ISSN 2414-3146

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The title compound, $C_{32}H_{48}O_8P_2S_2$, was prepared by the nickel-catalyzed reaction of bis(5-bromothienyl)dipropoxybenzene and triisopropyl phosphite. The thiophene rings are inclined to the benzene ring by 14.6 (2) and 25.3 (3)°. One propyloxy group is disordered. Four hydrogen bonds connect the molecules, which are arranged in ribbons parallel to the *bc* plane.

Structure description

The title compound, Fig. 1, was prepared by nickel-catalyzed reaction of bis-5-bromothienyl-dipropoxybenzene and triisopropyl phosphite.

Bisphosphonates are used to treat osteoporosis (Winckler *et al.*, 1996; Pavlov *et al.*, 2016). For layered materials from bisphosphonates, see: Ansell *et al.* (1997); Lecollinet *et al.* (2009). Bisphosphonates can act also as bifunctional building blocks for stilbenoid oligomers (Detert & Sugiono, 2000).

A phase transition of the crystals appears on cooling to 248 K. After this, the crystals were not suitable for single-crystal measurements. Thus, the data collection was performed at 248 K. There is one non-symmetric molecule in the asymmetric unit of the monoclinic unit cell. The dihedral angles between the mean planes of the essentially planar thiophene rings and the central benzene ring are 25.3 (2) and 14.6 (2)°.

In the crystal, four C-H···O hydrogen bonds connect one molecule with three symmetry-related ones (see Table 1) and form undulating sheets (Fig. 2) parallel to the bc plane.

Synthesis and crystallization

A mixture composed of 1,4-bis-5-bromothienyl-2,5-dipropoxybenzene (Theisinger, 2005) (1.1 g, 2.13 mmol), anhydrous nickel chloride (0.1 g, 0.78 mmol) and triisopropyl phos-

Received 7 December 2016 Accepted 8 December 2016

Edited by M. Bolte, Goethe-Universität Frankfurt Germany

IUCrData

Keywords: crystal structure; phosphonate; thiophene; disorder.

CCDC reference: 1521457

Structural data: full structural data are available from iucrdata.iucr.org

Figure 1

phite (0.92 g, 4.4 mmol) was stirred for 3 h at 450 K under nitrogen. After 2 h, an additional portion of NiCl₂ was added. After completion of the reaction, excess phosphite was removed in vacuo and the product purified via column chromatography (silica gel, petroleum ether: ethyl acetate = 1:1) to afford 1.01 g of the title compound in 70% yield. IR: 3066, 2978, 2935, 1531, 1439, 1387, 1336, 1252, 1217, 1178, 1142, 1039, 985, 885, 823, 775, 669, 588. ¹H NMR (CDCl₃) δ: 7.60 (dd, 2 H, $J_{\rm HP} = 8.5 \text{ Hz}, J_{\rm HH} = 4.1 \text{ Hz}), 7.55 (t, 2 \text{ H}, J_{\rm HH} = J_{\rm HP} = 3.7 \text{ Hz}),$ 7.26 (s, 2 H), 4.7 (m, 4 H), 4.06 (t, 4 H, OCH₂), 1.19 (m, 4 H), 1.32 (dd, 24 H), 1.09 (t, 6 H). ¹³C NMR (CDCl₃) δ: 149.4, 146.6 $({}^{4}J_{CP} = 7.9 \text{ Hz}), 136.0 (J_{CP} = 11.2 \text{ Hz}), 129.1 (J_{CP} = 207.8 \text{ Hz}),$ 125.8 ($J_{CP} = 16.9 \text{ Hz}$), 122.8, 112.4, 71.4, 71.3, 24.0 ($J_{CP} = 4.5$), 22.7, 10.9. FD-MS: 1372.6 (4%, M_2^+), 686.2 (100%, M^+). Yellow crystals with m.p. 458 K were obtained by recrystallization from a dichloromethane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. One *n*-propyloxy group is disordered over two positions with a site occupation factor of 0.75 (2) for the major occupied site. The C-C distances

Figure 2

A partial packing diagram. Hydrogen bonds are shown as dashed lines. The view is along the a axis.

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8A\cdots O29^{i}$	0.98	2.61	3.533 (9)	156
$C12-H12C\cdots O44^{ii}$	0.98	2.52	3.480 (10)	166
$C19-H19\cdots O29^{i}$	0.94	2.51	3.436 (8)	169
$C34-H34\cdots O44^{ii}$	0.94	2.49	3.424 (8)	174

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{32}H_{48}O_8P_2S_2$
M _r	686.76
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	248
a, b, c (Å)	13.6507 (8), 18.8828 (11), 14.5033 (8)
β (°)	103.279 (5)
$V(Å^3)$	3638.5 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.28
Crystal size (mm)	$0.40\times0.15\times0.08$
Data collection	
Diffractometer	Stoe IPDS 2T
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25084, 8750, 3346
R _{int}	0.143
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.091, 0.304, 0.95
No. of reflections	8750
No. of parameters	433
No. of restraints	22
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.73, -0.53

Computer programs: X-AREA and X-RED (Stoe & Cie, 1996), SIR97 (Altomare et al., 1999) and SHELXL2014 (Sheldrick, 2015).

