

IUCrData

ISSN 2414-3146

Received 23 November 2016 Accepted 8 December 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; hydrogen bond; π – π stacking.

CCDC reference: 1521533

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-4-Methoxy-3,5-dimethyl-2-[(3-nitrophenyl)-ethenyl]pyridine

Youness El Bakri,^a* Youssef Ramli,^b Abdallah Harmaoui,^a Jihad Sebhaoui,^a El Mokhtar Essassi^a and Joel T. Mague^c

^aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, ^bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10170 Rabat, Morocco, and ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: youness.chimie14@gmail.com

In the crystal of the title compound, $C_{16}H_{16}N_2O_3$, weak $C-H\cdots O$ hydrogen bonds involving the nitro group as acceptor form chains extending in the *b*-axis direction. The chains are arranged into layers by $\pi-\pi$ stacking interactions along the *c*-axis direction between the substituted pyridine rings, separated by 3.624 (1) Å.

Structure description

Pyridine derivatives form one of the most important classes of heterocyclic compounds and their prevalence in natural products and pharmaceuticals as well as their potent bioactivity have created significant interest in academia and the pharmaceutical industry (Daly *et al.*, 1999). Indeed, pyridines have been studied for over a century as a result of their wide range of applications in many branches of chemistry, such as catalysis, drug design, molecular recognition, and materials science. Notably, many pyridine derivatives exhibit remarkable medicinal properties, including hypnotic and sedative, HIV antiviral (Harrison & Scott, 2005), or cholesterol and triglyceride regulator (Watts & Chan, 2008). Pyridines also form integral parts of more complex natural products, such as diploclidine and nakinadine (Kubota *et al.*, 2007).

In the crystal of the title compound (Fig. 1), $C6-H6\cdots O2(x, 1 + y, z)$ weak hydrogen bonds form chains extending in the *b*-axis direction (Table 1 and Fig. 2). These chains are arranged into layers (Fig. 3) by π - π -stacking interactions between the substituted pyridine rings [Fig. 4, centroid–centroid distance = 3.624 (1) Å, dihedral angle between rings = 6.73 (6)°].

The title molecule with labeling scheme and 50% probability ellipsoids for non-H atoms.

Synthesis and crystallization

To a solution of 5-methoxy-2-[((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)sulfinyl]-1*H*-benzo[*d*]imidazole (0.5 g, 1.45 mmol), was added sodium methanolate (0.06 g, 1.45 mmol), and 3-nitrobenzaldehyde (0.44 g, 2.9 mmol). The mixture was refluxed in 15 ml of *N*,*N*-dimethylformamide for 48 h. The solution was then concentrated to dryness under

Figure 2

Packing viewed along the *c* axis with $C-H \cdots O$ hydrogen bonds shown as dotted lines.

Figure 3 Packing viewed along the b axis emphasizing the layer structure.

Hydrogen-bond geometry (Å, $^{\circ}$).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$C6-H6\cdots O2^i$	0.97 (2)	2.45 (2)	3.414 (2)	174 (1)		
Symmetry code: (i) x	, y + 1, z.					
Table 2						
Experimental det	ails.					
Crystal data Chemical formula M_r Crystal system, spa	ice group	C ₁₆ F 284.3 Mon	$I_{16}N_2O_3$ 31 occlinic, $P2_1/c$			
Temperature (K)	0 1	150	, I			
$ \begin{array}{l} a, b, c \ (\dot{A}) \\ \beta \ (^{\circ}) \\ V \ (\dot{A}^{3}) \end{array} $		23.3 90.8 1397	23.3174 (7), 8.2979 (2), 7.2260 (2) 90.899 (1) 1397.95 (7)			
Z Radiation type		4 Cu <i>l</i>	Κα			
$\mu \text{ (mm}^{-1})$		0.78	iu i			
Crystal size (mm)		0.25	\times 0.16 \times 0.01			
Data collection						
Diffractometer		Brul 10	ker D8 VENTU 00 CMOS	RE PHOTON		
Absorption correct	tion	Mult 20	ti-scan (SADAE 916)	3S; Bruker,		
T_{\min}, T_{\max} No. of measured, in observed [$I > 2\sigma$	ndependent an $\sigma(I)$ reflections	0.87, d 1033	, 0.99 5, 2764, 2395			
R _{int}		0.032	2			
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$		0.62	1			
Refinement $R[F^2 > 2\sigma(F^2)]$, we not set the set of	$R(F^2), S$	0.039 2764	9, 0.104, 1.05			
No. of parameters		255	u atom parama	tors refined		
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å)	All 1 0.23,	-0.20	ters renned		

