

ISSN 2414-3146

Received 1 June 2016 Accepted 19 July 2016

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: Cage molecule; crystal structure; hexacyclic dione; unusual C—C bond length.

CCDC reference: 1014204

Structural data: full structural data are available from iucrdata.iucr.org

Hexacyclo[7.5.1.0^{1,6}.0^{6,13}.0^{8,12}.0^{10,14}]pentadecane-7,15-dione

Sambasivarao Kotha,* Vijayalakshmi Bandi, Rama Gunta and Sreevani Gaddamedi

Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India. *Correspondence e-mail: srk@chem.iitb.ac.in

The structure of the title cage compound, $C_{15}H_{16}O_2$, comprises eight fused rings, *viz.* one four-membered, four five-membered and three six-membered. One of the internal C–C bonds is unusually long for a cyclobutane bond length [1.607 (3) Å] and is comparable with the equivalent value of 1.598 (4) Å in the unsaturated homolog hexacyclo[7.4.2.0^{1.9}.0^{3,7}.0^{4,14}.0^{6,15}]pentadeca-10,12-diene-2,8-dione.

Structure description

Cage molecules are useful synthons for the design of natural and non-natural products. Several cage systems can undergo rearrangements to generate intricate polycycles (Hopf, 2000; Osawa & Yonemitsu, 1992). Polycyclic cage compounds have applications in medicinal chemistry for drug discovery research (Oliver & Malan, 2008; Geldenhuys *et al.* 2005).

The carbon framework of the title compound, $C_{15}H_{16}O_2$ (I), (Fig. 1), comprises one four-membered, four five-membered and three six-membered rings which are fused into a closed cage structure. All of the five-membered rings adopt envelope conformations, whereas the six-membered rings have boat conformations. The molecule appears as a 'cage' with one edge and the dione side is open.

The C–C bond lengths of the cyclobutane ring in the unsaturated hexacyclic system hexacyclo[7.4.2.0^{1,9}.0^{3,7}.0^{4,14}. 0^{6,15}]pentadeca-10,12-diene-2,8-dione (II) (Fig. 2) range from 1.559 (4) to 1.598 (4) Å (Dhaneshwar *et al.*, 1988). However, in the saturated hexacyclic system of (I), the C4–C5 bond is longer, with a value of 1.607 (3) Å, which is unusual among cyclobutane bond lengths but is comparable with the corresponding bond in the related cage molecule 1,7-diallylpentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane-8,11-dione [1.612 Å; Kotha *et al.*, 2014]. This may be because the hexacyclic dione system attached to the cyclobutane ring influences the bond length of the fused carbon atoms (C4–C5).

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, only one very weak intermolecular C6– $H6\cdots O3^{i}$ hydrogen-bonding interaction is present (Table 1).

Synthesis and crystallization

The title compound can be prepared according to Kushner (1971) *via* a Diels-Alder reaction of cyclopentadiene with either naphthaquinone followed by [2 + 2] photo-cyclo-addition and hydrogenation or 1,2,3,4-tetrahydro-5,8-naphthoquinone followed by [2 + 2] photo-cycloaddition (Kotha & Dipak, 2006). After recrystallization from a 3:2 mixture of dichloromethane-methanol, monoclinic crystals of the hexacyclic dione (I) were obtained, m.p. 360–362 K (lit. m.p. 360–361 K; Kotha, 1984).

Melting points were recorded on Veego melting point apparatus and are uncorrected. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Varian VXR 400 spectrometer operated at 400 and 100 MHz for ¹H and ¹³C nuclei respectively.

