

ISSN 2414-3146

Received 30 May 2016 Accepted 4 July 2016

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; medroxyprogesterone; fungal-transformed metabolite.

CCDC reference: 1489720

Structural data: full structural data are available from iucrdata.iucr.org

Sharifah Nurfazilah Wan Yusop,^{a,b} Sadia Sultan,^{a,b} Bohari M. Yamin,^c Syed Adnan Ali Shah^{a,b} and Humera Naz^{a,b*}

^aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, ^bFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, and ^cSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia. *Correspondence e-mail: humera@salam.uitm.edu.my

The title compound, $C_{22}H_{32}O_4$, a fungal-transformed metabolite of medroxyprogesterone, comprises one cyclohexanone ring, two cyclohexane rings and one cyclopentane ring fused together. The cyclohexanone ring has a half-chair conformation, while the cyclohexane rings possess chair conformations and the cyclopentane ring has a twisted conformation on the fused C–C bond. In the crystal, molecules are linked by strong O–H···O and also C–H···O hydrogen bonds, creating a two-dimensional network parallel to (101).

Structure description

11 β -Hydroxymedroxyprogesterone, is a steroid produced by biotransformation of medroxyprogesterone (MP). Medroxyprogesterone is known as a progesterone agonist which is important as a sex hormone. The progesterone agonist activity of MP is less effective than medroxyprogesterone acetate (MPA) (Pullen *et al.*, 2006) which has been used for treatment of endometrial carcinoma (Fujiwara *et al.*, 2012). In a continuation of our work on biotransformation of steroids (Sultan *et al.*, 2014), we aimed to produce unique structurally modified derivatives of medroxyprogesterone that may be more effective than MPA. Herein we report the X-ray study of 11 β -hydroxymedroxyprogesterone (Fig. 1), a biotransformation product of medroxyprogesterone.

The molecule comprises four annelated rings. Ring A (C1–C5/C10) is a cyclohexanone having a half-chair conformation, while rings B (C5–C10) and C (C8/C9/C11–C14) are cyclohexane rings with chair conformations. The cyclopentane ring D (C13–C17) adopts a twisted conformation on the fused C–C bond, C13–C14.

Figure 1

In the crystal, the molecules are linked by strong $O-H \cdots O$ hydrogen bonds, $O3-H3A\cdots O1^{i}$ and $O4-H4A\cdots O3^{ii}$, augmented by a C-H···O interaction, C18-H18C···O1ⁱ, forming a two-dimensional network parallel to $(10\overline{1})$ (see Fig. 2 and Table 1).

Synthesis and crystallization

The title compound was obtained from the fungal transformation of medroxyprogesterone via Trichothecium roseum (ATCC 13411) after 8 d of fermentation. 56.6 mg of this compound was purified by recycling preparative HPLC. The compound was crystallized at room temperature from a mixture of chloroform and methanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The absolute configuration was not determined from the X-ray data but it could be determined

Figure 2

The crystal packing of the title compound viewed along the *a* ax1s. Dashed lines indicate hydrogen bonds.

	• • • •			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O1^{i}$	0.81 (3)	2.02 (4)	2.767 (5)	153 (4)
$O4-H4A\cdots O3^{ii}$	0.82(5)	2.12 (5)	2.910 (5)	165 (6)
$C18-H18C\cdots O1^{i}$	0.96	2.47	3.411 (6)	165

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x, $y - \frac{1}{2}$, -z.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{22}H_{32}O_4$
M _r	360.47
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	302
a, b, c (Å)	6.8692 (12), 12.221 (2), 11.7933 (19)
β (°)	105.726 (5)
$V(Å^3)$	952.9 (3)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.50\times0.50\times0.23$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.959, 0.981
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16639, 3527, 3023
R _{int}	0.074
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.122, 1.09
No. of reflections	3527
No. of parameters	248
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.20, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

through the comparison of similar compounds (Ouedraogo et al., 2013, Karpinska et al., 2013).

Acknowledgements

The authors would like to acknowledge the Ministry of Higher Education of Malaysia and Universiti Teknologi MARA for research grants Nos. 600-RMI/FRGS 5/3 (49/2014) and 600-RMI/DANA/5/3/LESTARI(92/2015).

