

IUCrData

ISSN 2414-3146

Received 6 December 2016 Accepted 10 December 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; bis-chalcone; hydrogen bonds.

CCDC reference: 1522076

**Structural data**: full structural data are available from iucrdata.iucr.org

# (*E*)-1-(5-Chlorothiophen-2-yl)-3-(2,4-dimethylphen-yl)prop-2-en-1-one

S. Naveen,<sup>a</sup> M. G. Prabhudeva,<sup>b</sup> K. Ajay Kumar,<sup>b</sup> N. K. Lokanath<sup>c</sup>\* and Muneer Abdoh<sup>d</sup>\*

<sup>a</sup>Institution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, <sup>b</sup>Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, <sup>c</sup>Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and <sup>d</sup>Department of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. \*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu

In the title compound,  $C_{15}H_{13}$ ClOS, the olefinic double bond adopts an *E* configuration. The molecule is nearly planar, as seen by the dihedral angle of 9.07 (8)° between the thiophene and phenyl rings. The *trans* configuration of the C=C double bond in the central enone group is confirmed by the C-C=C-C torsion angle of 177.6 (2)°. In the crystal, molecules are linked by weak C-H···O and C-H···S hydrogen bonds, forming chains propagating along the *c* axis.



### Structure description

Chalcones form the central cores for the construction of variety of bioactive molecules (Naveen *et al.*, 2016). The most commonly employed method for the synthesis of chalcones involves the condensation of an aromatic aldehyde and an aromatic ketone in the presence of aqueous alkaline bases (Mahapatra *et al.*, 2015). In view of the broad spectrum of applications associated with chalcones and as a part of our ongoing work on such molecules (Tejkiran *et al.*, 2016), we report here the synthesis and crystal structure of the title compound.

The title molecule (Fig. 1) is nearly planar, with a dihedral angle of 9.07 (8)° between the thiophene and phenyl rings that are bridged by the olefinic double bond. This value is less than the value of 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (*E*)-3-(2,3-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Naveen *et al.*, 2016). The *trans* configuration about the C6—C7 double bond in the central enone group is confirmed by the C5—C6—C75—C8 torsion angle, 177.6 (2)°. The



## data reports

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------------------------------------------------------|------|-------------------------|--------------|------------------|
| $\begin{array}{c} C3{-}H3{\cdots}O1^{i}\\ C3{-}H3{\cdots}S1^{i} \end{array}$ | 0.93 | 2.48                    | 3.400 (3)    | 169              |
|                                                                              | 0.93 | 2.90                    | 3.459 (2)    | 120              |

Symmetry code: (i)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ .

carbonyl group at C5 lies in the plane of the olefinic double bond and thiophene ring as indicated by the S1-C4-C5-O1[1.2 (3)°] and O1-C5-C6-C7 [-4.7 (3)°] torsion angles.

In the crystal, the molecules are linked *via* weak  $C-H\cdots O$  and  $C-H\cdots S$  hydrogen bonds, forming chains propagating along the *c* axis (Table 1 and Fig. 2).

### Synthesis and crystallization

A mixture of 1-(5-chlorothiophen-2-yl)ethanone (5 mmol), 2,4-dimethylbenzaldehyde (5 mmol) and potassium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was poured in to ice-cold water and kept in the refrigerator overnight. The solid that formed was filtered, and washed with cold methanol (5%) to obtain the crude product. Pure green



Figure 1

The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.



Figure 2

Packing of the molecules viewed along the b axis, with hydrogen bonds drawn as dashed lines.

| Table 2      |          |
|--------------|----------|
| Experimental | details. |