The reduction of (II), giving the title compound (I)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$C6-H6\cdots O3^{i}$	1.00	2.58	3.547 (3)	163		
Symmetry code: (i) -	$-x, y + \frac{1}{2}, -z +$	1.				
Table 2						
Experimental det	ails.					
Crystal data						
Chemical formula		C ₁₅	$H_{16}O_2$			
M _r		228	.29			
Crystal system, sp	ace group	Mo	noclinic, $P2_1$			
Temperature (K)		100	(2) (2) (52) (2)	0.000(2)		
a, b, c (A) β (°)		8.19	8.199 (2), 7.653 (2), 8.986 (3)			
$V(\dot{A}^3)$		547	547.1(3)			
Z	2	2				
Radiation type			Μο Κα			
$\mu \text{ (mm}^{-1})$	0.09)				
Crystal size (mm)	0.60	$0.60 \times 0.38 \times 0.18$				
Data collection						
Diffractometer		Rig	aku Saturn724 C	CCD		
Absorption correc	tion	Nu 1	Numerical (<i>NUMABS</i> ; Rigaku, 1999)			
T_{\min}, T_{\max}		0.95	54, 0.982			
No. of measured, is observed $[F^2 > tions]$	independent a $2.0\sigma(F^2)$] refl	and 585 ec-	5, 2877, 1935			
R _{int}		0.06	57			
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$		0.68	36			
Refinement						
$R[F^2 > 2\sigma(F^2)], w$	$R(F^2), S$	0.04	42, 0.086, 0.85			
No. of reflections		287	7			
No. of parameters			154			
No. of restraints	1	1 H atom parameters constrained				
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å	H-a 0.27	0.27, -0.27				

Computer programs: CrystalClear-SM Expert (Rigaku, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2010).

¹H NMR (400 MHz, CDCl₃): δ (p.p.m.) = 2.87 (*s*, 4H), 2.75 (*s*, 2H), 2.06 (*d*, *J* = 10.7 Hz, 2H), 1.94 (*t*, *J* = 12.6 Hz, 2H), 1.60–1.53 (*m*, 4H), 1.34 (*t*, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (p.p.m.) = 213.8, 55.1, 49.7, 44.2, 43.7, 41.3, 22.8, 19.3.

Refinement

Tabla 1

Crystal data, data collection and structure refinement details are summarized in Table 2. The absolute structure was not determined in this analysis but the configuration for the eight arbitrarily numbered chiral centres of the molecule are C4(R),C5(S),C6(R),C7(S), C10(R),C11(S),C13(R),C17(S).

Acknowledgements

We would like to thank the DST for financial support. SK thanks the DST for the award of a J. C. Bose fellowship. SG and RG thank the CSIR–New Delhi and UGC–New Delhi, respectively, for the award of research fellowships. We thank Mr Darshan Mhatre for collecting the X-ray data.

References

- Dhaneshwar, N. N., Tavale, S. S., Guru Row, T. N., Zope, U. R., Pandey, B. & Ayyangar, N. R. (1988). Acta Cryst. C44, 2191–2193.
- Geldenhuys, W. J., Malan, S. F., Bloomquist, J. R., Marchand, A. P. & Van der Schyf, C. J. (2005). *Med. Res. Rev.* **25**, 21–48.
- Hopf, H. (2000). In Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives. Weinheim: Wiley-VCH.
- Kotha, S. (1984). PhD thesis, University of Hyderabad, Hyderabad, India.
- Kotha, S. & Dipak, M. K. (2006). Chem. Eur. J. 12, 4446-4450.

- Kotha, S., Seema, V., Deodhar, D. & Shaikh, M. (2014). Acta Cryst. E**70**, 410–414.
- Kushner, A. S. (1971). Tetrahedron Lett. 12, 3275-3278.
- Oliver, D. W. & Malan, S. F. (2008). Med. Chem. Res. 17, 137-151.
- Osawa, E. & Yonemitsu, O. (1992). (Editors). *Carbocyclic Cage Compounds: Chemistry and Applications*. New York: VCH Publishers, Inc.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2013). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

full crystallographic data

IUCrData (2016). **1**, x161173 [https://doi.org/10.1107/S2414314616011731]