References

- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fujiwara, H., Jobo, T., Takei, Y., Saga, Y., Imai, M., Arai, T., Taneichi, A., Machida, S., Takahashi, Y. & Suzuki, M. (2012). Oncol. Lett. 3, 1002-1006.
- Karpinska, J., Erxleben, A. & McArdle, P. (2013). Acta Cryst. E69, 060.

- Ouedraogo, Y. P., Huang, L., Torrente, M. P., Proni, G., Chadwick, E., Wehmschulte, R. J. & Nesnas, N. (2013). Chirality, 25, 575-581.
- Pullen, M. A., Laping, N., Edwards, R. & Bray, J. (2006). Steroids, 71, 792–798.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155. Sultan, S., Noor, M. Z. B. M., Anouar, el H., Shah, S. A. A., Salim, F., Rahim, R., Al Trabolsy, Z. B. & Weber, J. F. F. (2014). Molecules, 19, 13775–13787.

full crystallographic data

IUCrData (2016). 1, x161075 [https://doi.org/10.1107/S2414314616010750]

11β-Hydroxymedroxyprogesterone

Sharifah Nurfazilah Wan Yusop, Sadia Sultan, Bohari M. Yamin, Syed Adnan Ali Shah and Humera Naz

11β-Hydroxymedroxyprogesterone

Crystal data

 $C_{22}H_{32}O_4$ $M_r = 360.47$ Monoclinic, $P2_1$ a = 6.8692 (12) Å b = 12.221 (2) Å c = 11.7933 (19) Å $\beta = 105.726 (5)^{\circ}$ $V = 952.9 (3) Å^3$ Z = 2F(000) = 392

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 83.66 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.959, T_{\max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.122$ S = 1.093527 reflections 248 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

 $D_x = 1.256 \text{ Mg m}^{-3}$ Melting point = 491–493 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9916 reflections $\theta = 3.1-25.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 302 KBlock, colourless $0.50 \times 0.50 \times 0.23 \text{ mm}$

