

ISSN 2414-3146

Received 4 July 2016 Accepted 14 July 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; silole; organosilicon compound.

CCDC reference: 1493435

Structural data: full structural data are available from iucrdata.iucr.org

5-Butyl-5-(2-methyl-1*H*-inden-1-yl)-5*H*-dibenzo-[*b*,*d*]silole

Michael G. Medvedev,^a* Vyatcheslav V. Izmer,^b Dmitry S. Kononovich,^b Dmitry V. Uborsky^b and Alexander Z. Voskoboynikov^b

^aX-ray Structural Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, GSP-1, Moscow 119991, V-334, Russian Federation, and ^bDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation. *Correspondence e-mail: medvedev.m.g@gmail.com

The structure of the title compound [systematic name: 8-butyl-8-(2-methyl-1*H*-inden-1-yl)-8-silatricyclo[7.4.0.0^{2,3}]trideca-1(13),2,4,6,9,11-hexaene], $C_{26}H_{26}Si$, at 110 K has orthorhombic (*Pbca*) symmetry. In the molecule, the butyl group displays an extended conformation with the C–C–C–C torsion angle of 176.8 (2)°. The dihedral angle between the biphenyl group and the indole group is 60.04 (2)°. The structure exhibits a weak intramolecular C–H··· π interaction.

Structure description

Benzannulated siloles are distinguish from their all-carbon analogues by their unique electronic structure (Yamaguchi & Tamao, 2005), and so are valuable building blocks for π -conjugated polymers. In the title molecule (Fig. 1), the butyl group displays an extended conformation with the C23-C24-C25-C26 torsion angle of 176.8 (2)°. All bond lengths are normal. The structure contains an intramolecular C-H··· π interaction (Table 1).

Synthesis and crystallization

This compound was obtained *via* treatment of 5,5-dichloro-5*H*-dibenzo[*b*,*d*]silole (Liu *et al.*, 2002) with 1 equivalent of lithium salt of 2-methyl-1*H*-indene in THF followed by 1 equivalent of 2.5 *M* butyllithium in hexanes. Single crystals suitable for X-ray crystal structure analysis were grown from an *n*-hexane solution at 243 K.

Table 1
Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C16–C21 ring

0		e		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2\cdots Cg1$	0.95	2.78	3.446 (3)	128

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

The molecular structure with displacement ellipsoids shown at the 50% probability level.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{26}H_{26}Si$
$M_{\rm r}$	366.56
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	110
a, b, c (Å)	7.490 (2), 18.968 (6), 28.635 (9)
$V(Å^3)$	4068 (2)
Ζ	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.12
Crystal size (mm)	$0.2 \times 0.2 \times 0.1$
Data collection	
Diffractometer	Bruker SMART 1000 CCD
No. of measured, independent and observed $[I > 2\pi(D)]$ reflections	25428, 5934, 2858
R	0.075
$(\sin \theta/\lambda)$ $(\dot{\Delta}^{-1})$	0.704
$(\sin \theta/\lambda)_{\rm max}$ (A)	0.704
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.148, 0.86
No. of reflections	5934
No. of parameters	246
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.52, -0.24

Computer programs: SMART and SAINT (Bruker, 2007), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Liu, Y., Stringfellow, T. C., Ballweg, D., Guzei, I. A. & West, R. (2002). J. Am. Chem. Soc. 124, 49–57.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Yamaguchi, S. & Tamao, K. (2005). Chem. Lett. 34, 2-7.

full crystallographic data

IUCrData (2016). **1**, x161151 [https://doi.org/10.1107/S2414314616011512]

5-Butyl-5-(2-methyl-1*H*-inden-1-yl)-5*H*-dibenzo[*b*,*d*]silole

Michael G. Medvedev, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Dmitry V. Uborsky and Alexander Z. Voskoboynikov