involving the disordered atoms were restrained to 1.54 (2) Å. In addition, one methyl group of an isopropyl group is disordered over two equally occupied positions. For the atoms C12, C13A, C14A, C26, C27 and C28A, a rigid-bond restraint (RIGU) was applied.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Ansell, M. A., Cogan, E. B., Neff, G. A., von Roeschlaub, R. & Page, C. J. (1997). Supramol. Sci. 4, 21–26.
- Detert, H. & Sugiono, E. (2000). Synth. Met. 115, 89-92.
- Lecollinet, G., Delorme, N., Edely, M., Gibaud, A., Bardeau, J.-F., Hindré, F., Boury, F. & Portet, D. (2009). *Langmuir*, **25**, 7828–7835.
- Pavlov, V. A., Ebetino, F. H., Lundy, M. W., Joly, J., Dobson, R. L., Russell, R. G. G. & Mazur, A. W. (2016). *Phosphorus Sulfur Silicon Relat. Elem.* 191, 1504–1508.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.

Theisinger, S. (2005). Diploma Thesis, Johannes Gutenberg-University, Mainz, Germany.

Winckler, W., Pieper, Th. & Keppler, B. K. (1996). *Phosphorus Sulfur Silicon Relat. Elem.* **112**, 137–141.

full crystallographic data

IUCrData (2016). **1**, x161963 [https://doi.org/10.1107/S2414314616019635]