16639 measured reflections 3527 independent reflections 3023 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 7$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 0.6466P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.023 (5) Absolute structure: Flack (1983), ???? Friedel pairs Absolute structure parameter: -1.3 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5345 (6)	0.5911 (3)	0.6547 (3)	0.0596 (10)	
O2	-0.0798 (5)	0.7685 (3)	-0.2863 (3)	0.0510 (9)	
03	0.3276 (5)	0.9316 (2)	0.1760 (3)	0.0355 (7)	
O4	-0.1195 (5)	0.6185 (3)	-0.0443 (3)	0.0380 (7)	
C1	0.5080 (7)	0.8207 (3)	0.4627 (3)	0.0362 (10)	
H1A	0.6215	0.8519	0.5215	0.043*	
H1B	0.4134	0.8794	0.4319	0.043*	
C2	0.4047 (8)	0.7364 (4)	0.5217 (4)	0.0440 (11)	
H2A	0.3654	0.7701	0.5866	0.053*	
H2B	0.2834	0.7096	0.4655	0.053*	
C3	0.5459 (8)	0.6426 (4)	0.5667 (4)	0.0442 (11)	
C4	0.6824 (7)	0.6123 (4)	0.4983 (4)	0.0424 (11)	
H4B	0.7656	0.5520	0.5227	0.051*	
C5	0.6970 (6)	0.6660 (3)	0.4012 (4)	0.0335 (10)	
C6	0.8029 (6)	0.6207 (4)	0.3160 (4)	0.0373 (10)	
H6A	0.8896	0.6785	0.2987	0.045*	
C7	0.6362 (6)	0.5958 (4)	0.2015 (4)	0.0365 (10)	
H7A	0.7004	0.5740	0.1412	0.044*	
H7B	0.5571	0.5342	0.2158	0.044*	
C8	0.4922 (6)	0.6912 (3)	0.1540 (3)	0.0265 (9)	
H8A	0.5650	0.7475	0.1227	0.032*	
C9	0.4091 (6)	0.7421 (3)	0.2508 (3)	0.0254 (8)	
H9A	0.3372	0.6822	0.2773	0.030*	
C10	0.5843 (6)	0.7738 (3)	0.3623 (3)	0.0287 (9)	
C11	0.2469 (6)	0.8306 (3)	0.2052 (3)	0.0273 (9)	
H11A	0.1829	0.8460	0.2683	0.033*	
C12	0.0800 (6)	0.7922 (3)	0.0973 (3)	0.0276 (9)	
H12A	-0.0024	0.7376	0.1221	0.033*	
H12B	-0.0064	0.8538	0.0653	0.033*	
C13	0.1637 (5)	0.7435 (3)	0.0004 (3)	0.0232 (8)	
C14	0.3119 (6)	0.6509 (3)	0.0548 (3)	0.0270 (9)	
H14A	0.2367	0.6000	0.0914	0.032*	
C15	0.3503 (6)	0.5910 (3)	-0.0505 (4)	0.0356 (10)	
H15A	0.3845	0.5149	-0.0318	0.043*	
H15B	0.4589	0.6253	-0.0757	0.043*	
C16	0.1477 (6)	0.6011 (4)	-0.1461 (3)	0.0329 (9)	
H16A	0.1697	0.6308	-0.2179	0.039*	
H16B	0.0847	0.5298	-0.1635	0.039*	
C17	0.0112 (6)	0.6779 (3)	-0.0986 (3)	0.0287 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.7350 (7)	0.8583 (3)	0.3368 (4)	0.0396 (11)	
H18A	0.7588	0.8424	0.2619	0.059*	
H18B	0.8603	0.8543	0.3975	0.059*	
H18C	0.6793	0.9305	0.3351	0.059*	
C19	0.2619 (6)	0.8320 (3)	-0.0585 (4)	0.0304 (9)	
H19A	0.2880	0.8027	-0.1285	0.046*	
H19B	0.3868	0.8551	-0.0050	0.046*	
H19C	0.1722	0.8935	-0.0789	0.046*	
C20	-0.1183 (6)	0.7539 (4)	-0.1932 (4)	0.0343 (10)	
C21	-0.2902 (8)	0.8123 (5)	-0.1650 (5)	0.0603 (15)	
H21A	-0.2766	0.8074	-0.0819	0.090*	
H21B	-0.4155	0.7793	-0.2076	0.090*	
H21C	-0.2892	0.8878	-0.1872	0.090*	
C22	0.9346 (9)	0.5198 (4)	0.3577 (5)	0.0591 (15)	
H22A	1.0038	0.5005	0.2999	0.089*	
H22B	0.8508	0.4598	0.3681	0.089*	
H22C	1.0319	0.5356	0.4312	0.089*	
H3A	0.382 (6)	0.960 (4)	0.239 (2)	0.037 (13)*	
H4A	-0.168 (9)	0.570 (4)	-0.091 (4)	0.07 (2)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.094 (3)	0.0388 (19)	0.0452 (19)	-0.0059 (19)	0.0167 (19)	0.0157 (16)
O2	0.055 (2)	0.058 (2)	0.0376 (18)	-0.0016 (17)	0.0081 (16)	0.0057 (16)
O3	0.0448 (19)	0.0208 (14)	0.0333 (16)	-0.0006 (13)	-0.0022 (14)	-0.0014 (13)
O4	0.0393 (17)	0.0384 (17)	0.0399 (16)	-0.0183 (14)	0.0167 (14)	-0.0094 (14)
C1	0.050 (3)	0.029 (2)	0.0246 (19)	0.0046 (19)	0.0016 (19)	0.0002 (17)
C2	0.057 (3)	0.043 (3)	0.033 (2)	0.004 (2)	0.013 (2)	0.004 (2)
C3	0.058 (3)	0.033 (2)	0.036 (2)	-0.007(2)	0.005 (2)	0.0028 (19)
C4	0.052 (3)	0.026 (2)	0.042 (2)	0.004 (2)	0.000 (2)	0.006 (2)
C5	0.034 (2)	0.026 (2)	0.033 (2)	0.0022 (18)	-0.0046 (18)	0.0011 (17)
C6	0.031 (2)	0.030(2)	0.047 (2)	0.0080 (19)	0.0045 (19)	0.002 (2)
C7	0.036 (2)	0.032 (2)	0.040 (2)	0.0093 (19)	0.0081 (19)	-0.0035 (19)
C8	0.024 (2)	0.0233 (19)	0.033 (2)	0.0021 (16)	0.0085 (17)	0.0018 (16)
C9	0.031 (2)	0.0202 (17)	0.0263 (18)	0.0003 (16)	0.0092 (16)	0.0010 (15)
C10	0.031 (2)	0.0224 (19)	0.030(2)	0.0036 (17)	0.0037 (17)	0.0022 (16)
C11	0.030 (2)	0.026 (2)	0.0268 (19)	0.0010 (17)	0.0092 (17)	-0.0018 (16)
C12	0.023 (2)	0.028 (2)	0.033 (2)	0.0023 (16)	0.0096 (17)	-0.0026 (17)
C13	0.0174 (18)	0.0231 (18)	0.0312 (19)	-0.0022 (16)	0.0100 (16)	-0.0007 (16)
C14	0.024 (2)	0.027 (2)	0.031 (2)	0.0008 (16)	0.0102 (16)	-0.0014 (16)
C15	0.035 (2)	0.031 (2)	0.041 (2)	0.0058 (18)	0.0120 (19)	-0.0074 (18)
C16	0.036 (2)	0.031 (2)	0.033 (2)	-0.0024 (18)	0.0121 (17)	-0.0082 (18)
C17	0.025 (2)	0.031 (2)	0.031 (2)	-0.0048 (17)	0.0090 (17)	-0.0065 (17)
C18	0.038 (3)	0.027 (2)	0.048 (3)	-0.0022 (18)	0.001 (2)	0.0003 (19)
C19	0.032 (2)	0.028 (2)	0.033 (2)	-0.0034 (17)	0.0119 (18)	0.0027 (17)
C20	0.027 (2)	0.037 (2)	0.035 (2)	-0.0028 (18)	0.0005 (18)	-0.0068 (18)
C21	0.046 (3)	0.074 (4)	0.057 (3)	0.017 (3)	0.008 (3)	0.000 (3)