| Crystal data                                                                 |                                            |
|------------------------------------------------------------------------------|--------------------------------------------|
| Chemical formula                                                             | C <sub>15</sub> H <sub>13</sub> ClOS       |
| M <sub>r</sub>                                                               | 276.77                                     |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$                       |
| Temperature (K)                                                              | 296                                        |
| a, b, c (Å)                                                                  | 15.588 (2), 7.4306 (11),<br>11.4165 (17)   |
| β(°)                                                                         | 94.293 (3)                                 |
| $V(Å^3)$                                                                     | 1318.6 (3)                                 |
| Z                                                                            | 4                                          |
| Radiation type                                                               | Cu Ka                                      |
| $\mu (\text{mm}^{-1})$                                                       | 3.90                                       |
| Crystal size (mm)                                                            | $0.29 \times 0.26 \times 0.23$             |
| Data collection                                                              |                                            |
| Diffractometer                                                               | Bruker X8 Proteum                          |
| Absorption correction                                                        | Multi-scan ( <i>SADABS</i> ; Bruker, 2013) |
| $T_{\min}, T_{\max}$                                                         | 0.397, 0.467                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 9075, 2149, 2120                           |
| R <sub>int</sub>                                                             | 0.050                                      |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                         | 0.584                                      |
| Refinement                                                                   |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.054, 0.148, 1.11                         |
| No. of reflections                                                           | 2149                                       |
| No. of parameters                                                            | 165                                        |
| H-atom treatment                                                             | H-atom parameters constrained              |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.50, -0.87                                |

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

crystals of the title compound were obtained by crystallization from methanol by the slow evaporation technique, m.p.  $98-100^{\circ}$ C.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

### References

- Bruker (2013). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). *Eur. J. Med. Chem.* **92**, 839–865.
- Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). *IUCrData*, **1**, x161800.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.

# full crystallographic data

### *IUCrData* (2016). **1**, x161974 [https://doi.org/10.1107/S241431461601974X]

### (E)-1-(5-Chlorothiophen-2-yl)-3-(2,4-dimethylphenyl)prop-2-en-1-one

F(000) = 576

 $\theta = 5.7-64.2^{\circ}$  $\mu = 3.90 \text{ mm}^{-1}$ 

Rectangle, green

 $0.29 \times 0.26 \times 0.23 \text{ mm}$ 

 $T_{\rm min} = 0.397, T_{\rm max} = 0.467$ 

 $\theta_{\text{max}} = 64.2^{\circ}, \ \theta_{\text{min}} = 5.7^{\circ}$ 

9075 measured reflections

2149 independent reflections

2120 reflections with  $I > 2\sigma(I)$ 

T = 296 K

 $R_{\rm int} = 0.050$ 

 $h = -18 \rightarrow 17$ 

 $k = -7 \longrightarrow 8$  $l = -12 \longrightarrow 13$ 

 $D_{\rm x} = 1.394 {\rm Mg m^{-3}}$ 

Cu Ka radiation,  $\lambda = 1.54178$  Å

Cell parameters from 2120 reflections

S. Naveen, M. G. Prabhudeva, K. Ajay Kumar, N. K. Lokanath and Muneer Abdoh

(E)-1-(5-Chlorothiophen-2-yl)-3-(2,4-dimethylphenyl)prop-2-en-1-one

Crystal data

C<sub>15</sub>H<sub>13</sub>ClOS  $M_r = 276.77$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 15.588 (2) Å b = 7.4306 (11) Å c = 11.4165 (17) Å  $\beta = 94.293$  (3)° V = 1318.6 (3) Å<sup>3</sup> Z = 4

### Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 18.4 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2013)

### Refinement

| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.054$<br>$wR(F^2) = 0.148$ | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| S = 1.11                                                                                                  | H-atom parameters constrained                                                                                          |
| 2149 reflections                                                                                          | $w = 1/[\sigma^2(F_o^2) + (0.1085P)^2 + 0.5955P]$                                                                      |
| 165 parameters                                                                                            | where $P = (F_o^2 + 2F_c^2)/3$                                                                                         |
| 0 restraints                                                                                              | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                    |
| Primary atom site location: structure-invariant                                                           | $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$                                                              |
| direct methods                                                                                            | $\Delta \rho_{\rm min} = -0.87 \text{ e} \text{ Å}^{-3}$                                                               |

