd1i2.274 (3)C21C26O3C201.205 (7)C21C22O4C201.315 (6)C22C23O4H40.8200C22H22	1 355 (7)
O3-C201.205 (7)C21-C22O4-C201.315 (6)C22-C23O4-H40.8200C22-H22	1,000 (11
O4—C201.315 (6)C22—C23O4—H40.8200C22—H22	1.388 (7)
O4—H4 0.8200 C22—H22	1.381 (8)
	0.9300
O5—C17 1.379 (6) C23—C24	1.364 (9)
O5—C24 1.391 (7) C23—H23	0.9300
O6-C27 1.268 (5) C24-C25	1.378 (8)
O7—C27 1.253 (5) C25—C26	1.369 (8)
O8—C31 1.397 (6) C25—H25	0.9300
O8—C31 ⁱⁱ 1.397 (6) C26—H26	0.9300
C1—C10 ⁱⁱⁱ 1.488 (5) C27—C28	1.501 (6)
C2—C4 1.472 (6) C28—C33	1.369 (7)
C3—C4 1.383 (5) C28—C29	1.378 (7)
С3—Н3 0.9300 С29—С30	1.365 (7)
C4—C5 1.385 (6) C29—H29	0.9300
C5—C6 1.361 (6) C30—C31	1.364 (8)
С5—Н5 0.9300 С30—Н30	0.9300
C6—C7 1.367 (6) C31—C32	1.355 (8)
С6—Н6 0.9300 С32—С33	1.379 (7)
С7—Н7 0.9300 С32—Н32	0.9300
C8—C9 1.388 (6) C33—H33	0.9300
$O2^{i}$ —Cd1—N4 107.04 (12) C11—C10—C1 ^{iv}	118.1 (4)
O2 ⁱ —Cd1—O7 142.22 (12) C12—C11—C10	118.7 (5)
N4—Cd1—O7 84.49 (12) C12—C11—H11	120.6
O2 ⁱ —Cd1—N5 85.60 (12) C10—C11—H11	120.6
N4—Cd1—N5 164.75 (14) N5—C12—C11	124.3 (4)
O7—Cd1—N5 90.63 (12) N5—C12—H12	117.8
O2 ⁱ —Cd1—O1 122.85 (11) C11—C12—H12	117.8
N4—Cd1—O1 86.32 (12) O2—C13—O1	121.4 (4)
O7—Cd1—O1 93.13 (11) O2—C13—C14	119.1 (4)
N5—Cd1—O1 79.51 (12) O1—C13—C14	119.5 (4)
O2 ⁱ —Cd1—O6 89.69 (11) C19—C14—C15	118.6 (4)
N4—Cd1—O6 110.55 (11) C19—C14—C13	121.0 (4)
$O7 C41 O6 \qquad \qquad 52 \ O((10) \qquad \qquad C15 C14 C12$	120.2(4)
U/Cu1U0 52.96 (10) C15C14C13	120.3 (4)

O1—Cd1—O6	138.01 (10)	C16—C15—H15	119.4
$O2^{i}$ —Cd1—O1 ⁱ	52.89 (11)	C14—C15—H15	119.4
N4—Cd1—O1 ⁱ	83.49 (11)	C17—C16—C15	119.5 (4)
O7—Cd1—O1 ⁱ	163.63 (11)	C17—C16—H16	120.3
N5—Cd1—O1 ⁱ	98.13 (11)	C15—C16—H16	120.3
O1-Cd1-O1 ⁱ	75.05 (11)	C16—C17—C18	120.4 (5)
O6-Cd1-O1 ⁱ	142.57 (10)	C16—C17—O5	123.1 (5)
C2—N1—N2	109.9 (3)	C18—C17—O5	116.4 (5)
C2—N1—H1	125.0	C17—C18—C19	120.0 (5)
N2—N1—H1	125.0	C17—C18—H18	120.0
C1—N2—N1	101.4 (3)	С19—С18—Н18	120.0
C2—N3—C1	103.2 (3)	C14—C19—C18	120.2 (5)
C7—N4—C3	117 8 (4)	C14—C19—H19	119.9
C7-N4-Cd1	120.6 (3)	C18—C19—H19	119.9
$C_3 - N_4 - C_{d1}$	1215(3)	03-C20-04	123.1(5)
C12 - N5 - C8	116 4 (4)	03-C20-C21	124.0 (6)