1,4-Bis{5-[bis(propan-2-yloxy)phosphoryl]thiophen-2-yl}-2,5-dipropoxybenzene

Heiner Detert and Dieter Schollmeyer

1,4-Bis{5-[bis(propan-2-yloxy)phosphoryl]thiophen-2-yl}-2,5-dipropoxybenzene

Crystal data C32H48O8P2S2 $D_{\rm x} = 1.254 {\rm Mg m^{-3}}$ $M_r = 686.76$ Melting point: 458 K Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 17095 reflections a = 13.6507 (8) Å b = 18.8828 (11) Å $\theta = 3.3 - 28.7^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ c = 14.5033 (8) Å $\beta = 103.279 (5)^{\circ}$ T = 248 KV = 3638.5 (4) Å³ Needle, yellow Z = 4 $0.40\times0.15\times0.08~mm$ F(000) = 1464Data collection Stoe IPDS 2T 3346 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.143$ Graphite monochromator $\theta_{\rm max} = 28.0^\circ, \ \theta_{\rm min} = 3.3^\circ$ Detector resolution: 6.67 pixels mm⁻¹ $h = -18 \rightarrow 18$ $k = -24 \rightarrow 24$ rotation method scans $l = -18 \rightarrow 19$ 25084 measured reflections 8750 independent reflections Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.091$ H-atom parameters constrained $wR(F^2) = 0.304$ $w = 1/[\sigma^2(F_o^2) + (0.149P)^2]$ S = 0.95where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 8750 reflections $\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$ 433 parameters $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$ 22 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.7646 (4)	0.4573 (3)	0.1961 (4)	0.0391 (13)	. /
C2	0.7995 (5)	0.4363 (3)	0.2908 (4)	0.0416 (14)	
H2	0.8312	0.3921	0.3046	0.050*	
C3	0.7876 (4)	0.4802 (3)	0.3644 (4)	0.0420 (14)	
C4	0.7430 (4)	0.5466 (3)	0.3458 (4)	0.0390 (14)	
C5	0.7098 (5)	0.5673 (3)	0.2520 (5)	0.0469 (15)	
Н5	0.6797	0.6120	0.2383	0.056*	
C6	0.7200 (5)	0.5238 (3)	0.1788 (5)	0.0451 (15)	
07	0.8192 (4)	0.4617 (2)	0.4578 (3)	0.0522 (12)	
C8	0.8661 (5)	0.3944 (3)	0.4836 (5)	0.0507 (16)	
H8A	0.8313	0.3585	0.4391	0.061*	
H8B	0.8578	0.3816	0.5469	0.061*	
C9	0.9747 (5)	0.3929 (4)	0.4839 (6)	0.0610 (19)	
H9A	1.0099	0.4297	0.5266	0.073*	
H9B	0.9836	0.4031	0.4201	0.073*	
C10	1.0204 (6)	0.3206 (5)	0.5163 (7)	0.077 (3)	
H10A	1.0116	0.3106	0.5794	0.116*	
H10B	1.0916	0.3210	0.5170	0.116*	
H10C	0.9870	0.2844	0.4728	0.116*	
011	0.6883 (4)	0.5425 (3)	0.0852 (3)	0.0596 (13)	
C12	0.6181 (7)	0.6006 (5)	0.0622 (5)	0.073 (2)	
H12A	0.6526	0.6459	0.0788	0.087*	0.75 (2)
H12B	0.5647	0.5962	0.0970	0.087*	0.75 (2)
H12C	0.6481	0.6432	0.0955	0.087*	0.25 (2)
H12D	0.5571	0.5894	0.0842	0.087*	0.25 (2)
C13	0.5740 (17)	0.5964 (10)	-0.0441 (9)	0.101 (7)	0.75 (2)
H13A	0.5493	0.5484	-0.0616	0.121*	0.75 (2)
H13B	0.6259	0.6076	-0.0787	0.121*	0.75 (2)
C14	0.4868 (10)	0.6498 (9)	-0.0698 (12)	0.120 (7)	0.75 (2)
H14A	0.4578	0.6479	-0.1374	0.179*	0.75 (2)
H14B	0.4357	0.6381	-0.0356	0.179*	0.75 (2)
H14C	0.5121	0.6972	-0.0527	0.179*	0.75 (2)
C13A	0.590 (4)	0.615 (2)	-0.0446 (15)	0.057 (9)	0.25 (2)
H13C	0.6494	0.6148	-0.0711	0.068*	0.25 (2)
H13D	0.5565	0.6615	-0.0575	0.068*	0.25 (2)
C14A	0.517 (4)	0.555 (2)	-0.087 (2)	0.12 (2)	0.25 (2)
H14D	0.4960	0.5617	-0.1554	0.173*	0.25 (2)
H14E	0.5509	0.5101	-0.0736	0.173*	0.25 (2)
H14F	0.4585	0.5566	-0.0601	0.173*	0.25 (2)
C15	0.7770 (5)	0.4074 (3)	0.1201 (5)	0.0421 (14)	
S16	0.78638 (15)	0.43527 (9)	0.00974 (12)	0.0519 (5)	
C17	0.8043 (5)	0.3503 (4)	-0.0255 (5)	0.0456 (15)	
C18	0.8015 (5)	0.3034 (4)	0.0459 (5)	0.0504 (16)	
H18	0.8087	0.2542	0.0399	0.060*	
C19	0.7871 (5)	0.3356 (3)	0.1282 (5)	0.0469 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19	0.7845	0.3104	0.1836	0.056*	
P20	0.82830 (13)	0.33165 (9)	-0.13808 (12)	0.0447 (4)	
O21	0.9359 (4)	0.3627 (3)	-0.1288 (4)	0.0601 (13)	
C22	0.9893 (6)	0.3613 (5)	-0.2057 (6)	0.072 (2)	
H22	0.9536	0.3291	-0.2563	0.087*	
C23	1.0921 (7)	0.3323 (6)	-0.1643 (9)	0.106 (4)	
H23A	1.1247	0.3609	-0.1104	0.159*	
H23B	1.1318	0.3333	-0.2118	0.159*	
H23C	1.0863	0.2839	-0.1438	0.159*	
C24	0.9899 (8)	0.4339 (6)	-0.2448 (8)	0.105 (4)	
H24A	0.9214	0.4484	-0.2730	0.158*	
H24B	1.0292	0.4343	-0.2927	0.158*	
H24C	1 0195	0 4664	-0.1943	0.158*	
025	0.7626 (3)	0.3838(3)	-0.2104(3)	0.0537(12)	
C26	0.6563 (6)	0.3737(5)	-0.2468(6)	0.072(2)	
626 H26	0.6280	0.3364	-0.2126	0.072 (2)	0.5
H26A	0.6355	0.3462	-0.1964	0.087*	0.5
C27	0.0333	0.3402 0.4452 (8)	-0.2428(11)	0.007	0.5
	0.6073 (11)	0.4452 (8)	-0.2428(11)	0.134 (0)	
1127A 1127D	0.0232	0.4703	-0.1801	0.230*	
	0.0300	0.4033	-0.1801	0.230*	
H2/C	0.3346	0.4393	-0.2503	0.230°	0.5
	0.640(3)	0.358 (2)	-0.3340(18)	0.121 (12)	0.5
H28A	0.5694	0.3511	-0.3814	0.182*	0.5
H28B	0.6646	0.3980	-0.3848	0.182*	0.5
H28C	0.6775	0.3159	-0.3630	0.182*	0.5
C28A	0.630 (2)	0.3329 (17)	-0.3222 (18)	0.086 (7)	0.5
H28D	0.5572	0.3297	-0.3407	0.130*	0.5
H28E	0.6552	0.3531	-0.3738	0.130*	0.5
H28F	0.6582	0.2860	-0.3076	0.130*	0.5
O29	0.8151 (4)	0.2567 (2)	-0.1632 (3)	0.0555 (12)	
C30	0.7278 (4)	0.5954 (3)	0.4202 (4)	0.0397 (13)	
S31	0.73883 (13)	0.57008 (9)	0.53735 (12)	0.0474 (4)	
C32	0.7074 (4)	0.6532 (3)	0.5694 (4)	0.0403 (13)	
C33	0.6920 (5)	0.6977 (4)	0.4946 (5)	0.0503 (16)	
H33	0.6757	0.7458	0.4985	0.060*	
C34	0.7026 (5)	0.6654 (4)	0.4104 (5)	0.0509 (16)	
H34	0.6933	0.6897	0.3525	0.061*	
P35	0.68713 (13)	0.67232 (9)	0.68365 (12)	0.0453 (4)	
O36	0.7622 (4)	0.6266 (3)	0.7574 (4)	0.0626 (13)	
C37	0.8578 (6)	0.6543 (5)	0.8129 (6)	0.073 (2)	
H37	0.8513	0.7055	0.8254	0.088*	
C38	0.8805 (9)	0.6139 (11)	0.9042 (9)	0.178 (8)	
H38A	0.8315	0.6259	0.9407	0.267*	
H38B	0.9474	0.6260	0.9402	0.267*	
H38C	0.8774	0.5635	0.8909	0.267*	
C39	0.9374 (8)	0.6428 (8)	0.7584 (10)	0.128 (5)	
H39A	0.9446	0.5925	0.7483	0.192*	
H39B	1.0009	0.6618	0.7939	0.192*	