### Special details

**Geometry**. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > 2sigma(F^2)$  is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

|      | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|-------------|--------------|-----------------------------|
| Cl1  | 0.22467 (3)  | 0.94779 (7) | 0.40476 (4)  | 0.0210 (2)                  |
| S1   | 0.39687 (3)  | 0.81834 (7) | 0.35033 (4)  | 0.0179 (2)                  |
| 01   | 0.57439 (10) | 0.7025 (2)  | 0.32391 (14) | 0.0240 (5)                  |
| C1   | 0.32622 (13) | 0.8762 (3)  | 0.45189 (19) | 0.0163 (6)                  |
| C2   | 0.36001 (14) | 0.8625 (3)  | 0.56508 (19) | 0.0181 (6)                  |
| C3   | 0.44560 (15) | 0.8010 (3)  | 0.5701 (2)   | 0.0174 (6)                  |
| C4   | 0.47497 (13) | 0.7695 (3)  | 0.46152 (19) | 0.0155 (6)                  |
| C5   | 0.56000 (14) | 0.7119 (3)  | 0.42881 (19) | 0.0170 (6)                  |
| C6   | 0.62517 (14) | 0.6691 (3)  | 0.5239 (2)   | 0.0172 (6)                  |
| C7   | 0.70203 (14) | 0.6053 (3)  | 0.49961 (19) | 0.0179 (7)                  |
| C8   | 0.77481 (14) | 0.5622 (3)  | 0.58247 (19) | 0.0163 (7)                  |
| C9   | 0.77421 (14) | 0.6023 (3)  | 0.7026 (2)   | 0.0187 (6)                  |
| C10  | 0.84389 (15) | 0.5652 (3)  | 0.7802 (2)   | 0.0192 (7)                  |
| C11  | 0.91834 (14) | 0.4879 (3)  | 0.7412 (2)   | 0.0185 (6)                  |
| C12  | 0.91894 (14) | 0.4460 (3)  | 0.6227 (2)   | 0.0185 (7)                  |
| C13  | 0.84913 (14) | 0.4818 (3)  | 0.5421 (2)   | 0.0173 (6)                  |
| C14  | 0.85383 (15) | 0.4288 (3)  | 0.4153 (2)   | 0.0218 (7)                  |
| C15  | 0.99642 (15) | 0.4547 (3)  | 0.8251 (2)   | 0.0232 (7)                  |
| H2   | 0.33040      | 0.89010     | 0.63050      | 0.0220*                     |
| Н3   | 0.47900      | 0.78340     | 0.64010      | 0.0210*                     |
| H6   | 0.61300      | 0.68640     | 0.60160      | 0.0210*                     |
| H7   | 0.71000      | 0.58610     | 0.42070      | 0.0210*                     |
| H9   | 0.72560      | 0.65510     | 0.73040      | 0.0220*                     |
| H10  | 0.84140      | 0.59190     | 0.85950      | 0.0230*                     |
| H12  | 0.96760      | 0.39200     | 0.59600      | 0.0220*                     |
| H14A | 0.90930      | 0.37800     | 0.40460      | 0.0330*                     |
| H14B | 0.84510      | 0.53310     | 0.36630      | 0.0330*                     |
| H14C | 0.81000      | 0.34140     | 0.39420      | 0.0330*                     |
| H15A | 1.02790      | 0.35360     | 0.79840      | 0.0350*                     |
| H15B | 0.97840      | 0.43010     | 0.90200      | 0.0350*                     |
| H15C | 1.03260      | 0.55950     | 0.82810      | 0.0350*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C11 | 0.0149 (4)  | 0.0250 (4)  | 0.0222 (4)  | 0.0028 (2)  | -0.0046 (2) | 0.0022 (2)  |
| S1  | 0.0155 (4)  | 0.0266 (4)  | 0.0112 (4)  | 0.0009 (2)  | -0.0024 (2) | -0.0011 (2) |
| 01  | 0.0188 (9)  | 0.0397 (10) | 0.0134 (9)  | 0.0036 (7)  | 0.0011 (6)  | -0.0022 (6) |
| C1  | 0.0136 (10) | 0.0163 (11) | 0.0185 (11) | -0.0008 (8) | -0.0014 (8) | 0.0001 (8)  |