 $D_{\rm x} = 1.197 {\rm Mg m^{-3}}$

Block, clear light yellow

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

 $0.2 \times 0.2 \times 0.1 \text{ mm}$

 $\theta = 3-60^{\circ}$

 $R_{\rm int} = 0.075$

 $h = -10 \rightarrow 7$ $k = -23 \rightarrow 26$ $l = -40 \rightarrow 36$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 110 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 879 reflections

8-Butyl-8-(2-methyl-1*H*-inden-1-yl)-8-silatricyclo[7.4.0.0^{2,3}]trideca-1(13),2,4,6,9,11-hexaene

Crystal data	
C ₂₆ H ₂₆ Si	
$M_{\rm r} = 366.56$	

 $M_r = 366.56$ Orthorhombic, *Pbca* a = 7.490 (2) Å b = 18.968 (6) Å c = 28.635 (9) Å V = 4068 (2) Å³ Z = 8F(000) = 1568

Data collection

Bruker SMART 1000 CCD
diffractometer
phi and ω scans
25428 measured reflections
5934 independent reflections
2858 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.148$	$w = 1/[\sigma^2(F_o^2) + (0.0757P)^2]$
<i>S</i> = 0.86	where $P = (F_o^2 + 2F_c^2)/3$
5934 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
246 parameters	$\Delta ho_{ m max} = 0.52$ e Å $^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.24$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Si1	0.79777 (7)	0.42501 (3)	0.11255 (2)	0.02993 (15)

C1	0.8311 (2)	0.49615 (10)	0.15680 (6)	0.0309 (4)
C2	0.8055 (3)	0.56845 (10)	0.15463 (7)	0.0356 (5)
H2	0.7520	0.5887	0.1277	0.043*
C3	0.8574 (3)	0.61143 (12)	0.19140 (7)	0.0418 (5)
Н3	0.8412	0.6610	0.1894	0.050*
C4	0.9330 (3)	0.58188 (12)	0.23114 (7)	0.0421 (5)
H4	0.9678	0.6115	0.2563	0.050*
C5	0.9581 (3)	0.51005 (11)	0.23455 (6)	0.0370 (5)
Н5	1.0097	0.4902	0.2619	0.044*
C6	0.9068 (2)	0.46663 (10)	0.19746 (6)	0.0298 (4)
C7	0.9323 (2)	0.38906 (11)	0.19620 (6)	0.0306 (4)
C8	1.0081 (3)	0.34974 (11)	0.23220 (6)	0.0363 (5)
H8	1.0422	0.3722	0.2605	0.044*
C9	1.0334 (3)	0.27829 (11)	0.22679 (7)	0.0401 (5)
Н9	1.0844	0.2516	0.2515	0.048*
C10	0.9851 (3)	0.24487 (12)	0.18556 (7)	0.0402 (5)
H10	1.0039	0.1957	0.1819	0.048*
C11	0.9089 (3)	0.28411 (11)	0.14960 (7)	0.0364 (5)
H11	0.8759	0.2611	0.1214	0.044*
C12	0.8803 (3)	0.35598 (10)	0.15409 (6)	0.0312 (4)
C13	0.5556 (3)	0.41772 (11)	0.09236 (6)	0.0339 (5)
H13	0.5437	0.3888	0.0633	0.041*
C14	0.4367 (3)	0.39131 (12)	0.13116 (7)	0.0398 (5)
C15	0.3431 (3)	0.44517 (13)	0.14891 (7)	0.0450 (6)
H15	0.2677	0.4422	0.1755	0.054*
C16	0.3726 (3)	0.50819 (13)	0.12209 (7)	0.0426 (5)
C17	0.3022 (3)	0.57576 (14)	0.12600 (9)	0.0520 (6)
H17	0.2229	0.5873	0.1507	0.062*
C18	0.3497 (3)	0.62550 (15)	0.09335 (9)	0.0579 (7)
H18	0.3032	0.6719	0.0959	0.069*
C19	0.4644 (3)	0.60938 (13)	0.05667 (8)	0.0510(6)
H19	0.4931	0.6444	0.0342	0.061*
C20	0.5374 (3)	0.54217 (12)	0.05272 (7)	0.0425 (5)
H20	0.6170	0.5311	0.0280	0.051*
C21	0.4918 (3)	0.49199 (11)	0.08540 (7)	0.0361 (5)
C22	0.4270 (3)	0.31583 (12)	0.14542 (7)	0.0498 (6)
H22A	0.3819	0.2876	0.1193	0.075*
H22B	0.3462	0.3110	0.1722	0.075*
H22C	0.5463	0.2993	0.1542	0.075*
C23	0.9444 (3)	0.43149 (11)	0.05995 (6)	0.0356 (5)
H23A	0.8986	0.4692	0.0392	0.043*
H23B	1.0663	0.4449	0.0699	0.043*
C24	0.9537 (3)	0.36211 (12)	0.03241 (7)	0.0468 (6)
H24A	0.9976	0.3247	0.0536	0.056*
H24B	0.8312	0.3491	0.0228	0.056*
C25	1.0688 (4)	0.36308 (13)	-0.00973 (8)	0.0585 (7)
H25A	1.1902	0.3784	-0.0006	0.070*
H25B	1.0210	0.3983	-0.0320	0.070*

