

IUCrData

ISSN 2414-3146

Received 28 March 2017 Accepted 6 April 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; distorted tetrahedral geometry; cobalt(II) complex.

CCDC reference: 1542611

Structural data: full structural data are available from iucrdata.iucr.org

Bis{3,5-di-*tert*-butyl-*N*-[(4-dimethylamino)phenyl]salicylaldiminato}cobalt(II)

C. Vidya Rani,^a L. Mitu,^b G. Chakkaravarthi^{c*} and G. Rajagopal^{d*}

^aDepartment of Chemistry, Vaigai College of Engineering, Madurai 625122, Tamil Nadu, India, ^bDepartment of Chemistry, University of Pitesti, Pitesti 11040, Romania, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamil Nadu, India. *Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

In the title complex [systematic name: bis(2,4-di-*tert*-butyl-6-{*N*-[4-(dimethylamino)phenyl]carboximidoyl}phenolato)cobalt(II)], [Co(C₂₃H₃₁N₂O)₂], the cobalt(II) atom is coordinated by pairs of O and N atoms in a distorted tetrahedral coordination geometry. The dihedral angles formed by the aromatic rings of the same ligand are 51.99 (11) and 36.58 (9)°. The molecular conformation features weak intramolecular C–H···O hydrogen bonds. In the crystal, inversion-related pairs of complex molecules are linked into dimers by weak C–H··· π interactions. The methyl C atoms of *tert*-butyl groups have rotational disorder, with site occupancies of 0.647 (7) and 0.617 (6) for the major components and 0.353 (7) and 0.383 (6) for the minor components. One of the methyl C atoms of the dimethylamino groups is also disordered over two orientations, with an occupancy ratio of 0.75 (4):0.25 (4).

Structure description

Metal complexes of N- and O-chelating ligands have attracted considerable attention because of their interesting physicochemical properties and pronounced biological activities. The N and O atoms play a key role in the coordination of metals at the active sites of numerous metallobimolecules (Nair *et al.*, 2006). Schiff base–cobalt(II) metal complexes are constantly used in numerous applications varying from catalysis to pharmaceuticals (Holla *et al.*, 2003). We herein report the synthesis and the structure of the title compound (Fig. 1). The metal cation has a distorted tetrahedral coordination geometry provided by two O and two N atoms. The Co–O distances [Co1–O1 = 1.8844 (19), Co1–O2 = 1.8882 (19), Co1–N1 = 1.980 (2), Co1–N2 = 1.984 (2) Å] agree well with the values observed in related structures (Adam *et al.*, 1997; Chen *et al.*, 2014, 2015).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

The dihedral angle between the aromatic rings C1–C6 and C24–C29 is 85.85 (15)° while the C16–C21 ring makes a dihedral angle of 55.59 (17)° with the C39–C44 ring. The molecular conformation is stabilized by weak C–H···O hydrogen bonds (Table 1). The crystal structure exhibits dimeric units formed by weak C–H··· π interactions (Table 1) occurring between inversion-related complex molecules.

Synthesis and crystallization

Methanolic solutions of the Schiff base (1 mmol, 10 ml) and $Co(AcO)_2$ ·H₂O (0.5 mmol; 10 ml) were mixed thoroughly and boiled under reflux for 4–6 h, and then cooled to room temperature. The resulting precipitate was filtered, washed in ice-cold ethanol and dried *in vacuo*. X-ray quality single crystals were grown by layering a CHCl₃ (3 ml) solution of the compound with CH₃CN (5 ml).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The methyl C atoms of the *tert*butyl groups exhibit rotational disorder, with site occupancies of 0.647 (7) (C12–C14) and 0.617 (6) (C36–C38) for the major components. One methyl C atom of the dimethylamino groups is disordered over two orientations with site occupancies of 0.75 (4) and 0.25 (4) for the major (C46A) and minor (C46) components, respectively. The anisotropic displacement parameters of the disordered C atoms were restrained by SIMU instructions within 0.001 standard deviations. DELU restraints were also applied. The C–C and C–N bond lengths involving the disordered atoms were restrained to 1.50 (1) and 1.40 (1) Å, respectively. A potential solvent-accessible void of 179 Å³ was detected but no residual electron density could be located in the final difference-Fourier map.