| C2  | 0.0175 (11) | 0.0218 (11) | 0.0151 (11) | 0.0002 (9)  | 0.0013 (8)   | -0.0008 (9) |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| C3  | 0.0175 (11) | 0.0199 (11) | 0.0141 (11) | -0.0009 (8) | -0.0025 (9)  | 0.0031 (8)  |
| C4  | 0.0152 (11) | 0.0147 (10) | 0.0160 (11) | -0.0026 (8) | -0.0022 (8)  | 0.0004 (8)  |
| C5  | 0.0171 (11) | 0.0177 (10) | 0.0159 (11) | -0.0031 (8) | -0.0011 (9)  | -0.0018 (8) |
| C6  | 0.0171 (11) | 0.0201 (11) | 0.0142 (11) | -0.0006 (8) | 0.0006 (9)   | -0.0006 (8) |
| C7  | 0.0202 (12) | 0.0187 (11) | 0.0148 (11) | -0.0020 (9) | 0.0014 (9)   | 0.0005 (9)  |
| C8  | 0.0155 (12) | 0.0150 (11) | 0.0182 (11) | -0.0034 (8) | -0.0005 (9)  | 0.0016 (8)  |
| C9  | 0.0179 (11) | 0.0194 (11) | 0.0189 (11) | -0.0003 (8) | 0.0027 (9)   | -0.0007 (9) |
| C10 | 0.0221 (12) | 0.0192 (11) | 0.0161 (11) | -0.0040 (8) | 0.0001 (9)   | 0.0001 (8)  |
| C11 | 0.0182 (11) | 0.0131 (10) | 0.0237 (12) | -0.0046 (8) | -0.0021 (9)  | 0.0036 (9)  |
| C12 | 0.0155 (11) | 0.0143 (11) | 0.0258 (13) | -0.0005 (8) | 0.0016 (9)   | 0.0009 (8)  |
| C13 | 0.0175 (11) | 0.0143 (10) | 0.0202 (12) | -0.0035 (8) | 0.0022 (9)   | 0.0001 (8)  |
| C14 | 0.0204 (12) | 0.0241 (12) | 0.0211 (12) | 0.0015 (8)  | 0.0032 (10)  | -0.0031 (9) |
| C15 | 0.0228 (12) | 0.0198 (12) | 0.0258 (13) | -0.0007 (9) | -0.0060 (10) | 0.0011 (9)  |
|     |             |             |             |             |              |             |

Geometric parameters (Å, °)

| Cl1—C1    | 1.718 (2)   | C11—C15     | 1.512 (3) |
|-----------|-------------|-------------|-----------|
| S1—C1     | 1.713 (2)   | C12—C13     | 1.397 (3) |
| S1—C4     | 1.730 (2)   | C13—C14     | 1.507 (3) |
| O1—C5     | 1.237 (3)   | С2—Н2       | 0.9300    |
| C1—C2     | 1.362 (3)   | С3—Н3       | 0.9300    |
| C2—C3     | 1.407 (3)   | С6—Н6       | 0.9300    |
| C3—C4     | 1.373 (3)   | С7—Н7       | 0.9300    |
| C4—C5     | 1.468 (3)   | С9—Н9       | 0.9300    |
| C5—C6     | 1.465 (3)   | C10—H10     | 0.9300    |
| C6—C7     | 1.337 (3)   | C12—H12     | 0.9300    |
| C7—C8     | 1.457 (3)   | C14—H14A    | 0.9600    |
| C8—C9     | 1.404 (3)   | C14—H14B    | 0.9600    |
| C8—C13    | 1.411 (3)   | C14—H14C    | 0.9600    |
| C9—C10    | 1.377 (3)   | C15—H15A    | 0.9600    |
| C10—C11   | 1.397 (3)   | C15—H15B    | 0.9600    |
| C11—C12   | 1.389 (3)   | C15—H15C    | 0.9600    |
|           |             |             |           |
| C1—S1—C4  | 90.50 (10)  | C1—C2—H2    | 124.00    |
| Cl1—C1—S1 | 119.33 (13) | C3—C2—H2    | 124.00    |
| Cl1—C1—C2 | 127.02 (17) | С2—С3—Н3    | 123.00    |
| S1—C1—C2  | 113.63 (16) | С4—С3—Н3    | 123.00    |
| C1—C2—C3  | 111.2 (2)   | С5—С6—Н6    | 120.00    |
| C2—C3—C4  | 113.4 (2)   | С7—С6—Н6    | 120.00    |
| S1—C4—C3  | 111.27 (16) | С6—С7—Н7    | 116.00    |
| S1—C4—C5  | 118.28 (16) | С8—С7—Н7    | 116.00    |
| C3—C4—C5  | 130.4 (2)   | С8—С9—Н9    | 119.00    |
| O1—C5—C4  | 119.7 (2)   | С10—С9—Н9   | 119.00    |
| O1—C5—C6  | 122.6 (2)   | С9—С10—Н10  | 120.00    |
| C4—C5—C6  | 117.65 (19) | C11-C10-H10 | 120.00    |
| C5—C6—C7  | 120.4 (2)   | C11—C12—H12 | 119.00    |
| C6—C7—C8  | 127.6 (2)   | C13—C12—H12 | 119.00    |
|           |             |             |           |