Hexacyclo[7.5.1.0^{1,6}.0^{6,13}.0^{8,12}.0^{10,14}]pentadecane-7,15-dione

Sambasivarao Kotha, Vijayalakshmi Bandi, Rama Gunta and Sreevani Gaddamedi

F(000) = 244.00

 $\theta = 3.5 - 29.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Prism, colourless

 $0.60 \times 0.38 \times 0.18 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.386 {\rm Mg} {\rm m}^{-3}$

Melting point = 360.1 - 362.1 K

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 1809 reflections

Hexacyclo[7.5.1.0^{1,6}.0^{6,13}.0^{8,12}.0^{10,14}]pentadecane-7,15-dione

Crystal data

C₁₅H₁₆O₂ $M_r = 228.29$ Monoclinic, P2₁ Hall symbol: P 2yb a = 8.199 (2) Å b = 7.653 (2) Å c = 8.986 (3) Å $\beta = 104.005$ (3)° V = 547.1 (3) Å³ Z = 2

Data collection

Rigaku Saturn724 CCD	2877 independent reflections
diffractometer	1935 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 7.111 pixels mm ⁻¹	$R_{\rm int} = 0.067$
ω scans	$\theta_{\rm max} = 29.2^{\circ}$
Absorption correction: numerical	$h = -11 \rightarrow 11$
(NUMABS; Rigaku, 1999)	$k = -10 \rightarrow 10$
$T_{\min} = 0.954, T_{\max} = 0.982$	$l = -12 \rightarrow 12$
5855 measured reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.042$ map $wR(F^2) = 0.086$ Hydrogen site location: inferred from S = 0.85neighbouring sites 2877 reflections H-atom parameters constrained 154 parameters $w = 1/[\sigma^2(F_o^2) + (0.0183P)^2]$ 1 restraint where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
02	-0.15236 (18)	0.65835 (18)	0.14997 (17)	0.0245 (4)
O3	0.21822 (19)	0.35607 (16)	0.36795 (16)	0.0227 (4)
C1	0.2308 (3)	0.5131 (3)	0.3578 (3)	0.0129 (4)
C4	0.2893 (3)	0.6133 (3)	0.2348 (3)	0.0132 (5)
C5	0.1366 (3)	0.7346 (3)	0.1461 (2)	0.0138 (4)
C6	0.0443 (3)	0.7697 (3)	0.3796 (3)	0.0139 (5)
C7	0.1357 (3)	0.9434 (3)	0.3630 (2)	0.0138 (4)
C8	0.2653 (3)	0.7375 (3)	-0.0798 (3)	0.0212 (5)
C9	-0.0133 (3)	0.7099 (3)	0.2146 (3)	0.0155 (5)
C10	0.3755 (3)	0.7783 (3)	0.3226 (3)	0.0131 (4)
C11	0.1960 (3)	0.6497 (3)	0.4671 (3)	0.0144 (5)
C12	0.4054 (3)	0.6088 (3)	-0.0035 (3)	0.0231 (5)
C13	0.3488 (3)	0.7736 (3)	0.4888 (2)	0.0139 (4)
C14	0.3686 (3)	0.5051 (3)	0.1302 (3)	0.0178 (5)
C15	0.2773 (3)	0.9543 (3)	0.5073 (2)	0.0159 (5)
C16	0.1044 (3)	0.7194 (3)	-0.0258 (2)	0.0193 (5)
C17	0.2274 (3)	0.8958 (3)	0.2354 (2)	0.0130 (5)
H6	-0.0485	0.7817	0.4335	0.0166*
H7	0.0615	1.0488	0.3414	0.0166*
H8A	0.3081	0.8582	-0.0590	0.0255*
H8B	0.2389	0.7195	-0.1922	0.0255*
H10	0.4906	0.8081	0.3113	0.0157*
H11	0.1796	0.6001	0.5654	0.0173*
H12A	0.4240	0.5256	-0.0821	0.0277*
H12B	0.5110	0.6752	0.0343	0.0277*
H13	0.4494	0.7390	0.5708	0.0166*
H14A	0.2924	0.4070	0.0885	0.0213*
H14B	0.4750	0.4545	0.1912	0.0213*
H15A	0.2359	0.9646	0.6017	0.0191*
H15B	0.3577	1.0495	0.5030	0.0191*
H16A	0.0242	0.8114	-0.0744	0.0231*
H16B	0.0524	0.6045	-0.0586	0.0231*
H17	0.2561	0.9943	0.1731	0.0155*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
02	0.0176 (8)	0.0300 (8)	0.0243 (9)	-0.0060 (7)	0.0021 (7)	-0.0043 (7)
03	0.0299 (9)	0.0148 (8)	0.0241 (9)	-0.0015 (7)	0.0081 (8)	-0.0011 (7)
C1	0.0097 (10)	0.0150 (10)	0.0120 (11)	-0.0003 (9)	-0.0013 (9)	0.0004 (8)
C4	0.0125 (10)	0.0154 (10)	0.0119 (10)	0.0007 (9)	0.0031 (9)	-0.0003 (8)