data reports

C26	1.0816 (4)	0.29247 (13)	-0.03404 (8)	0.0625 (7)
H26A	1.1471	0.2979	-0.0634	0.094*
H26B	0.9612	0.2747	-0.0406	0.094*
H26C	1.1447	0.2590	-0.0139	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Si1	0.0326 (3)	0.0299 (3)	0.0273 (3)	-0.0030 (2)	0.0000 (2)	-0.0030 (2)
C1	0.0260 (10)	0.0348 (11)	0.0319 (9)	-0.0018 (8)	0.0007 (8)	-0.0039 (8)
C2	0.0360 (11)	0.0341 (12)	0.0367 (10)	0.0027 (9)	-0.0051 (9)	-0.0040 (9)
C3	0.0390 (12)	0.0347 (12)	0.0516 (13)	0.0048 (10)	-0.0053 (10)	-0.0128 (10)
C4	0.0395 (13)	0.0438 (14)	0.0429 (11)	0.0043 (10)	-0.0079 (9)	-0.0177 (10)
C5	0.0347 (12)	0.0444 (13)	0.0319 (10)	0.0002 (10)	-0.0025 (8)	-0.0076 (9)
C6	0.0250 (10)	0.0340 (11)	0.0303 (9)	-0.0013 (8)	0.0032 (8)	-0.0042 (8)
C7	0.0253 (10)	0.0369 (12)	0.0297 (9)	-0.0035 (8)	0.0049 (8)	0.0019 (8)
C8	0.0378 (12)	0.0413 (13)	0.0297 (10)	-0.0023 (10)	0.0011 (8)	0.0010 (9)
C9	0.0429 (13)	0.0394 (13)	0.0381 (11)	-0.0019 (10)	0.0005 (9)	0.0110 (9)
C10	0.0435 (13)	0.0328 (12)	0.0443 (11)	-0.0045 (10)	0.0042 (10)	0.0072 (9)
C11	0.0417 (12)	0.0347 (12)	0.0328 (10)	-0.0063 (10)	0.0009 (9)	-0.0007 (9)
C12	0.0312 (10)	0.0332 (11)	0.0292 (9)	-0.0053 (9)	0.0010 (8)	-0.0008 (8)
C13	0.0337 (11)	0.0389 (13)	0.0289 (9)	-0.0053 (9)	0.0006 (8)	-0.0060 (8)
C14	0.0331 (12)	0.0532 (15)	0.0330 (10)	-0.0131 (10)	-0.0005 (9)	-0.0085 (10)
C15	0.0321 (12)	0.0651 (17)	0.0377 (11)	-0.0076 (11)	0.0023 (9)	-0.0134 (11)
C16	0.0283 (11)	0.0563 (16)	0.0433 (12)	0.0005 (10)	-0.0070 (9)	-0.0152 (11)
C17	0.0349 (13)	0.0624 (17)	0.0587 (14)	0.0091 (12)	-0.0070 (11)	-0.0187 (13)
C18	0.0480 (15)	0.0590 (18)	0.0667 (16)	0.0178 (13)	-0.0199 (13)	-0.0181 (14)
C19	0.0517 (15)	0.0484 (15)	0.0530 (14)	0.0066 (12)	-0.0206 (11)	-0.0010 (12)
C20	0.0424 (13)	0.0475 (14)	0.0378 (11)	0.0022 (11)	-0.0115 (9)	-0.0048 (10)
C21	0.0303 (11)	0.0433 (13)	0.0346 (10)	-0.0007 (9)	-0.0115 (8)	-0.0083 (9)
C22	0.0504 (15)	0.0581 (16)	0.0407 (11)	-0.0217 (12)	0.0057 (10)	-0.0055 (11)
C23	0.0357 (11)	0.0363 (12)	0.0347 (10)	0.0014 (9)	0.0053 (8)	-0.0013 (9)
C24	0.0470 (13)	0.0502 (15)	0.0431 (12)	-0.0055 (11)	0.0074 (10)	-0.0081 (10)
C25	0.0693 (18)	0.0516 (16)	0.0545 (14)	0.0009 (13)	0.0223 (13)	-0.0068 (12)
C26	0.0764 (19)	0.0528 (16)	0.0582 (15)	0.0133 (14)	0.0165 (14)	-0.0154 (13)