C12 - N5 - Cd1	116.9 (3)	04-C20-C21	12.00(0) 112.8(5)
C8 - N5 - Cd1	125.9(3)	$C_{20} = C_{21} = C_{22}$	112.0(5) 118.3(5)
C13 - O1 - Cd1	125.7(3) 148.0(3)	$C_{20} = C_{21} = C_{22}$	110.5(5) 122.4(5)
$C_{13} = O_1 = C_{11}^{i_1}$	84.6 (3)	$C_{20} = C_{21} = C_{20}$	122.4(5)
$Cd1 - Cd1^{i}$	104.95(11)	$C_{22} = C_{21} = C_{20}$	119.5 (0)
$C_{13} = O_1 = C_{11}$	104.95(11) 100.0(3)	$C_{23} = C_{22} = C_{21}$	120.1 (0)
$C_{13} = 02 = C_{13}$	100.0 (3)	$C_{23} = C_{22} = H_{22}$	120.0
$C_{20} - 0_{4} - 11_{4}$	118 5 (4)	$C_{21} = C_{22} = M_{22}$	120.0
C17 - 05 - C24	110.3 (4) 95.9 (2)	C_{24} C_{23} C_{22} C_{24} C_{23} C_{23} C_{24} C_{24} C_{25} C_{24} C_{24} C_{25} C_{24} C_{24} C_{25} C_{24} C_{25} C_{24} C_{24} C_{25} C_{24} C_{24} C_{25} C	119.8 (0)
$C_{27} = 00 - C_{41}$	83.8(3)	$C_{24} = C_{23} = H_{23}$	120.1
$C_2 = 0^{-1} - C_{11}^{-1}$	99.5 (5) 118.4 (6)	$C_{22} = C_{23} = H_{23}$	120.1
$C_{31} = 0_{0} = C_{31}$	116.4(0) 115.2(4)	$C_{23} = C_{24} = C_{23}$	120.8(0)
N2 - C1 - N3	113.5 (4)	$C_{23} = C_{24} = 0_{3}$	121.7(0)
$N_2 = C_1 = C_1 O_1^{m}$	123.5 (4)	$C_{23} = C_{24} = 0_{3}$	117.4 (6)
N3-C1-C10	121.2 (4)	$C_{20} = C_{23} = C_{24}$	118.2 (6)
N3 - C2 - N1	110.2 (4)	C26-C25-H25	120.9
$N_{3} = C_{2} = C_{4}$	123.9 (4)	C24—C25—H25	120.9
NI = C2 = C4	125.9 (4)	$C_{21} = C_{26} = C_{25}$	122.8 (5)
N4-C3-C4	122.7 (4)	$C_{21} = C_{26} = H_{26}$	118.6
N4—C3—H3	118.6	C25—C26—H26	118.6
C4—C3—H3	118.6	$0/-C^{2}/-06$	121.7 (4)
C3—C4—C5	118.0 (4)	0/	119.0 (4)
C3—C4—C2	122.7 (4)	06	119.2 (5)
C5—C4—C2	119.3 (4)	C33—C28—C29	118.8 (5)
C6—C5—C4	119.2 (4)	C33—C28—C27	120.3 (5)
С6—С5—Н5	120.4	C29—C28—C27	120.8 (4)
C4—C5—H5	120.4	C30—C29—C28	121.0 (5)
C5—C6—C7	119.4 (4)	С30—С29—Н29	119.5
С5—С6—Н6	120.3	C28—C29—H29	119.5
С7—С6—Н6	120.3	C31—C30—C29	119.3 (5)
N4—C7—C6	122.8 (4)	C31—C30—H30	120.4
N4—C7—H7	118.6	С29—С30—Н30	120.4
С6—С7—Н7	118.6	C32—C31—C30	120.8 (5)

		GAR GR G	
N5	122.9 (4)	$C_{32} - C_{31} - O_{8}$	122.7 (5)
N5—C8—H8	118.5	C30—C31—O8	116.4 (6)
С9—С8—Н8	118.5	C31—C32—C33	119.9 (5)
C10-C9-C8	119.6 (4)	C31—C32—H32	120.0
С10—С9—Н9	120.2	C33—C32—H32	120.0
С8—С9—Н9	120.2	C_{28} C_{33} C_{32}	120.1 (6)