H39C	0.9182	0.6666	0.6976	0.192*
O40	0.5887 (3)	0.6316 (3)	0.6897 (4)	0.0566 (12)
C41	0.4946 (6)	0.6448 (5)	0.6224 (6)	0.074 (2)
H41	0.5103	0.6647	0.5643	0.089*
C42	0.4431 (8)	0.5766 (7)	0.5975 (10)	0.120 (4)
H42A	0.4884	0.5437	0.5772	0.181*
H42B	0.3840	0.5837	0.5466	0.181*
H42C	0.4229	0.5575	0.6524	0.181*
C43	0.4360 (11)	0.6990 (9)	0.6620 (15)	0.207 (10)
H43A	0.4116	0.6785	0.7138	0.310*
H43B	0.3793	0.7146	0.6128	0.310*
H43C	0.4789	0.7392	0.6851	0.310*
O44	0.6885 (4)	0.7489 (2)	0.6998 (4)	0.0593 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.047 (3)	0.035 (3)	0.039 (3)	0.000 (3)	0.016 (3)	-0.002 (3)
C2	0.055 (4)	0.034 (3)	0.038 (3)	0.003 (3)	0.016 (3)	0.001 (3)
C3	0.049 (3)	0.041 (4)	0.040 (3)	-0.004 (3)	0.018 (3)	0.003 (3)
C4	0.046 (3)	0.033 (3)	0.041 (3)	0.002 (3)	0.018 (3)	0.000 (3)
C5	0.059 (4)	0.037 (4)	0.048 (4)	0.006 (3)	0.019 (3)	-0.001 (3)
C6	0.055 (4)	0.041 (4)	0.039 (3)	0.004 (3)	0.010 (3)	0.004 (3)
07	0.077 (3)	0.039 (3)	0.043 (3)	0.016 (2)	0.019 (2)	0.001 (2)
C8	0.062 (4)	0.037 (4)	0.054 (4)	0.009 (3)	0.015 (3)	0.006 (3)
C9	0.055 (4)	0.059 (5)	0.071 (5)	0.001 (3)	0.019 (4)	0.000 (4)
C10	0.053 (4)	0.066 (6)	0.108 (8)	0.010 (4)	0.007 (5)	-0.007 (5)
O11	0.096 (4)	0.046 (3)	0.036 (2)	0.023 (3)	0.015 (2)	0.002 (2)
C12	0.105 (6)	0.058 (5)	0.049 (4)	0.033 (4)	0.004 (4)	-0.001 (4)
C13	0.155 (18)	0.061 (12)	0.072 (9)	0.018 (12)	-0.003 (9)	-0.001 (8)
C14	0.086 (10)	0.120 (14)	0.127 (14)	0.004 (8)	-0.028 (9)	0.051 (11)
C13A	0.07 (2)	0.051 (18)	0.044 (9)	0.019 (13)	0.006 (8)	-0.003 (8)
C14A	0.19 (4)	0.12 (3)	0.029 (12)	-0.07 (3)	0.008 (14)	0.010 (12)
C15	0.049 (3)	0.035 (3)	0.045 (4)	0.000 (3)	0.016 (3)	-0.003 (3)
S16	0.0842 (13)	0.0363 (9)	0.0418 (9)	0.0038 (8)	0.0284 (9)	0.0011 (7)
C17	0.047 (3)	0.044 (4)	0.049 (4)	0.000 (3)	0.018 (3)	-0.003 (3)
C18	0.063 (4)	0.040 (4)	0.052 (4)	0.004 (3)	0.021 (3)	-0.002 (3)
C19	0.066 (4)	0.040 (4)	0.040 (3)	0.004 (3)	0.023 (3)	0.001 (3)
P20	0.0555 (10)	0.0441 (10)	0.0386 (9)	0.0021 (8)	0.0190 (8)	-0.0022 (7)
O21	0.066 (3)	0.067 (3)	0.053 (3)	-0.006 (2)	0.026 (2)	-0.014 (3)
C22	0.078 (5)	0.083 (6)	0.068 (5)	-0.027 (5)	0.041 (4)	-0.020 (5)
C23	0.085 (7)	0.112 (9)	0.143 (10)	0.016 (6)	0.071 (7)	0.001 (7)
C24	0.120 (8)	0.106 (9)	0.101 (8)	-0.031 (7)	0.049 (7)	0.014 (7)
O25	0.065 (3)	0.058 (3)	0.040 (3)	0.008 (2)	0.015 (2)	0.006 (2)
C26	0.072 (5)	0.082 (6)	0.063 (5)	0.002 (4)	0.015 (4)	0.016 (4)
C27	0.149 (11)	0.142 (9)	0.151 (13)	0.062 (8)	-0.006 (9)	-0.022 (8)
C28	0.15 (2)	0.16 (3)	0.061 (16)	0.02 (2)	0.032 (16)	0.002 (17)
C28A	0.079 (13)	0.105 (13)	0.073 (11)	0.015 (11)	0.012 (10)	0.006 (10)