Table 1

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

reduced pressure and the obtained residue was chromatographed on a silica gel column with a mixture of ethyl acetate/ hexane (90/100) as eluent. (E)-4-Methoxy-3,5-dimethyl-2-[(3nitrophenyl)ethenyl]pyridine was obtained and recrystallized from ethanol solution, to afford the compound as crystals, with a yield of 40%.

Figure 4 Detail of the π - π stacking between substituted pyridine rings at (x, y, z) (top) and $(x, \frac{3}{2} - y, -\frac{1}{2} + z)$ (bottom).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions and isotropic factors for all H atoms were refined, since diffraction data were collected at low temperature.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Daly, J. W., Garraffo, H. M. & Spande, T. F. (1999). *Alkaloids: Chemical and Biological Perspectives*, Vol. 13, edited by S. W. Pelletier, pp. 1–161. New York: Elsevier.
- Harrison, T. S. & Scott, L. J. (2005). Drugs, 65, 2309-2336.
- Kubota, T., Nishi, T., Fukushi, E., Kawabata, J., Fromont, J. & Kobayashi, J. (2007). *Tetrahedron Lett.* **48**, 4983–4985.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Watts, G. F. & Chan, D. C. (2008). Arterioscler. Thromb. Vasc. Biol. 28, 1892–1895.

full crystallographic data

IUCrData (2016). **1**, x161966 [https://doi.org/10.1107/S2414314616019660]

(E)-4-Methoxy-3,5-dimethyl-2-[(3-nitrophenyl)ethenyl]pyridine

Youness El Bakri, Youssef Ramli, Abdallah Harmaoui, Jihad Sebhaoui, El Mokhtar Essassi and Joel T. Mague

(E)-4-Methoxy-3,5-dimethyl-2-[(3-nitrophenyl)ethenyl]pyridine

Crystal data

 $C_{16}H_{16}N_2O_3$ $M_r = 284.31$ Monoclinic, $P2_1/c$ a = 23.3174 (7) Å b = 8.2979 (2) Å c = 7.2260 (2) Å $\beta = 90.899$ (1)° V = 1397.95 (7) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (*SADABS*; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.104$ S = 1.052764 reflections 255 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 600 $D_x = 1.351 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 7563 reflections $\theta = 3.8-73.2^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.25 \times 0.16 \times 0.01 \text{ mm}$

 $T_{\min} = 0.87, T_{\max} = 0.99$ 10335 measured reflections 2764 independent reflections 2395 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 73.3^{\circ}, \theta_{\text{min}} = 3.8^{\circ}$ $h = -28 \rightarrow 28$ $k = -10 \rightarrow 9$ $l = -8 \rightarrow 8$

Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0525P)^2 + 0.417P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015*b*), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0024 (3)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.95105 (5)	0.03936 (13)	0.34676 (19)	0.0474 (3)
O2	0.86494 (5)	-0.00204 (12)	0.44015 (18)	0.0428 (3)
O3	0.60432 (4)	1.08094 (11)	0.66857 (13)	0.0278 (2)
N1	0.66199 (4)	0.60746 (13)	0.65809 (15)	0.0247 (2)
N2	0.90441 (5)	0.08754 (14)	0.39837 (17)	0.0308 (3)
C1	0.83106 (5)	0.48038 (15)	0.48252 (18)	0.0247 (3)
C2	0.84183 (5)	0.31514 (15)	0.46961 (18)	0.0246 (3)
H2	0.8130 (7)	0.236 (2)	0.502 (2)	0.031 (4)*
C3	0.89481 (5)	0.26256 (15)	0.41017 (18)	0.0254 (3)
C4	0.93826 (6)	0.36645 (18)	0.3615 (2)	0.0316 (3)
H4	0.9740 (7)	0.326 (2)	0.324 (2)	0.036 (4)*
C5	0.92717 (6)	0.53084 (18)	0.3736 (2)	0.0366 (4)
Н5	0.9565 (8)	0.605 (2)	0.343 (2)	0.044 (5)*
C6	0.87477 (6)	0.58745 (17)	0.4331 (2)	0.0327 (3)
H6	0.8689 (8)	0.703 (2)	0.434 (2)	0.043 (5)*
C7	0.77435 (5)	0.53257 (16)	0.54498 (19)	0.0260 (3)
H7	0.7471 (7)	0.4469 (19)	0.576 (2)	0.030 (4)*
C8	0.75595 (5)	0.68419 (16)	0.55851 (18)	0.0256 (3)
H8	0.7825 (7)	0.773 (2)	0.531 (2)	0.040 (5)*
C9	0.69782 (5)	0.72919 (15)	0.61500 (17)	0.0222 (3)
C10	0.68107 (5)	0.89220 (15)	0.61999 (17)	0.0226 (3)
C11	0.62485 (5)	0.92452 (15)	0.67111 (17)	0.0228 (3)
C12	0.58704 (5)	0.80139 (15)	0.71531 (17)	0.0240 (3)
C13	0.60879 (5)	0.64531 (15)	0.70639 (19)	0.0253 (3)
H13	0.5831 (6)	0.5569 (19)	0.736 (2)	0.024 (4)*
C14	0.72122 (6)	1.02562 (16)	0.5674 (2)	0.0282 (3)
H14A	0.7019 (11)	1.132 (3)	0.571 (3)	0.076 (7)*
H14B	0.7544 (8)	1.032 (2)	0.652 (3)	0.048 (5)*
H14C	0.7363 (9)	1.009 (2)	0.444 (3)	0.055 (6)*
C15	0.61979 (8)	1.17496 (18)	0.8279 (2)	0.0386 (4)
H15A	0.6201 (11)	1.282 (3)	0.789 (4)	0.084 (8)*
H15B	0.5878 (11)	1.164 (3)	0.920 (4)	0.084 (8)*
H15C	0.6548 (10)	1.142 (3)	0.881 (3)	0.060 (6)*
C16	0.52598 (6)	0.83394 (18)	0.7665 (2)	0.0319 (3)
H16A	0.5035 (8)	0.882 (2)	0.661 (3)	0.048 (5)*
H16B	0.5240 (8)	0.909 (2)	0.874 (3)	0.053 (5)*
H16C	0.5066 (8)	0.732 (2)	0.800 (2)	0.045 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0351 (6)	0.0367 (6)	0.0708 (8)	0.0121 (5)	0.0170 (5)	-0.0044 (6)
O2	0.0385 (6)	0.0243 (5)	0.0660 (8)	-0.0005 (4)	0.0125 (5)	0.0002 (5)
03	0.0305 (5)	0.0214 (4)	0.0314 (5)	0.0054 (4)	-0.0024 (4)	-0.0019 (4)
N1	0.0239 (5)	0.0224 (5)	0.0279 (6)	0.0002 (4)	0.0024 (4)	-0.0011 (4)