$C_0 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	120.2 118 1 (4)	$C_{20} C_{33} U_{32}$	110.0
C_{2} C_{10} C_{11}	110.1(4)	C28-C33-H33	119.9
C9—C10—C1"	123.8 (4)	C32—C33—H33	119.9
	(-)		
C2-N1-N2-C1	0.6 (5)	C5—C6—C7—N4	-1.3 (9)
O2 ⁱ —Cd1—N4—C7	-175.1 (3)	C12—N5—C8—C9	-1.8 (7)
O7—Cd1—N4—C7	-31.9 (4)	Cd1—N5—C8—C9	167.5 (4)
N5—Cd1—N4—C7	39.9 (7)	N5-C8-C9-C10	0.3 (8)
O1—Cd1—N4—C7	61.6 (4)	C8—C9—C10—C11	0.9 (7)
O6-Cd1-N4-C7	-78.9 (4)	C8-C9-C10-C1 ^{iv}	-177.2 (4)
O1 ⁱ —Cd1—N4—C7	136.9 (4)	C9—C10—C11—C12	-0.5 (7)
$O2^{i}$ —Cd1—N4—C3	6.3 (4)	$C1^{iv}$ — $C10$ — $C11$ — $C12$	177.7 (5)
07—Cd1—N4—C3	1495(4)	C8 - N5 - C12 - C11	22(8)
N5 Cd1 N4 C3	-1387(5)	Cd1 N5 $C12$ $C11$	-1681(4)
n_{1} c_{1} n_{4} c_{2}	130.7(3)	$C_{10} = C_{11} = C_{12} = C_{11}$	100.1(4)
OI = CaI = N4 = C3	-117.0(4)	C10-C11-C12-N3	-1.1(8)
06-01 $N4-03$	102.5 (3)		-12.0(5)
Ol ¹ —Cdl—N4—C3	-41.7 (3)	Cd1 ¹ —O2—C13—C14	165.8 (3)
O2 ⁱ —Cd1—N5—C12	173.7 (4)	Cd1—O1—C13—O2	120.0 (5)
N4—Cd1—N5—C12	-39.6 (7)	Cd1 ⁱ O1C13O2	10.3 (4)
O7—Cd1—N5—C12	31.4 (4)	Cd1-01-C13-C14	-57.7 (7)
O1-Cd1-N5-C12	-61.7 (4)	Cd1 ⁱ	-167.4 (4)
O6—Cd1—N5—C12	83.1 (4)	O2—C13—C14—C19	-17.1 (7)
O1 ⁱ —Cd1—N5—C12	-134.7(4)	O1—C13—C14—C19	160.7 (5)
Ω^{2i} Cd1 N5 C8	4 4 (4)	0^{2} - C13 - C14 - C15	1674(4)
N4—Cd1—N5—C8	151 1 (5)	01 - C13 - C14 - C15	-149(6)
O7 Cd1 N5 C8	-137.0(4)	$C_{10} C_{14} C_{15} C_{16}$	-1.5(7)
$O_1 = C_1 = N_2 = C_8$	120.0 (4)	$C_{12} = C_{14} = C_{15} = C_{16}$	1.3(7)
OI = CaI = NS = C8	129.0(4)	C13 - C14 - C15 - C16	1/4.1 (4)
	-86.2 (4)		-1.4 (8)
Ol ¹ —Cdl—N5—C8	56.0 (4)	C15—C16—C17—C18	3.6 (9)
$O2^{1}$ —Cd1—O1—C13	-127.7 (5)	C15—C16—C17—O5	-179.4 (5)
N4—Cd1—O1—C13	-19.8 (5)	C24—O5—C17—C16	20.8 (9)
O7—Cd1—O1—C13	64.5 (5)	C24—O5—C17—C18	-162.1 (6)
N5—Cd1—O1—C13	154.5 (5)	C16—C17—C18—C19	-2.8 (10)
O6—Cd1—O1—C13	97.2 (5)	O5-C17-C18-C19	180.0 (5)
O1 ⁱ Cd1C13	-104.0 (6)	C15—C14—C19—C18	2.3 (8)
$O2^{i}$ —Cd1—O1—Cd1 ⁱ	-23.70(16)	C13—C14—C19—C18	-173.3(5)
N4—Cd1—O1—Cd1 ⁱ	84.24 (12)	C17—C18—C19—C14	-0.2(9)
$07-Cd1-01-Cd1^{i}$	168 50 (11)	03-C20-C21-C26	-172.0(6)
N5-Cd1-O1-Cd1 ^{i}	-101 44 (13)	0.00000000000000000000000000000000000	5.8 (7)