O29	0.081 (3)	0.045 (3)	0.045 (3)	0.000 (2)	0.023 (2)	-0.006 (2)
C30	0.044 (3)	0.041 (4)	0.035 (3)	0.002 (3)	0.013 (3)	-0.002 (3)
S31	0.0663 (10)	0.0374 (9)	0.0421 (9)	0.0044 (7)	0.0200 (8)	-0.0031 (7)
C32	0.048 (3)	0.038 (3)	0.036 (3)	0.001 (3)	0.011 (3)	-0.005 (3)
C33	0.065 (4)	0.036 (4)	0.054 (4)	0.006 (3)	0.024 (3)	-0.009 (3)
C34	0.065 (4)	0.042 (4)	0.051 (4)	0.009 (3)	0.022 (3)	0.002 (3)
P35	0.0516 (10)	0.0427 (10)	0.0433 (9)	0.0008 (7)	0.0145 (8)	-0.0068 (8)
O36	0.064 (3)	0.053 (3)	0.066 (3)	0.002 (2)	0.004 (3)	-0.002 (3)
C37	0.057 (4)	0.094 (7)	0.060 (5)	-0.008(4)	-0.005 (4)	-0.002 (5)
C38	0.096 (9)	0.34 (2)	0.075 (8)	-0.011 (12)	-0.030(7)	0.013 (12)
C39	0.069 (6)	0.163 (13)	0.159 (13)	0.008 (7)	0.039 (7)	0.007 (10)
O40	0.059 (3)	0.058 (3)	0.055 (3)	-0.004 (2)	0.019 (2)	-0.001 (2)
C41	0.060 (5)	0.096 (7)	0.067 (5)	-0.001 (4)	0.017 (4)	0.003 (5)
C42	0.079 (7)	0.144 (12)	0.127 (10)	-0.037 (7)	0.001 (6)	0.003 (8)
C43	0.111 (10)	0.207 (18)	0.29 (2)	0.079 (11)	0.014 (12)	-0.110 (16)
O44	0.085 (3)	0.039 (3)	0.060 (3)	-0.002 (2)	0.027 (3)	-0.010 (2)

Geometric parameters (Å, °)

C1—C6	1.393 (9)	C22—C23	1.498 (13)
C1—C2	1.404 (8)	C22—H22	0.9900
C1—C15	1.490 (8)	C23—H23A	0.9700
C2—C3	1.391 (8)	C23—H23B	0.9700
С2—Н2	0.9400	С23—Н23С	0.9700
C3—O7	1.369 (7)	C24—H24A	0.9700
C3—C4	1.394 (8)	C24—H24B	0.9700
C4—C5	1.386 (9)	C24—H24C	0.9700
C4—C30	1.470 (8)	O25—C26	1.437 (9)
C5—C6	1.374 (9)	C26—C28A	1.32 (3)
С5—Н5	0.9400	C26—C27	1.513 (15)
C6—O11	1.373 (7)	C26—C28	1.55 (3)
O7—C8	1.433 (7)	C26—H26	0.9900
C8—C9	1.482 (9)	C26—H26A	0.9900
C8—H8A	0.9800	C27—H27A	0.9700
C8—H8B	0.9800	C27—H27B	0.9700
C9—C10	1.530 (11)	C27—H27C	0.9700
С9—Н9А	0.9800	C28—H28A	0.9700
С9—Н9В	0.9800	C28—H28B	0.9700
C10—H10A	0.9700	C28—H28C	0.9700
C10—H10B	0.9700	C28A—H28D	0.9700
C10—H10C	0.9700	C28A—H28E	0.9700
O11—C12	1.444 (8)	C28A—H28F	0.9700
C12—C13	1.523 (13)	C30—C34	1.363 (9)
C12—C13A	1.534 (19)	C30—S31	1.737 (6)
C12—H12A	0.9800	S31—C32	1.719 (6)
C12—H12B	0.9800	C32—C33	1.350 (9)
C12—H12C	0.9800	C32—P35	1.778 (6)
C12—H12D	0.9800	C33—C34	1.401 (9)