Table 1		
Hydrogen-bond geometry	(Å, '	°).

Cg is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8C···O1	0.96	2.38	3.007 (4)	123
$C9 - H9A \cdots O1$	0.96	2.28	2.953 (4)	126
C32−H32C···O2	0.96	2.33	2.974 (4)	124
C33−H33C···O2	0.96	2.28	2.925 (4)	124
C45-H45 B ··· Cg^{i}	0.96	2.96	3.914 (5)	171

Symmetry code: (i) -x, -y, -z.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[C_0(C_{22}H_{21}N_2O)_2]$
м.	761.92
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	295
a, b, c (Å)	11.5598 (3), 13.3787 (4), 17.3035 (5)
α, β, γ (°)	111.756 (1), 96.694 (2), 98.293 (1)
$V(\dot{A}^3)$	2417.01 (12)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.39
Crystal size (mm)	$0.34 \times 0.30 \times 0.26$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.691, 0.905
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	41823, 9288, 6088
R _{int}	0.056
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.175, 1.07
No. of reflections	9288
No. of parameters	567
No. of restraints	100
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.73, -0.42

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2016/4 (Sheldrick, 2015) and PLATON (Spek, 2009).

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

- Adam, K. R., Anderson, P. A., Astley, T., Atkinson, I. M., Charnock, J. M., Garner, C. D., Gulbis, J. M., Hambley, T. W., Hitchman, M. A., Keene, F. R. & Tiekink, E. R. T. (1997). *J. Chem. Soc. Dalton Trans.* pp. 519–530.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. M., Gao, Q., Chen, W. Q., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2015). *Chem. Asian J.* 10, 411–421.
- Chen, Y. M., Gao, Q., Zhang, H. F., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2014). *Polyhedron*, **71**, 91–98.
- Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). *Eur. J. Med. Chem.* 38, 759–767.

Nair, B., Shah, A., Baluja, S. & Chanda, S. (2006). J. Serb. Chem. Soc. 71, 733–744.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2015). *Acta Cryst.* A**71**, 3–8. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

full crystallographic data

IUCrData (2017). **2**, x170525 [https://doi.org/10.1107/S2414314617005259]

Bis{3,5-di-tert-butyl-N-[(4-dimethylamino)phenyl]salicylaldiminato}cobalt(II)

C. Vidya Rani, L. Mitu, G. Chakkaravarthi and G. Rajagopal

Bis(2,4-di-tert-butyl-6-{N-[4-(dimethylamino)phenyl]carboximidoyl}phenolato)cobalt(II)

Crystal data

 $\begin{bmatrix} Co(C_{23}H_{31}N_2O)_2 \end{bmatrix} \\ M_r = 761.92 \\ Triclinic, P\overline{1} \\ a = 11.5598 (3) Å \\ b = 13.3787 (4) Å \\ c = 17.3035 (5) Å \\ a = 111.756 (1)^{\circ} \\ \beta = 96.694 (2)^{\circ} \\ \gamma = 98.293 (1)^{\circ} \\ V = 2417.01 (12) Å^3 \end{bmatrix}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.691, \ T_{\max} = 0.905$
41823 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.058$ H-atom parameters constrained $wR(F^2) = 0.175$ $w = 1/[\sigma^2(F_0^2) + (0.0983P)^2]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 9288 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$ 567 parameters $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$ 100 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2 F(000) = 818 $D_x = 1.047 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5165 reflections $\theta = 2.4-22.4^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.34 \times 0.30 \times 0.26 \text{ mm}$