						data reports
C22	0.053 (3)	0.047 (3)	0.065 (3)	0.025 (3)	-0.003 (3)	-0.001 (2)
Geome	tric parameters ((Å, °)				
01—C	3	1.235	(5)	C11—C12		1.537 (5)
O2—C	20	1.210	(5)	C11—H11A		0.9800
03—С	11	1.433	(5)	C12—C13		1.532 (5)
О3—Н	3A	0.813	(14)	C12—H12A		0.9700
O4—C	17	1.434	(5)	C12—H12B		0.9700
O4—H	4A	0.818	(14)	C13—C19		1.537 (5)
C1—C	2	1.523	(6)	C13—C14		1.540 (5)
C1—C	10	1.530	(6)	C13—C17		1.562 (5)
С1—Н	1A	0.970	0	C14—C15		1.526 (5)
С1—Н	1B	0.970	0	C14—H14A		0.9800
С2—С	3	1.502	(7)	C15—C16		1.540 (6)
С2—Н	2A	0.970	0	C15—H15A		0.9700
С2—Н	2B	0.970	0	C15—H15B		0.9700
С3—С	4	1.441	(7)	C16—C17		1.535 (5)
C4—C	5	1.346	(6)	C16—H16A		0.9700
С4—Н	4B	0.930	0	C16—H16B		0.9700
С5—С	6	1.497	(6)	C17—C20		1.537 (6)
С5—С	10	1.534	(5)	C18—H18A		0.9600
C6—C	22	1.530	(6)	C18—H18B		0.9600
C6—C	7	1.546	(6)	C18—H18C		0.9600
С6—Н	6A	0.980	0	C19—H19A		0.9600
С7—С	8	1.533	(5)	C19—H19B		0.9600
С7—Н	7A	0.970	0	C19—H19C		0.9600
С7—Н	7B	0.970	0	C20—C21		1.493 (7)
C8—C	14	1.536	(5)	C21—H21A		0.9600
C8—C	9	1.539	(5)	C21—H21B		0.9600
С8—Н	8A	0.980	0	C21—H21C		0.9600
С9—С	11	1.542	(5)	C22—H22A		0.9600
С9—С	10	1.571	(5)	C22—H22B		0.9600
С9—Н	9A	0.980	0	C22—H22C		0.9600
C10—0	C18	1.548	(6)			
C11—0	D3—H3A	105 (3	3)	C11—C12—H12A		109.0
C17—0	04—H4A	105 (4	4)	C13—C12—H12B		109.0
С2—С	1—C10	113.6	(3)	C11—C12—H12B		109.0
С2—С	1—H1A	108.9		H12A—C12—H12	В	107.8
C10—0	C1—H1A	108.9		C12—C13—C19		111.3 (3)
С2—С	1—H1B	108.9		C12—C13—C14		108.3 (3)
C10—0	C1—H1B	108.9		C19—C13—C14		112.6 (3)
H1A—	C1—H1B	107.7		C12—C13—C17		116.5 (3)
С3—С	2—C1	109.9	(4)	C19—C13—C17		108.1 (3)
С3—С	2—H2A	109.7		C14—C13—C17		99.7 (3)
C1—C	2—H2A	109.7		C15—C14—C8		119.5 (3)
С3—С	2—H2B	109.7		C15—C14—C13		104.7 (3)