C12 C14	1540(17)	C22 1122	0.0400
	1.340 (17)	C33—H34	0.9400
CI3—HI3A	0.9800	C34—H34	0.9400
C13—H13B	0.9800	P35—O44	1.464 (5)
C14—H14A	0.9700	P35—O36	1.561 (5)
C14—H14B	0.9700	P35—O40	1.569 (5)
C14—H14C	0.9700	O36—C37	1.464 (9)
C13A—C14A	1.54 (2)	C37—C38	1.499 (16)
C13A—H13C	0.9800	C37—C39	1.499 (13)
C13A—H13D	0.9800	С37—Н37	0.9900
C14A—H14D	0.9700	C38—H38A	0.9700
C14A—H14E	0.9700	C38—H38B	0.9700
C14A - H14F	0.9700	C38—H38C	0.9700
C_{15} C_{10}	1 366 (0)	C_{20} H20A	0.9700
C15 = C19	1.300(9)	C39—1139A	0.9700
C15—310	1.717(0)	С39—Н39В	0.9700
	1./1/(/)	C39—H39C	0.9700
C17—C18	1.370 (9)	040—C41	1.445 (10)
C17—P20	1.774 (6)	C41—C42	1.473 (14)
C18—C19	1.394 (9)	C41—C43	1.493 (14)
C18—H18	0.9400	C41—H41	0.9900
C19—H19	0.9400	C42—H42A	0.9700
P20—O29	1.461 (5)	C42—H42B	0.9700
P20—O21	1.558 (5)	C42—H42C	0.9700
P20—O25	1.562 (5)	C43—H43A	0.9700
O21—C22	1.465 (8)	C43—H43B	0.9700
C22—C24	1.484 (13)	C43—H43C	0.9700
C6-C1-C2	1179(6)	С22—С23—Н23А	109 5
C6-C1-C15	123.8 (6)	C22—C23—H23B	109.5
C_{2} C_{1} C_{15}	123.0(0) 118.3(5)	H23A_C23_H23B	109.5
$C_2 = C_1 = C_{13}$	110.5 (5)	C_{22} C_{23} H_{23} H_{23}	109.5
$C_{3} = C_{2} = C_{1}$	120.0 (0)	$H_{22} = C_{23} = H_{23}C$	109.5
$C_3 - C_2 - H_2$	119.7	$H_{22} = C_{23} = H_{23} C_{23}$	109.5
CI = C2 = H2	119.7	H23B = C23 = H23C	109.5
07-03-02	122.8 (6)	C22—C24—H24A	109.5
07	116.5 (5)	C22—C24—H24B	109.5
C2—C3—C4	120.7 (6)	H24A—C24—H24B	109.5
C5—C4—C3	118.2 (6)	C22—C24—H24C	109.5
C5—C4—C30	118.3 (5)	H24A—C24—H24C	109.5
C3—C4—C30	123.4 (6)	H24B—C24—H24C	109.5
C6—C5—C4	121.5 (6)	C26—O25—P20	122.6 (5)
С6—С5—Н5	119.3	C28A—C26—O25	116.2 (14)
С4—С5—Н5	119.3	C28A—C26—C27	120.9 (15)
O11—C6—C5	123.1 (6)	O25—C26—C27	106.6 (9)
O11—C6—C1	115.8 (5)	O25—C26—C28	106.9 (17)
C5—C6—C1	121.1 (6)	C27—C26—C28	104.2 (17)
C3—O7—C8	120.3 (5)	O25—C26—H26	112.9
07-C8-C9	113.8 (6)	C27—C26—H26	112.9
07—C8—H8A	108.8	C28 - C26 - H26	112.9
C9-C8-H8A	108.8	$C_{28A} - C_{26} - H_{26A}$	103.6
	100.0	-2011 - 220 - 112011	102.0