Geometric parameters (Å, °)

Sil—Cl	1.8678 (19)	C14—C22	1.491 (3)
Si1—C12	1.874 (2)	C15—H15	0.9500
Si1—C13	1.909 (2)	C15—C16	1.438 (3)
Si1—C23	1.8680 (19)	C16—C17	1.390 (3)
C1—C2	1.386 (3)	C16—C21	1.413 (3)
C1—C6	1.411 (3)	C17—H17	0.9500
С2—Н2	0.9500	C17—C18	1.375 (3)
C2—C3	1.387 (3)	C18—H18	0.9500
С3—Н3	0.9500	C18—C19	1.391 (3)
C3—C4	1.389 (3)	C19—H19	0.9500

C4—H4	0.9500	C19—C20	1.392 (3)
C4—C5	1.379 (3)	С20—Н20	0.9500
С5—Н5	0.9500	C20—C21	1.378 (3)
C5—C6	1.398 (2)	C22—H22A	0.9800
C6—C7	1.484 (3)	C22—H22B	0.9800
C7—C8	1 393 (3)	C22—H22C	0 9800
C7—C12	1.414 (2)	C23—H23A	0.9900
C8—H8	0.9500	C23—H23B	0.9900
C8—C9	1 377 (3)	C_{23} C_{24}	1 536 (3)
C9—H9	0.9500	C24—H24A	0.9900
C9-C10	1 388 (3)	C_{24} H24R	0.9900
C10—H10	0.9500	C_{24} C_{25}	1.483(3)
C10-C11	1 393 (3)	C25_H25A	0.9900
C11_H11	0.9500	C25—H25R	0.9900
	1 386 (3)	C25 C26	1.512(3)
C13 H13	1.0000	$C_{25} = C_{20}$	0.9800
C_{13} C_{14}	1.510 (3)	C26 H26R	0.9800
$C_{13} = C_{14}$	1.510(3)	C26_H26C	0.9800
$C_{13} = C_{21}$	1.301(3) 1.320(2)	C20—H20C	0.9800
014-015	1.559 (5)		
C1 Si1 C12	01.72(0)	C14 C15 H15	1247
$C_1 = S_{11} = C_{12}$	$\frac{91.72}{112} \frac{(9)}{(8)}$	$C_{14} = C_{15} = C_{16}$	124.7
C1 = S11 = C13	112.04 (8)	$C_{14} = C_{15} = C_{10}$	110.30 (19)
C1 = S11 = C23	114.00 (9)	C17 C16 C15	124.7
C12 = S11 = C13	117.07 (9)	C17 - C16 - C13	131.7(2)
C_{23} Sil C_{12}	111.33(9)	C1/-C16-C21	120.0(2)
$C_{23} = S_{11} = C_{13}$	108.02(9)	$C_{21} = C_{10} = C_{13}$	108.3 (2)
$C_2 = C_1 = C_1$	131./5 (15)	C10-C1/-H1/	120.7
$C_2 = C_1 = C_6$	119.02 (17)		118.7 (2)
C_{0}	109.08 (14)	C18—C17—H17	120.7
C1 = C2 = H2	119.7	C17—C18—H18	119.3
C1 - C2 - C3	120.58 (19)	C17 - C18 - C19	121.5 (2)
C3—C2—H2	119.7	С19—С18—Н18	119.3
С2—С3—Н3	120.0	С18—С19—Н19	119.8
C2—C3—C4	119.9 (2)	C18—C19—C20	120.4 (2)
С4—С3—Н3	120.0	С20—С19—Н19	119.8
C3—C4—H4	119.6	С19—С20—Н20	120.6
C5—C4—C3	120.81 (19)	C21—C20—C19	118.7 (2)
C5—C4—H4	119.6	С21—С20—Н20	120.6
C4—C5—H5	120.3	C16—C21—C13	107.86 (18)
C4—C5—C6	119.42 (19)	C20—C21—C13	131.28 (19)
С6—С5—Н5	120.3	C20—C21—C16	120.8 (2)
C1—C6—C7	115.15 (16)	C14—C22—H22A	109.5
C5—C6—C1	120.24 (19)	C14—C22—H22B	109.5
C5—C6—C7	124.57 (18)	C14—C22—H22C	109.5
C8—C7—C6	124.41 (17)	H22A—C22—H22B	109.5
C8—C7—C12	120.37 (19)	H22A—C22—H22C	109.5
C12—C7—C6	115.17 (17)	H22B—C22—H22C	109.5
С7—С8—Н8	120.0	Si1—C23—H23A	109.1