9288 independent reflections 6088 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 21$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2392 (3)	0.3564 (2)	0.32262 (16)	0.0487 (6)	
C2	0.3243 (3)	0.3202 (2)	0.36672 (17)	0.0521 (7)	
C3	0.2911 (3)	0.2850 (2)	0.42796 (18)	0.0572 (8)	
H3	0.346893	0.259851	0.455435	0.069*	
C4	0.1792 (3)	0.2847 (2)	0.45161 (18)	0.0569 (8)	
C5	0.1001 (3)	0.3215 (2)	0.41019 (18)	0.0588 (8)	
Н5	0.025030	0.322522	0.424485	0.071*	
C6	0.1260 (3)	0.3586 (2)	0.34614 (18)	0.0545 (7)	
C7	0.4508 (3)	0.3225 (3)	0.3475 (2)	0.0630 (8)	
C8	0.5119 (3)	0.4395 (3)	0.3655 (2)	0.0771 (10)	
H8A	0.591067	0.440021	0.353756	0.116*	
H8B	0.515485	0.485217	0.423896	0.116*	
H8C	0.467668	0.467191	0.330149	0.116*	
C9	0.4461 (4)	0.2495 (3)	0.2558 (3)	0.0921 (12)	
H9A	0.395195	0.271678	0.219923	0.138*	
H9B	0.415340	0.174508	0.246384	0.138*	
H9C	0.524698	0.256007	0.242988	0.138*	
C10	0.5286 (4)	0.2817 (4)	0.4031 (3)	0.1014 (14)	
H10A	0.493158	0.207711	0.393612	0.152*	
H10B	0.534843	0.328325	0.461670	0.152*	
H10C	0.606484	0.283637	0.388876	0.152*	
C11	0.1529 (3)	0.2444 (3)	0.5206 (2)	0.0769 (8)	
C12	0.1685 (9)	0.1236 (5)	0.4929 (4)	0.0885 (12)	0.647 (7)
H12A	0.117868	0.079598	0.439116	0.133*	0.647 (7)
H12B	0.147390	0.095968	0.534309	0.133*	0.647 (7)
H12C	0.249872	0.120355	0.487947	0.133*	0.647 (7)
C13	0.2446 (7)	0.3136 (6)	0.6022 (4)	0.0916 (15)	0.647 (7)
H13A	0.322956	0.303763	0.592126	0.137*	0.647 (7)
H13B	0.227103	0.290383	0.646548	0.137*	0.647 (7)
H13C	0.241023	0.389810	0.618742	0.137*	0.647 (7)
C14	0.0284 (6)	0.2520 (7)	0.5411 (5)	0.0919 (13)	0.647 (7)
H14A	0.014724	0.324414	0.550798	0.138*	0.647 (7)
H14B	0.022157	0.237374	0.590866	0.138*	0.647 (7)
H14C	-0.029876	0.198886	0.494298	0.138*	0.647 (7)
C12A	0.0924 (15)	0.1241 (7)	0.4790 (7)	0.0908 (14)	0.353 (7)
H12D	0.092668	0.092999	0.520950	0.136*	0.353 (7)
H12E	0.134447	0.085520	0.436326	0.136*	0.353 (7)
H12F	0.011852	0.117418	0.453513	0.136*	0.353 (7)
C13A	0.2612 (10)	0.2610 (12)	0.5856 (8)	0.0911 (15)	0.353 (7)
H13D	0.237021	0.264323	0.637544	0.137*	0.353 (7)
H13E	0.314318	0.328509	0.595521	0.137*	0.353 (7)
H13F	0.301098	0.200811	0.564899	0.137*	0.353 (7)
C14A	0.0690 (12)	0.3134 (12)	0.5702 (8)	0.0904 (16)	0.353 (7)
H14D	-0.006326	0.297730	0.533796	0.136*	0.353 (7)