O7—C8—H8B	108.8	O25—C26—H26A	103.6
C9—C8—H8B	108.8	C27—C26—H26A	103.6
H8A—C8—H8B	107.7	C26—C27—H27A	109.5
C8—C9—C10	110.8 (6)	C26—C27—H27B	109.5
С8—С9—Н9А	109.5	H27A—C27—H27B	109.5
C10-C9-H9A	109.5	C26—C27—H27C	109.5
C8—C9—H9B	109.5	H27A - C27 - H27C	109.5
C10-C9-H9B	109.5	H27B-C27-H27C	109.5
H9A - C9 - H9B	108.1	C26—C28—H28A	109.5
C9-C10-H10A	109.5	C26—C28—H28B	109.5
C9-C10-H10B	109.5	H28A_C28_H28B	109.5
H_{10A} $-C_{10}$ $-H_{10B}$	109.5	C26-C28-H28C	109.5
C_{0} C_{10} H_{10}	109.5	$\begin{array}{c} \textbf{H}_{20} \\ \textbf{H}_{20} \\$	109.5
$H_{10A} = C_{10} = H_{10C}$	109.5	H28B C28 H28C	109.5
HIOR CIO HIOC	109.5	$C_{26} = C_{28} + H_{28} = H_{28}$	109.5
$C_{6} O_{11} C_{12}$	109.3 117.7(5)	$C_{20} - C_{28A} - H_{28D}$	109.5
$C_{0} = 011 = C_{12}^{-12}$	117.7(5) 106.3(0)	$\begin{array}{c} C_{20} \\ \hline \\ C_{20} \\ \hline $	109.5
011 - C12 - C13	100.3(9)	$C_{26} C_{28} A H_{28} E$	109.5
O11 C12 H12A	112 (2)	C_{20} C	109.5
C_{12} C_{12} H_{12A}	110.5	$H_{20}D - C_{20}A - H_{20}F$	109.5
C13-C12-H12A	110.5	$H_{2\delta E} = C_{2\delta A} = H_{2\delta F}$	109.3
C12 C12 H12D	110.5	$C_{34} = C_{30} = C_{4}$	127.2(0)
	110.3	$C_{34} - C_{30} - S_{31}$	109.4(3)
H12A—C12—H12B	108.7	C4 - C30 - S31	123.4(3)
OII = CI2 = HI2C	109.3	$C_{32} = C_{30} = C_{30}$	92.4 (3)
C13A - C12 - H12C	109.3	$C_{33} = C_{32} = B_{35}$	110.6 (5)
CIAA CIA HIAD	109.3	$C_{33} - C_{32} - P_{35}$	126.5 (5)
CI3A—CI2—HI2D	109.3	S31—C32—P35	122.6 (4)
HI2C—CI2—HI2D	107.9	$C_{32} - C_{33} - C_{34}$	113.7 (6)
C12— $C13$ — $C14$	108.3 (13)	C32—C33—H33	123.2
C12—C13—H13A	110.0	C34—C33—H33	123.2
C14—C13—H13A	110.0	C30—C34—C33	113.9 (6)
C12—C13—H13B	110.0	C30—C34—H34	123.1
C14—C13—H13B	110.0	С33—С34—Н34	123.1
H13A—C13—H13B	108.4	O44—P35—O36	117.0 (3)
C13—C14—H14A	109.5	O44—P35—O40	117.0 (3)
C13—C14—H14B	109.5	O36—P35—O40	97.3 (3)
H14A—C14—H14B	109.5	O44—P35—C32	110.5 (3)
C13—C14—H14C	109.5	O36—P35—C32	107.9 (3)
H14A—C14—H14C	109.5	O40—P35—C32	105.7 (3)
H14B—C14—H14C	109.5	C37—O36—P35	122.7 (5)
C12—C13A—C14A	105 (3)	O36—C37—C38	106.3 (8)
C12—C13A—H13C	110.7	O36—C37—C39	108.7 (8)
C14A—C13A—H13C	110.7	C38—C37—C39	111.3 (10)
C12—C13A—H13D	110.7	O36—C37—H37	110.2
C14A—C13A—H13D	110.7	С38—С37—Н37	110.2
H13C-C13A-H13D	108.8	С39—С37—Н37	110.2
C13A—C14A—H14D	109.5	C37—C38—H38A	109.5
C13A—C14A—H14E	109.5	C37—C38—H38B	109.5

H14D—C14A—H14E	109.5	H38A—C38—H38B	109.5
C13A—C14A—H14F	109.5	С37—С38—Н38С	109.5
H14D—C14A—H14F	109.5	H38A—C38—H38C	109.5
H14E—C14A—H14F	109.5	H38B—C38—H38C	109.5
C19—C15—C1	126.2 (6)	С37—С39—Н39А	109.5
C19—C15—S16	111.0 (5)	С37—С39—Н39В	109.5
C1-C15-S16	122.8 (5)	H39A—C39—H39B	109.5
C15—S16—C17	92.1 (3)	С37—С39—Н39С	109.5
C18—C17—S16	110.5 (5)	H39A—C39—H39C	109.5
C18—C17—P20	127.6 (5)	H39B—C39—H39C	109.5
S16-C17-P20	121.9 (4)	C41 - O40 - P35	121.1 (5)
C17 - C18 - C19	113.5 (6)	040-C41-C42	108.3 (8)
C17—C18—H18	123.3	040-C41-C43	109.3(9)
C19—C18—H18	123.3	C42-C41-C43	1152(10)
C_{15} C_{19} C_{18}	113.0 (6)	040-C41-H41	107.9
C_{15} C_{19} H_{19}	123.5	C42 - C41 - H41	107.9
C18 - C19 - H19	123.5	C43 - C41 - H41	107.9
O_{20} P_{20} O_{21}	116 4 (3)	C_{41} C_{42} H_{42A}	107.5
029 - 120 - 021 029 - P20 - 025	110.4(3)	$C_{41} = C_{42} = H_{42}R$	109.5
023 - 120 - 025	113.0(3)	$H_{1} = C_{12} = H_{12} B$	109.5
$O_2 I = I_2 O = O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	101.9(3) 112.6(3)	$\begin{array}{cccc} \Pi 42 A & - C 42 \\ \hline C 41 & C 42 & H 42 C \\ \hline \end{array}$	109.5
$O_{2} = 120 - C_{1} = 17$	112.0(3) 102.5(3)	$H_{12} = C_{42} = H_{42} C_{42}$	109.5
$O_2 I_{-} F_2 O_{-} C_1 7$	102.3(3) 107.1(2)	H42A - C42 - H42C	109.5
$C_{23} = F_{20} = C_{17}$	107.1(5) 122.5(5)	$n_{42}D - c_{42} - n_{42}c_{42}$	109.5
$C_{22} = 0_{21} = F_{20}$	123.3(3)	C41 - C43 - H43A	109.5
021 - 022 - 024	108.8 (7)	C41 - C43 - H43B	109.5
021 - 022 - 023	106.6 (8)	H43A - C43 - H43B	109.5
$C_{24} = C_{22} = C_{23}$	113.8 (8)	C41—C43—H43C	109.5
021—C22—H22	109.2	H43A—C43—H43C	109.5
C24—C22—H22	109.2	H43B—C43—H43C	109.5
C23—C22—H22	109.2		
C6—C1—C2—C3	1.3 (9)	C18—C17—P20—O25	145.5 (6)
C15—C1—C2—C3	-178.4 (5)	S16—C17—P20—O25	-37.6 (5)
C1—C2—C3—O7	179.3 (5)	O29—P20—O21—C22	57.9 (7)
C1—C2—C3—C4	-1.6 (9)	O25—P20—O21—C22	-68.1 (6)
O7—C3—C4—C5	-179.9 (5)	C17—P20—O21—C22	-178.9 (6)
C2—C3—C4—C5	0.9 (9)	P20-021-C22-C24	106.5 (8)
O7—C3—C4—C30	-1.1 (8)	P20-021-C22-C23	-130.4 (7)
C2—C3—C4—C30	179.7 (6)	O29—P20—O25—C26	48.7 (6)
C3—C4—C5—C6	0.1 (9)	O21—P20—O25—C26	175.6 (6)
C30—C4—C5—C6	-178.8 (6)	C17—P20—O25—C26	-77.2 (6)
C4—C5—C6—O11	-179.8 (6)	P20-025-C26-C28A	-86.8 (15)
C4—C5—C6—C1	-0.3 (10)	P20-025-C26-C27	135.2 (8)
C2-C1-C6-011	179.1 (6)	P20-025-C26-C28	-113.9 (15)
C15—C1—C6—O11	-1.2 (9)	C5-C4-C30-C34	-14.3 (10)
C2-C1-C6-C5	-0.3 (9)	C3—C4—C30—C34	166.9 (6)
C15—C1—C6—C5	179.4 (6)	C5-C4-C30-S31	165.1 (5)
C2—C3—O7—C8	-0.7 (9)	C3—C4—C30—S31	-13.7 (8)