C5	0.0140 (10)	0.0151 (10)	0.0115 (10)	-0.0009 (9)	0.0015 (8)	0.0006 (9)
C6	0.0127 (10)	0.0158 (10)	0.0147 (10)	0.0014 (9)	0.0064 (9)	-0.0006 (9)
C7	0.0172 (10)	0.0119 (10)	0.0120 (10)	0.0021 (10)	0.0029 (9)	-0.0005 (8)
C8	0.0234 (11)	0.0272 (12)	0.0133 (11)	-0.0008 (10)	0.0047 (10)	0.0015 (10)
C9	0.0155 (10)	0.0103 (10)	0.0203 (11)	0.0010 (9)	0.0033 (9)	0.0025 (9)
C10	0.0108 (10)	0.0162 (10)	0.0125 (10)	-0.0016 (9)	0.0032 (8)	-0.0005 (9)
C11	0.0185 (11)	0.0145 (10)	0.0104 (10)	-0.0010 (9)	0.0038 (9)	0.0000 (9)
C12	0.0243 (12)	0.0289 (12)	0.0191 (12)	0.0046 (11)	0.0111 (11)	0.0029 (10)
C13	0.0135 (10)	0.0176 (10)	0.0088 (10)	0.0002 (9)	-0.0005 (8)	0.0001 (9)
C14	0.0215 (11)	0.0182 (10)	0.0136 (11)	0.0046 (10)	0.0041 (10)	-0.0002 (9)
C15	0.0194 (11)	0.0148 (10)	0.0135 (10)	-0.0043 (9)	0.0040 (9)	-0.0023 (9)
C16	0.0187 (11)	0.0245 (11)	0.0132 (11)	-0.0002 (10)	0.0012 (9)	-0.0006 (10)
C17	0.0141 (10)	0.0157 (11)	0.0092 (10)	-0.0011 (9)	0.0028 (8)	0.0004 (8)

Geometric parameters (Å, °)