N2	0.0292 (6)	0.0270 (6)	0.0362 (6)	0.0054 (5)	0.0045 (5)	-0.0013 (5)
C1	0.0226 (6)	0.0245 (6)	0.0271 (6)	0.0007 (5)	0.0026 (5)	-0.0006 (5)
C2	0.0220 (6)	0.0242 (6)	0.0278 (6)	-0.0008 (5)	0.0039 (5)	0.0001 (5)
C3	0.0249 (6)	0.0230 (6)	0.0283 (6)	0.0019 (5)	0.0031 (5)	-0.0014 (5)
C4	0.0216 (6)	0.0335 (7)	0.0399 (8)	0.0014 (5)	0.0082 (5)	-0.0031 (6)
C5	0.0274 (7)	0.0300 (7)	0.0528 (9)	-0.0049 (6)	0.0114 (6)	-0.0008 (7)
C6	0.0284 (6)	0.0241 (6)	0.0457 (8)	-0.0006 (5)	0.0080 (6)	-0.0004 (6)
C7	0.0227 (6)	0.0261 (6)	0.0292 (7)	0.0002 (5)	0.0031 (5)	-0.0005 (5)
C8	0.0225 (6)	0.0258 (6)	0.0285 (7)	0.0004 (5)	0.0032 (5)	-0.0004 (5)
C9	0.0225 (6)	0.0221 (6)	0.0221 (6)	0.0001 (5)	0.0009 (5)	-0.0005 (5)
C10	0.0238 (6)	0.0224 (6)	0.0217 (6)	-0.0005 (5)	-0.0005 (5)	-0.0001 (5)
C11	0.0252 (6)	0.0213 (6)	0.0218 (6)	0.0029 (5)	-0.0013 (5)	-0.0010 (5)
C12	0.0226 (6)	0.0256 (6)	0.0237 (6)	0.0023 (5)	0.0018 (5)	-0.0008 (5)
C13	0.0233 (6)	0.0237 (6)	0.0291 (7)	-0.0019 (5)	0.0024 (5)	-0.0003 (5)
C14	0.0263 (6)	0.0232 (6)	0.0352 (7)	-0.0017 (5)	0.0020 (6)	0.0023 (6)
C15	0.0518 (9)	0.0255 (7)	0.0382 (8)	0.0090 (6)	-0.0106 (7)	-0.0078 (6)
C16	0.0242 (6)	0.0324 (7)	0.0393 (8)	0.0024 (5)	0.0059 (6)	-0.0007 (6)

Geometric parameters (Å, °)

O1—N2	1.2224 (15)	С7—Н7	0.982 (16)
O2—N2	1.2246 (16)	C8—C9	1.4699 (17)
O3—C11	1.3835 (14)	C8—H8	0.982 (18)
O3—C15	1.4320 (17)	C9—C10	1.4084 (17)
N1—C13	1.3316 (16)	C10—C11	1.3936 (17)
N1—C9	1.3503 (16)	C10-C14	1.5026 (17)
N2—C3	1.4722 (17)	C11—C12	1.3900 (18)
C1—C2	1.3973 (17)	C12—C13	1.3928 (17)
C1—C6	1.4025 (18)	C12—C16	1.5011 (17)
C1—C7	1.4693 (17)	С13—Н13	0.972 (15)
C2—C3	1.3848 (17)	C14—H14A	0.99 (2)
С2—Н2	0.968 (17)	C14—H14B	0.98 (2)
C3—C4	1.3802 (19)	C14—H14C	0.97 (2)
C4—C5	1.391 (2)	C15—H15A	0.93 (3)
C4—H4	0.942 (17)	C15—H15B	1.01 (3)
C5—C6	1.3838 (19)	C15—H15C	0.94 (2)
С5—Н5	0.949 (19)	C16—H16A	1.00 (2)
С6—Н6	0.965 (19)	C16—H16B	1.00 (2)
С7—С8	1.3333 (18)	C16—H16C	0.99 (2)
C11—O3—C15	114.69 (10)	С10—С9—С8	120.55 (11)
C13—N1—C9	117.79 (11)	C11—C10—C9	117.00 (11)
O1—N2—O2	123.54 (12)	C11—C10—C14	121.17 (11)
O1—N2—C3	118.50 (11)	C9—C10—C14	121.81 (11)
O2—N2—C3	117.96 (11)	O3—C11—C12	118.16 (11)
C2—C1—C6	118.20 (12)	O3—C11—C10	120.26 (11)
C2—C1—C7	118.25 (11)	C12-C11-C10	121.48 (11)
C6—C1—C7	123.55 (12)	C11—C12—C13	116.11 (11)