C4—C3—O7—C8	-179.9 (5)	C34—C30—S31—C32	1.0 (5)
C3—O7—C8—C9	82.2 (8)	C4—C30—S31—C32	-178.5 (5)
O7—C8—C9—C10	177.5 (6)	C30—S31—C32—C33	-1.5 (5)
C5-C6-O11-C12	-17.3 (10)	C30—S31—C32—P35	173.0 (4)
C1—C6—O11—C12	163.3 (7)	S31—C32—C33—C34	1.6 (8)
C6-011-C12-C13	-164.4 (11)	P35—C32—C33—C34	-172.6 (5)
C6-011-C12-C13A	-179.9 (18)	C4—C30—C34—C33	179.1 (6)
O11—C12—C13—C14	171.3 (13)	S31—C30—C34—C33	-0.3 (8)
O11—C12—C13A—C14A	75 (4)	C32—C33—C34—C30	-0.8 (9)
C6-C1-C15-C19	-156.2 (7)	C33—C32—P35—O44	-21.7 (7)
C2-C1-C15-C19	23.5 (9)	S31—C32—P35—O44	164.7 (4)
C6-C1-C15-S16	27.1 (8)	C33—C32—P35—O36	-150.8 (6)
C2-C1-C15-S16	-153.2 (5)	S31—C32—P35—O36	35.6 (5)
C19—C15—S16—C17	-0.2 (5)	C33—C32—P35—O40	105.9 (6)
C1-C15-S16-C17	177.0 (5)	S31—C32—P35—O40	-67.7 (4)
C15—S16—C17—C18	0.7 (5)	O44—P35—O36—C37	-27.5 (7)
C15—S16—C17—P20	-176.6 (4)	O40—P35—O36—C37	-153.0 (6)
S16-C17-C18-C19	-1.1 (8)	C32—P35—O36—C37	97.8 (6)
P20-C17-C18-C19	176.1 (5)	P35—O36—C37—C38	150.9 (9)
C1-C15-C19-C18	-177.5 (6)	P35—O36—C37—C39	-89.1 (9)
S16-C15-C19-C18	-0.4 (8)	O44—P35—O40—C41	65.1 (6)
C17—C18—C19—C15	1.0 (9)	O36—P35—O40—C41	-169.5 (6)
C18—C17—P20—O29	18.1 (7)	C32—P35—O40—C41	-58.5 (6)
S16—C17—P20—O29	-165.0 (4)	P35—O40—C41—C42	139.7 (7)
C18—C17—P20—O21	-107.7 (6)	P35—O40—C41—C43	-94.0 (11)
S16-C17-P20-O21	69.2 (5)		

Hydrogen-bond geometry (Å, °)

D—H	H…A	D··· A	D—H…A
0.98	2.61	3.533 (9)	156
0.98	2.52	3.480 (10)	166
0.94	2.51	3.436 (8)	169
0.94	2.49	3.424 (8)	174
	<i>D</i> —H 0.98 0.98 0.94 0.94	D—H H…A 0.98 2.61 0.98 2.52 0.94 2.51 0.94 2.49	D—H H···A D···A 0.98 2.61 3.533 (9) 0.98 2.52 3.480 (10) 0.94 2.51 3.436 (8) 0.94 2.49 3.424 (8)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+3/2, z-1/2.