H14E	0.103741	0.390146	0.589833	0.136*	0.353 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14F	0.057614	0.295111	0.617851	0.136*	0.353 (7)
C15	0.0334 (3)	0.3962 (2)	0.31094 (18)	0.0563 (7)	
H15	-0.037059	0.390362	0.331465	0.068*	
C16	-0.0729(3)	0.4689 (2)	0.22694 (17)	0.0524 (7)	
C17	-0.1871 (3)	0.4126 (3)	0.2210 (2)	0.0637 (8)	
H17	-0.195965	0.350816	0.234135	0.076*	
C18	-0.2850(3)	0.4452 (3)	0.1967 (2)	0.0727 (9)	
H18	-0.359553	0.406323	0.194602	0.087*	
C19	-0.2774(3)	0.5363 (3)	0.1743(2)	0.0705 (9)	
C20	-0.1621(3)	0.5927(3)	0.1802(2)	0.0687 (9)	
H20	-0.152657	0.654627	0 167303	0.082*	
C21	-0.0632(3)	0.5580(3)	0 20448 (18)	0.0594(8)	
H21	0.011820	0.595416	0.205829	0.071*	
C22	-0.3705(5)	0.6594 (5)	0.20302	0.071 0.151 (2)	
U22 H22A	-0.327061	0.0394 (3)	0.1269 (4)	0.226*	
H22R	-0.449454	0.660574	0.11/0010	0.226	
H22D	-0.330701	0.648805	0.081687	0.220	
C22	-0.4032(4)	0.048895	0.081087 0.1508 (4)	0.220°	
U23	-0.4932 (4)	0.3101(3)	0.1308 (4)	0.131(2) 0.227*	
п23А	-0.494799	0.439709	0.138308	0.227*	
H23B	-0.550859	0.522928	0.109300	0.227*	
H23C	-0.511/80	0.550584	0.206005	0.227*	
C24	0.2719(2)	0.6/22(2)	0.20125 (16)	0.0455 (6)	
C25	0.3247 (3)	0.7857(2)	0.24113 (18)	0.0551(7)	
C26	0.3539(3)	0.8404 (3)	0.1900 (2)	0.0693 (9)	
H26	0.389296	0.914604	0.216468	0.083*	
C27	0.3342 (4)	0.7929 (3)	0.1020 (2)	0.0741 (10)	
C28	0.2816 (3)	0.6844 (2)	0.06418 (19)	0.0621 (8)	
H28	0.266534	0.650532	0.005385	0.075*	
C29	0.2488 (2)	0.6212 (2)	0.11110 (16)	0.0458 (6)	
C30	0.1986 (2)	0.5076 (2)	0.06280 (16)	0.0463 (6)	
H30	0.184593	0.485998	0.004329	0.056*	
C31	0.3491 (3)	0.8427 (3)	0.3376 (2)	0.0731 (10)	
C32	0.4384 (4)	0.7915 (4)	0.3751 (3)	0.1115 (16)	
H32A	0.448902	0.823535	0.435723	0.167*	
H32B	0.513290	0.805160	0.358142	0.167*	
H32C	0.409178	0.713704	0.354919	0.167*	
C33	0.2319 (4)	0.8322 (3)	0.3708 (2)	0.0974 (13)	
H33A	0.177258	0.865466	0.347069	0.146*	
H33B	0.247505	0.868635	0.431381	0.146*	
H33C	0.197880	0.755883	0.354564	0.146*	
C34	0.4014 (4)	0.9676 (3)	0.3675 (3)	0.1069 (15)	
H34A	0.345418	1.001360	0.345413	0.160*	
H34B	0.474303	0.977415	0.347251	0.160*	
H34C	0.416611	1.001249	0.428225	0.160*	
C35	0.3697 (5)	0.8590 (3)	0.0497 (3)	0.1238 (15)	
C36	0.3825 (11)	0.9787 (5)	0.0901 (6)	0.1324 (18)	0.617 (6)
H36A	0.457761	1.010161	0.128056	0.199*	0.617 (6)
H36B	0.319442	0.995862	0.121122	0.199*	0.617 (6)
					· · · ·