C1—C2—H2B	109.7	C8—C14—C13	112.8 (3)
H2A—C2—H2B	108.2	C15—C14—H14A	106.3
O1—C3—C4	122.6 (4)	C8—C14—H14A	106.3
O1—C3—C2	120.3 (5)	C13—C14—H14A	106.3
C4—C3—C2	117.0 (4)	C14—C15—C16	103.6 (3)
C5—C4—C3	124.1 (4)	C14—C15—H15A	111.0
C5—C4—H4B	118.0	C16—C15—H15A	111.0
C3—C4—H4B	118.0	C14—C15—H15B	111.0
C4—C5—C6	123.6 (4)	C16—C15—H15B	111.0
C4—C5—C10	121.7 (4)	H15A—C15—H15B	109.0
C6—C5—C10	114.4 (4)	C17—C16—C15	107.6 (3)
C5—C6—C22	115.8 (4)	C17—C16—H16A	110.2
C5—C6—C7	106.2 (3)	C15—C16—H16A	110.2
C22—C6—C7	110.8 (4)	C17—C16—H16B	110.2
С5—С6—Н6А	107.9	C15—C16—H16B	110.2
С22—С6—Н6А	107.9	H16A—C16—H16B	108.5
С7—С6—Н6А	107.9	O4—C17—C16	111.8 (3)
C8—C7—C6	114.9 (3)	O4—C17—C20	108.7 (3)
С8—С7—Н7А	108.5	C16—C17—C20	113.3 (3)
С6—С7—Н7А	108.5	O4—C17—C13	107.5 (3)
C8—C7—H7B	108.5	C16—C17—C13	103.5 (3)
C6—C7—H7B	108.5	C20—C17—C13	111.8 (3)
H7A—C7—H7B	107.5	C10-C18-H18A	109.5
C7—C8—C14	110.0 (3)	C10-C18-H18B	109.5
C7—C8—C9	111.6 (3)	H18A—C18—H18B	109.5
C14—C8—C9	108.1 (3)	C10-C18-H18C	109.5
C7—C8—H8A	109.1	H18A—C18—H18C	109.5
C14—C8—H8A	109.1	H18B—C18—H18C	109.5
С9—С8—Н8А	109.1	С13—С19—Н19А	109.5
C8—C9—C11	113.7 (3)	С13—С19—Н19В	109.5
C8—C9—C10	111.5 (3)	H19A—C19—H19B	109.5
C11—C9—C10	115.9 (3)	С13—С19—Н19С	109.5
С8—С9—Н9А	104.8	H19A—C19—H19C	109.5
С11—С9—Н9А	104.8	H19B—C19—H19C	109.5
С10—С9—Н9А	104.8	O2—C20—C21	120.8 (4)
C1—C10—C5	109.9 (3)	O2—C20—C17	121.5 (4)
C1—C10—C18	106.7 (3)	C21—C20—C17	117.7 (4)
C5—C10—C18	108.7 (3)	C20—C21—H21A	109.5
C1—C10—C9	113.3 (3)	C20—C21—H21B	109.5
C5—C10—C9	104.4 (3)	H21A-C21-H21B	109.5
C18—C10—C9	113.7 (3)	C20—C21—H21C	109.5
O3—C11—C12	108.3 (3)	H21A-C21-H21C	109.5
O3—C11—C9	113.5 (3)	H21B-C21-H21C	109.5
C12—C11—C9	112.4 (3)	C6—C22—H22A	109.5
O3—C11—H11A	107.5	C6—C22—H22B	109.5
C12—C11—H11A	107.5	H22A—C22—H22B	109.5
C9—C11—H11A	107.5	C6—C22—H22C	109.5
C13—C12—C11	112.9 (3)	H22A—C22—H22C	109.5