02—C9	1.213 (3)	C11—C13	1.545 (3)
O3—C1	1.212 (3)	C12—C14	1.529 (3)
C1—C4	1.515 (3)	C13—C15	1.527 (3)
C1-C11	1.508 (3)	С6—Н6	1.000
C4—C5	1.607 (3)	С7—Н7	1.000
C4—C10	1.563 (3)	C8—H8A	0.990
C4—C14	1.513 (3)	C8—H8B	0.990
С5—С9	1.514 (3)	C10—H10	1.000
C5—C16	1.507 (3)	C11—H11	1.000
C5—C17	1.559 (3)	C12—H12A	0.990
С6—С7	1.551 (3)	C12—H12B	0.990
С6—С9	1.514 (3)	C13—H13	1.000
C6—C11	1.592 (3)	C14—H14A	0.990
C7—C15	1.519 (3)	C14—H14B	0.990
C7—C17	1.559 (3)	C15—H15A	0.990
C8—C12	1.542 (3)	C15—H15B	0.990
C8—C16	1.518 (4)	C16—H16A	0.990
C10—C13	1.562 (3)	C16—H16B	0.990
C10—C17	1.561 (3)	С17—Н17	1.000
03—C1—C4	127 23 (19)	С9—С6—Н6	114 135
03 - C1 - C11	127.2 (2)	C11—C6—H6	114.135
C4-C1-C11	105.51 (16)	C6—C7—H7	115,119
C1-C4-C5	107.96 (17)	С15—С7—Н7	115.118
C1-C4-C10	103.01 (16)	С17—С7—Н7	115.120
C1-C4-C14	115.82 (16)	C12—C8—H8A	108.685
C5-C4-C10	89.22 (13)	C12—C8—H8B	108.683
C5—C4—C14	114.08 (16)	C16—C8—H8A	108.691
C10-C4-C14	123.09 (18)	C16—C8—H8B	108.689
C4—C5—C9	109.73 (16)	H8A—C8—H8B	107.606
C4—C5—C16	112.73 (17)	C4—C10—H10	117.129
C4—C5—C17	89.09 (13)	C13—C10—H10	117.131

C9—C5—C16	116.65 (16)	C17—C10—H10	117.131
C9—C5—C17	102.89 (16)	C1-C11-H11	113.539
C16—C5—C17	122.17 (17)	C6—C11—H11	113.536
C7—C6—C9	102.03 (16)	C13—C11—H11	113.541
C7—C6—C11	101.77 (15)	C8—C12—H12A	108.656
C9—C6—C11	109.32 (16)	C8—C12—H12B	108.657
C6—C7—C15	104.62 (15)	C14—C12—H12A	108.658
C6—C7—C17	101.58 (15)	C14—C12—H12B	108.656
C15—C7—C17	103.62 (16)	H12A—C12—H12B	107.600
C12—C8—C16	114.29 (18)	C10—C13—H13	115.440
02	127.41 (19)	C11—C13—H13	115.441
02	127.0 (2)	C15—C13—H13	115.439
C5-C9-C6	105.60 (16)	C4—C14—H14A	108.851
C4-C10-C13	108.25 (16)	C4—C14—H14B	108.853
C4-C10-C17	90.62 (13)	C12—C14—H14A	108 847
C13 - C10 - C17	102 79 (16)	C12—C14—H14B	108.851
C1-C11-C6	109.06 (15)	H_{14A} C_{14} H_{14B}	107 705
C1-C11-C13	103.00(13) 103.40(17)	C7-C15-H15A	112 692
C6-C11-C13	102.78(14)	C7-C15-H15B	112.692
C8-C12-C14	114 41 (19)	C_{13} C_{15} H_{15A}	112.699
C10-C13-C11	100.97(14)	C13—C15—H15B	112.600
C10-C13-C15	103.29(15)	H15A - C15 - H15B	110.171
$C_{11} - C_{13} - C_{15}$	104 40 (16)	C_{5} C_{16} H_{16A}	109 278
C4-C14-C12	113 57 (17)	C_5 — C_16 — H_16B	109.278
C7 C15 C13	95 25 (14)	C_{8} C_{16} H_{16A}	109.284
$C_{2} = C_{12} = C_{13}$	111 68 (15)	C8-C16-H16B	109.285
$C_{5} = C_{10} = C_{8}$	107.95 (16)	H16A C16 H16B	107.045
$C_{5} = C_{17} = C_{10}$	91.07.(13)	C5 C17 H17	107.945
C_{7} C_{17} C_{10}	91.07(13) 102.72(15)	$C_{7} = C_{17} = H_{17}$	117.132
C_{7} C_{6} H_{6}	102.72 (15)	$C_{10} C_{17} H_{17}$	117.126
0/00110	114.130	e10e171117	117.123
O3—C1—C4—C5	117.82 (19)	C17—C5—C9—C6	-31.56 (16)
O3—C1—C4—C10	-148.72 (17)	C16—C5—C17—C7	139.41 (16)
O3—C1—C4—C14	-11.5 (3)	C16—C5—C17—C10	-116.85 (17)
O3—C1—C11—C6	-116.94 (19)	C17—C5—C16—C8	55.3 (3)
O3—C1—C11—C13	134.22 (18)	C7—C6—C9—O2	-132.44 (18)
C4—C1—C11—C6	64.50 (17)	C7—C6—C9—C5	45.45 (16)
C4—C1—C11—C13	-44.33 (16)	C9—C6—C7—C15	-146.90 (14)
C11—C1—C4—C5	-63.62 (16)	C9—C6—C7—C17	-39.33 (16)
C11—C1—C4—C10	29.83 (16)	C7—C6—C11—C1	-108.45 (15)
C11—C1—C4—C14	167.07 (13)	C7—C6—C11—C13	0.80 (18)
C1—C4—C5—C9	0.38 (18)	C11—C6—C7—C15	-33.95 (18)
C1—C4—C5—C16	-131.45 (15)	C11—C6—C7—C17	73.62 (15)
C1—C4—C5—C17	103.75 (14)	C9—C6—C11—C1	-1.1 (2)
C1-C4-C10-C13	-4.89 (17)	C9—C6—C11—C13	108.17 (16)
C1C4C10C17	-108.59 (14)	C11—C6—C9—O2	120.36 (19)
C1-C4-C14-C12	172.87 (13)	C11—C6—C9—C5	-61.75 (18)
C5-C4-C10-C13	103.37 (14)	C6—C7—C15—C13	52.83 (17)