$06 Cd1 01 Cd1^{i}$	-158.75(10)	$O_{7} = C_{20} = C_{21} = C_{20}$	58(8)
	130.75 (10)	03 - 020 - 021 - 022	3.0(0)
	0.0	04 - 020 - 021 - 022	-1/6.4(5)
02	173.6 (2)	C26—C21—C22—C23	0.8 (8)
N4—Cd1—O6—C27	65.5 (3)	C20—C21—C22—C23	-177.1(5)

O7—Cd1—O6—C27	-0.2 (2)	C21—C22—C23—C24	-1.3 (9)
N5-Cd1-O6-C27	-100.8 (3)	C22—C23—C24—C25	0.6 (9)
O1—Cd1—O6—C27	-42.8 (3)	C22—C23—C24—O5	176.2 (5)
O1 ⁱ Cd1O6C27	172.4 (2)	C17—O5—C24—C23	59.4 (8)
O2 ⁱ —Cd1—O7—C27	-9.9 (4)	C17—O5—C24—C25	-124.9 (6)
N4—Cd1—O7—C27	-120.8 (3)	C23—C24—C25—C26	0.6 (9)
N5-Cd1-07-C27	73.7 (3)	O5—C24—C25—C26	-175.2 (5)
O1—Cd1—O7—C27	153.3 (3)	C22—C21—C26—C25	0.4 (9)
O6—Cd1—O7—C27	0.2 (2)	C20—C21—C26—C25	178.3 (5)
O1 ⁱ —Cd1—O7—C27	-163.7 (3)	C24—C25—C26—C21	-1.1 (9)
N1—N2—C1—N3	-0.4 (5)	Cd1-07-C27-06	-0.4(5)
N1—N2—C1—C10 ⁱⁱⁱ	178.9 (4)	Cd1-07-C27-C28	178.6 (3)
C2—N3—C1—N2	0.0 (5)	Cd1—O6—C27—O7	0.4 (4)
C2—N3—C1—C10 ⁱⁱⁱ	-179.3 (4)	Cd1	-178.6 (4)
C1—N3—C2—N1	0.4 (5)	O7—C27—C28—C33	-5.0 (7)
C1—N3—C2—C4	179.7 (4)	O6—C27—C28—C33	174.0 (5)
N2—N1—C2—N3	-0.7 (5)	O7—C27—C28—C29	178.2 (4)
N2—N1—C2—C4	180.0 (4)	O6—C27—C28—C29	-2.8 (7)
C7—N4—C3—C4	0.1 (7)	C33—C28—C29—C30	1.5 (8)
Cd1—N4—C3—C4	178.7 (3)	C27—C28—C29—C30	178.3 (4)
N4—C3—C4—C5	-1.7 (7)	C28—C29—C30—C31	-1.5 (8)
N4—C3—C4—C2	-179.6 (4)	C29—C30—C31—C32	1.1 (9)
N3—C2—C4—C3	177.5 (4)	C29—C30—C31—O8	-175.0 (5)
N1—C2—C4—C3	-3.3 (7)	C31 ⁱⁱ —O8—C31—C32	43.9 (5)
N3—C2—C4—C5	-0.4 (7)	C31 ⁱⁱ —O8—C31—C30	-140.1 (6)
N1—C2—C4—C5	178.8 (5)	C30—C31—C32—C33	-0.8 (11)
C3—C4—C5—C6	1.7 (8)	O8—C31—C32—C33	175.0 (6)
C2-C4-C5-C6	179.8 (5)	C29—C28—C33—C32	-1.2 (9)
C4—C5—C6—C7	-0.4 (8)	C27—C28—C33—C32	-178.0 (5)
C3—N4—C7—C6	1.4 (7)	C31—C32—C33—C28	0.8 (11)
Cd1—N4—C7—C6	-177.3 (4)		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*+1, *y*, -*z*+1/2; (iii) *x*-1/2, *y*+1/2, *z*; (iv) *x*+1/2, *y*-1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H…A
N1—H1···O6 ^v	0.86	1.85	2.695 (5)	169
O4—H4····N2 ^{vi}	0.82	2.06	2.848 (5)	162
C3—H3…O6 ^v	0.93	2.40	3.285 (5)	158
C25—H25…O3 ^{vii}	0.93	2.37	3.238 (8)	154

Symmetry codes: (v) -*x*+1/2, -*y*+3/2, -*z*; (vi) *x*+1/2, -*y*+3/2, *z*+1/2; (vii) *x*, *y*-1, *z*.