data reports

C13—C12—H12A	109.0	H22B—C22—H22C	109.5
C10—C1—C2—C3	56.7 (5)	C10-C9-C11-C12	-179.2 (3)
C1—C2—C3—O1	149.7 (4)	O3—C11—C12—C13	75.8 (4)
C1—C2—C3—C4	-34.3 (5)	C9-C11-C12-C13	-50.4 (4)
O1—C3—C4—C5	179.2 (5)	C11—C12—C13—C19	-69.4 (4)
C2—C3—C4—C5	3.4 (7)	C11—C12—C13—C14	54.9 (4)
C3—C4—C5—C6	-165.8 (4)	C11—C12—C13—C17	166.1 (3)
C3—C4—C5—C10	7.1 (7)	C7—C8—C14—C15	-54.7 (5)
C4—C5—C6—C22	-12.7 (6)	C9—C8—C14—C15	-176.8 (3)
C10—C5—C6—C22	173.9 (4)	C7—C8—C14—C13	-178.3 (3)
C4—C5—C6—C7	110.8 (5)	C9—C8—C14—C13	59.6 (4)
C10—C5—C6—C7	-62.6 (4)	C12—C13—C14—C15	167.6 (3)
C5—C6—C7—C8	52.0 (5)	C19—C13—C14—C15	-68.9 (4)
C22—C6—C7—C8	178.5 (4)	C17—C13—C14—C15	45.5 (4)
C6—C7—C8—C14	-169.5 (3)	C12—C13—C14—C8	-60.9 (4)
C6—C7—C8—C9	-49.6 (5)	C19—C13—C14—C8	62.6 (4)
C7—C8—C9—C11	-174.1 (3)	C17—C13—C14—C8	176.9 (3)
C14—C8—C9—C11	-53.1 (4)	C8-C14-C15-C16	-160.5 (3)
C7—C8—C9—C10	52.6 (4)	C13—C14—C15—C16	-33.1 (4)
C14—C8—C9—C10	173.7 (3)	C14-C15-C16-C17	7.1 (4)
C2-C1-C10-C5	-46.4 (5)	C15—C16—C17—O4	-94.6 (4)
C2-C1-C10-C18	-164.1 (4)	C15-C16-C17-C20	142.1 (3)
C2-C1-C10-C9	70.0 (4)	C15—C16—C17—C13	20.8 (4)
C4—C5—C10—C1	14.6 (5)	C12—C13—C17—O4	-37.5 (4)
C6-C5-C10-C1	-171.9 (4)	C19—C13—C17—O4	-163.6 (3)
C4—C5—C10—C18	131.0 (4)	C14—C13—C17—O4	78.6 (3)
C6-C5-C10-C18	-55.4 (4)	C12-C13-C17-C16	-156.0 (3)
C4—C5—C10—C9	-107.2 (4)	C19—C13—C17—C16	77.9 (4)
C6—C5—C10—C9	66.3 (4)	C14—C13—C17—C16	-39.8 (4)
C8—C9—C10—C1	-177.8 (3)	C12-C13-C17-C20	81.7 (4)
C11—C9—C10—C1	50.0 (4)	C19—C13—C17—C20	-44.4 (4)
C8—C9—C10—C5	-58.2 (4)	C14—C13—C17—C20	-162.1 (3)
C11—C9—C10—C5	169.6 (3)	O4—C17—C20—O2	-141.2 (4)
C8—C9—C10—C18	60.1 (4)	C16—C17—C20—O2	-16.2 (6)
C11—C9—C10—C18	-72.1 (4)	C13—C17—C20—O2	100.3 (4)
C8—C9—C11—O3	-73.6 (4)	O4—C17—C20—C21	40.7 (5)
C10—C9—C11—O3	57.5 (4)	C16—C17—C20—C21	165.7 (4)
C8—C9—C11—C12	49.7 (4)	C13—C17—C20—C21	-77.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O3—H3A···O1 ⁱ	0.81 (3)	2.02 (4)	2.767 (5)	153 (4)
O4—H4A···O3 ⁱⁱ	0.82 (5)	2.12 (5)	2.910 (5)	165 (6)
C12—H12A···O4	0.97	2.40	2.816 (5)	105
C14—H14A…O4	0.98	2.54	2.903 (6)	101
C16—H16A····O2	0.97	2.38	2.822 (6)	107

				data reports
C18—H18C…O1 ⁱ	0.96	2.47	3.411 (6)	165
С19—Н19В…ОЗ	0.96	2.46	2.942 (6)	111

Symmetry codes: (i) -x+1, y+1/2, -z+1; (ii) -x, y-1/2, -z.