C5—C4—C10—C17	-0.32 (14)	C6—C7—C17—C5	20.61 (15)
C10—C4—C5—C9	-103.05 (15)	C6—C7—C17—C10	-74.74 (14)
C10-C4-C5-C16	125.12 (15)	C15—C7—C17—C5	128.95 (13)
C10—C4—C5—C17	0.32 (14)	C15—C7—C17—C10	33.60 (16)
C5—C4—C14—C12	46.6 (2)	C17—C7—C15—C13	-53.23 (15)
C14—C4—C5—C9	130.65 (16)	C12—C8—C16—C5	55.0 (3)
C14—C4—C5—C16	-1.2 (2)	C16—C8—C12—C14	-8.9 (3)
C14—C4—C5—C17	-125.97 (16)	C4—C10—C13—C11	-20.73 (17)
C10-C4-C14-C12	-59.3 (2)	C4—C10—C13—C15	-128.55 (14)
C14—C4—C10—C13	-138.05 (16)	C4—C10—C17—C5	0.33 (14)
C14—C4—C10—C17	118.25 (17)	C4—C10—C17—C7	109.01 (14)
C4—C5—C9—O2	-119.97 (18)	C13—C10—C17—C5	-108.55 (13)
C4—C5—C9—C6	62.16 (16)	C13—C10—C17—C7	0.13 (15)
C4—C5—C16—C8	-48.8 (2)	C17—C10—C13—C11	74.24 (14)
C4—C5—C17—C7	-104.06 (14)	C17—C10—C13—C15	-33.59 (16)
C4—C5—C17—C10	-0.32 (14)	C1-C11-C13-C10	38.86 (15)
C9—C5—C16—C8	-177.11 (14)	C1—C11—C13—C15	145.81 (13)
C16—C5—C9—O2	9.8 (3)	C6-C11-C13-C10	-74.61 (16)
C16—C5—C9—C6	-168.10 (14)	C6-C11-C13-C15	32.34 (17)
C9—C5—C17—C7	5.98 (16)	C8—C12—C14—C4	-41.6 (2)
C9—C5—C17—C10	109.72 (13)	C10-C13-C15-C7	53.16 (16)
C17—C5—C9—O2	146.32 (17)	C11—C13—C15—C7	-52.06 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6···O3 ⁱ	1.00	2.58	3.547 (3)	163

Symmetry code: (i) -x, y+1/2, -z+1.