| C7—C8—C9     | 121.7 (2)    | C13—C14—H14A    | 110.00     |
|--------------|--------------|-----------------|------------|
| C7—C8—C13    | 120.0 (2)    | C13—C14—H14B    | 110.00     |
| C9—C8—C13    | 118.3 (2)    | C13—C14—H14C    | 109.00     |
| C8—C9—C10    | 121.6 (2)    | H14A—C14—H14B   | 109.00     |
| C9—C10—C11   | 120.7 (2)    | H14A—C14—H14C   | 109.00     |
| C10-C11-C12  | 118.0 (2)    | H14B—C14—H14C   | 109.00     |
| C10—C11—C15  | 120.9 (2)    | C11—C15—H15A    | 109.00     |
| C12—C11—C15  | 121.1 (2)    | C11—C15—H15B    | 110.00     |
| C11—C12—C13  | 122.5 (2)    | C11—C15—H15C    | 109.00     |
| C8—C13—C12   | 118.9 (2)    | H15A—C15—H15B   | 109.00     |
| C8—C13—C14   | 121.6 (2)    | H15A—C15—H15C   | 109.00     |
| C12—C13—C14  | 119.4 (2)    | H15B—C15—H15C   | 109.00     |
|              |              |                 |            |
| C4—S1—C1—C11 | 179.60 (15)  | C6—C7—C8—C9     | -6.7 (4)   |
| C4—S1—C1—C2  | 0.98 (19)    | C6—C7—C8—C13    | 174.8 (2)  |
| C1—S1—C4—C3  | -0.93 (18)   | C7—C8—C9—C10    | -178.5 (2) |
| C1—S1—C4—C5  | -178.14 (18) | C13—C8—C9—C10   | 0.1 (3)    |
| Cl1—C1—C2—C3 | -179.26 (17) | C7—C8—C13—C12   | 178.4 (2)  |
| S1—C1—C2—C3  | -0.8 (3)     | C7—C8—C13—C14   | -3.5 (3)   |
| C1—C2—C3—C4  | 0.0 (3)      | C9—C8—C13—C12   | -0.2 (3)   |
| C2—C3—C4—S1  | 0.7 (3)      | C9—C8—C13—C14   | 177.9 (2)  |
| C2—C3—C4—C5  | 177.5 (2)    | C8—C9—C10—C11   | 0.8 (3)    |
| S1-C4-C5-O1  | 1.2 (3)      | C9-C10-C11-C12  | -1.5 (3)   |
| S1—C4—C5—C6  | -179.34 (16) | C9—C10—C11—C15  | 177.2 (2)  |
| C3—C4—C5—O1  | -175.4 (2)   | C10-C11-C12-C13 | 1.4 (3)    |
| C3—C4—C5—C6  | 4.1 (4)      | C15—C11—C12—C13 | -177.3 (2) |
| O1—C5—C6—C7  | -4.7 (3)     | C11—C12—C13—C8  | -0.5 (3)   |
| C4—C5—C6—C7  | 175.9 (2)    | C11—C12—C13—C14 | -178.7 (2) |
| C5—C6—C7—C8  | 177.6 (2)    |                 |            |
|              |              |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H  | H···A | D····A    | D—H··· $A$ |
|-----------------------------|------|-------|-----------|------------|
| C3—H3····O1 <sup>i</sup>    | 0.93 | 2.48  | 3.400 (3) | 169        |
| C3— $H3$ ···S1 <sup>i</sup> | 0.93 | 2.90  | 3.459 (2) | 120        |

Symmetry code: (i) x, -y+3/2, z+1/2.