C9—C8—C7	119.99 (19)	Si1—C23—H23B	109.1
С9—С8—Н8	120.0	H23A—C23—H23B	107.8
С8—С9—Н9	119.7	C24—C23—Si1	112.61 (14)
C8—C9—C10	120.60 (19)	C24—C23—H23A	109.1
С10—С9—Н9	119.7	С24—С23—Н23В	109.1
С9—С10—Н10	120.3	C23—C24—H24A	108.4
C9—C10—C11	119.4 (2)	C23—C24—H24B	108.4
C11—C10—H10	120.3	H24A—C24—H24B	107.4
C10-C11-H11	119.3	C25—C24—C23	115.71 (19)
C12—C11—C10	121.36 (19)	C25—C24—H24A	108.4
C12—C11—H11	119.3	C25—C24—H24B	108.4
C7—C12—Si1	108.79 (14)	C24—C25—H25A	108.8
C11—C12—Si1	132.81 (14)	C24—C25—H25B	108.8
C11—C12—C7	118.22 (18)	C24—C25—C26	113.6 (2)
Si1—C13—H13	112.1	H25A—C25—H25B	107.7
C14—C13—Si1	111.22 (13)	C26—C25—H25A	108.8
C14—C13—H13	112.1	C26—C25—H25B	108.8
C21—C13—Si1	105.95 (13)	С25—С26—Н26А	109.5
C21—C13—H13	112.1	C25—C26—H26B	109.5
C21—C13—C14	102.78 (17)	С25—С26—Н26С	109.5
C15—C14—C13	109.6 (2)	H26A—C26—H26B	109.5
C15—C14—C22	127.1 (2)	H26A—C26—H26C	109.5
C22—C14—C13	123.30 (19)	H26B—C26—H26C	109.5
Si1—C1—C2—C3	-173.53 (16)	C12—Si1—C1—C2	178.22 (19)
Si1—C1—C6—C5	174.92 (14)	C12—Si1—C1—C6	2.78 (14)
Si1—C1—C6—C7	-2.8(2)	C12—Si1—C23—C24	60.18 (17)
Si1—C13—C14—C15	103.56 (18)	C12—C7—C8—C9	0.3 (3)
Si1—C13—C14—C22	-77.7 (2)	C13—Si1—C1—C2	-61.4 (2)
Si1—C13—C21—C16	-107.51 (15)	C13—Si1—C1—C6	123.17 (13)
Si1—C13—C21—C20	68.8 (2)	C13—Si1—C12—C7	-118.75 (13)
Si1—C23—C24—C25	-179.64 (18)	C13—Si1—C12—C11	66.4 (2)
C1—Si1—C12—C7	-2.15 (14)	C13—Si1—C23—C24	-70.15 (17)