C3—C2—C1	119.47 (12)	C11—C12—C16	122.13 (11)
С3—С2—Н2	119.2 (9)	C13—C12—C16	121.75 (12)
C1—C2—H2	121.4 (9)	N1-C13-C12	124.95 (12)
C4—C3—C2	122.98 (12)	N1—C13—H13	117.3 (9)
C4—C3—N2	119.24 (11)	C12—C13—H13	117.7 (9)
C2—C3—N2	117.78 (11)	C10—C14—H14A	111.2 (14)
C3—C4—C5	117.28 (12)	C10—C14—H14B	111.7 (11)
C3—C4—H4	120.6 (10)	H14A—C14—H14B	107.0 (18)
C5—C4—H4	122.1 (10)	C10—C14—H14C	111.5 (12)
C6—C5—C4	121.22 (13)	H14A—C14—H14C	108.9 (18)
С6—С5—Н5	119.8 (11)	H14B—C14—H14C	106.4 (16)
С4—С5—Н5	118.9 (11)	O3—C15—H15A	106.2 (16)
C5—C6—C1	120.85 (13)	O3—C15—H15B	107.5 (15)
С5—С6—Н6	117.7 (10)	H15A—C15—H15B	107 (2)
С1—С6—Н6	121.4 (10)	O3—C15—H15C	112.3 (13)
C8—C7—C1	126.36 (12)	H15A—C15—H15C	113 (2)
С8—С7—Н7	117.1 (9)	H15B—C15—H15C	110.7 (19)
С1—С7—Н7	116.5 (9)	C12—C16—H16A	111.7 (11)
C7—C8—C9	124.01 (12)	C12—C16—H16B	111.1 (11)
С7—С8—Н8	119.0 (10)	H16A—C16—H16B	108.4 (16)
С9—С8—Н8	117.0 (10)	C12—C16—H16C	110.3 (11)
N1—C9—C10	122.67 (11)	H16A—C16—H16C	107.0 (15)
N1—C9—C8	116.77 (11)	H16B—C16—H16C	108.2 (15)
C6—C1—C2—C3	0.4 (2)	C7—C8—C9—N1	1.2 (2)
C7—C1—C2—C3	179.66 (12)	C7—C8—C9—C10	-177.88 (13)
C1—C2—C3—C4	-0.3 (2)	N1-C9-C10-C11	-0.35 (18)
C1—C2—C3—N2	-179.96 (12)	C8—C9—C10—C11	178.63 (11)
O1—N2—C3—C4	0.5 (2)	N1-C9-C10-C14	-178.60 (12)
O2—N2—C3—C4	-179.11 (13)	C8-C9-C10-C14	0.38 (19)
O1—N2—C3—C2	-179.74 (13)	C15—O3—C11—C12	102.35 (15)
O2—N2—C3—C2	0.61 (19)	C15—O3—C11—C10	-81.30 (16)
C2—C3—C4—C5	-0.1 (2)	C9—C10—C11—O3	-176.17 (11)
N2—C3—C4—C5	179.58 (13)	C14—C10—C11—O3	2.08 (18)
C3—C4—C5—C6	0.4 (2)	C9-C10-C11-C12	0.05 (18)
C4—C5—C6—C1	-0.2 (3)	C14—C10—C11—C12	178.30 (12)
C2-C1-C6-C5	-0.2 (2)	O3—C11—C12—C13	176.66 (11)
C7—C1—C6—C5	-179.39 (14)	C10-C11-C12-C13	0.36 (18)
C2—C1—C7—C8	-177.22 (14)	O3—C11—C12—C16	-2.31 (18)
C6—C1—C7—C8	2.0 (2)	C10-C11-C12-C16	-178.61 (12)
C1—C7—C8—C9	177.47 (12)	C9—N1—C13—C12	0.3 (2)
C13—N1—C9—C10	0.21 (19)	C11—C12—C13—N1	-0.5 (2)
C13—N1—C9—C8	-178.80 (11)	C16—C12—C13—N1	178.44 (13)
	~ /		

Hydrogen-bond geometry (Å, °)

data reports

$C6-H6\cdots O2^{i}$	0.97 (2)	2.45 (2)	3.414 (2)	174 (1)

Symmetry code: (i) x, y+1, z.