C1—Si1—C12—C11	-177.0(2)	C13—C14—C15—C16	6.1 (2)
C1—Si1—C23—C24	162.69 (14)	C14—C13—C21—C16	9.3 (2)
C1—C2—C3—C4	-1.1 (3)	C14—C13—C21—C20	-174.4 (2)
C1—C6—C7—C8	178.61 (17)	C14—C15—C16—C17	177.9 (2)
C1—C6—C7—C12	1.2 (2)	C14—C15—C16—C21	0.1 (2)
C2-C1-C6-C5	-1.2 (3)	C15—C16—C17—C18	-176.9(2)
C2-C1-C6-C7	-178.87 (16)	C15—C16—C21—C13	-6.3(2)
C2-C3-C4-C5	0.3 (3)	C15—C16—C21—C20	176.95 (17)
C3-C4-C5-C6	0.1 (3)	C16—C17—C18—C19	0.6 (3)
C4—C5—C6—C1	0.4 (3)	C17—C16—C21—C13	175.67 (18)
C4—C5—C6—C7	177.83 (18)	C17—C16—C21—C20	-1.1 (3)
C5—C6—C7—C8	1.0 (3)	C17—C18—C19—C20	-1.4(3)
C5—C6—C7—C12	-176.39 (18)	C18—C19—C20—C21	0.9 (3)
C6-C1-C2-C3	1.5 (3)	C_{19} C_{20} C_{21} C_{13}	-175.58 (19)
C6-C7-C8-C9	-177.02(18)	C19—C20—C21—C16	0.4 (3)

C6—C7—C12—Si1	$\begin{array}{c} 1.0 (2) \\ 176.75 (17) \\ 0.4 (3) \\ -176.51 (14) \\ -0.8 (3) \\ -0.6 (3) \\ 0.0 (3) \\ 175.10 (16) \\ 0.6 (3) \end{array}$	C21—C13—C14—C15	-9.4 (2)
C6—C7—C12—C11		C21—C13—C14—C22	169.30 (18)
C7—C8—C9—C10		C21—C16—C17—C18	0.6 (3)
C8—C7—C12—Si1		C22—C14—C15—C16	-172.57 (19)
C8—C7—C12—C11		C23—Si1—C1—C2	63.7 (2)
C8—C9—C10—C11		C23—Si1—C1—C2	-111.74 (14)
C9—C10—C11—C12		C23—Si1—C12—C7	115.47 (14)
C10—C11—C12—Si1		C23—Si1—C12—C11	-59.4 (2)
C10—C11—C12—Si1		C23—C24—C25—C26	176.8 (2)
C10—C11—C12—C7	0.6 (3)	C23—C24—C25—C26	176.8 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C2—H2···Cg1	0.95	2.78	3.446 (3)	128