H36C	0.378756	1.008537	0.047385	0.199*	0.617 (6)
C37	0.2571 (8)	0.8347 (6)	-0.0220 (5)	0.1301 (17)	0.617 (6)
H37A	0.190961	0.856860	0.004003	0.195*	0.617 (6)
H37B	0.237030	0.757545	-0.056947	0.195*	0.617 (6)
H37C	0.275610	0.875241	-0.056114	0.195*	0.617 (6)
C38	0.4587 (9)	0.8060 (7)	-0.0010 (6)	0.1289 (17)	0.617 (6)
H38A	0.471838	0.837219	-0.041844	0.193*	0.617 (6)
H38B	0.428227	0.728322	-0.029810	0.193*	0.617 (6)
H38C	0.532436	0.818811	0.036344	0.193*	0.617 (6)
C36A	0.3089 (15)	0.9562 (10)	0.0745 (10)	0.1322 (18)	0.383 (6)
H36D	0.333634	1.002369	0.045685	0.198*	0.383 (6)
H36E	0.330181	0.997481	0.134535	0.198*	0.383 (6)
H36F	0 224215	0.930419	0.058881	0.198*	0.383 (6)
C37A	0.3976 (17)	0.8000 (11)	-0.0333(7)	0.1303 (19)	0.383 (6)
H37D	0.434525	0.851823	-0.053821	0.195*	0.303(0)
H37E	0.325607	0.756405	-0.072038	0.195	0.303(0) 0.383(6)
1137E 1127E	0.525097	0.750405	-0.028568	0.195	0.383(0)
	0.431032	0.732964	-0.028308	0.195°	0.303(0)
U20A	0.4934 (10)	0.9501 (10)	0.1014 (7)	0.1505 (18)	0.383(0)
H36D	0.333037	0.091384	0.100900	0.190*	0.383(0)
H38E	0.488368	0.977080	0.158805	0.196*	0.383 (6)
H38F	0.519/15	0.986066	0.075569	0.196*	0.383 (6)
C39	0.1211 (3)	0.3227 (2)	0.02/00 (17)	0.0513 (7)	
C40	0.0333 (3)	0.3022 (3)	-0.04044 (19)	0.0605 (8)	
H40	0.002898	0.360479	-0.045698	0.073*	
C41	-0.0110 (3)	0.1980 (3)	-0.1005 (2)	0.0742 (9)	
H41	-0.071273	0.186971	-0.145150	0.089*	
C42	0.0327 (4)	0.1093 (3)	-0.0957 (2)	0.0823 (11)	
C43	0.1216 (4)	0.1305 (3)	-0.0271 (3)	0.1016 (15)	
H43	0.153801	0.072747	-0.022423	0.122*	
C44	0.1630 (4)	0.2342 (3)	0.0339 (2)	0.0834 (11)	
H44	0.219977	0.245209	0.080453	0.100*	
C45	-0.0965 (6)	-0.0143 (4)	-0.2300 (3)	0.143 (2)	
H45A	-0.167146	0.009784	-0.212692	0.215*	
H45B	-0.116122	-0.091118	-0.266179	0.215*	
H45C	-0.063260	0.026790	-0.260142	0.215*	
C46	0.063 (4)	-0.075 (3)	-0.164(3)	0.152 (6)	0.25 (4)
H46A	0.136583	-0.050238	-0.177732	0.228*	0.25 (4)
H46B	0.023307	-0.144706	-0.208211	0.228*	0.25 (4)
H46C	0.078034	-0.084242	-0.111487	0.228*	0.25 (4)
C46A	0.010 (2)	-0.0919(8)	-0.1400(9)	0.155 (6)	0.75(4)
H46D	0.089134	-0.101603	-0.146220	0.233*	0.75(4)
H46E	-0.046122	-0 156089	-0 179465	0.233*	0.75(1)
H46F	-0.000541	-0.081030	-0.083336	0.233*	0.75(1)
N1	0.0330(2)	0 43793 (18)	0 25358 (14)	0.0506 (6)	5.75 (7)
N2	0.0000(2)	0 43048 (17)	0.08950 (13)	0.0465(5)	
N3	-0.3767(3)	0.5688(4)	0.00950(15) 0.1488(2)	0.1057 (12)	
N/	-0.0112(4)	0.0000(+)	-0.1565(2)	0.1037(12) 0.1211(14)	
1N 1	0.0112(4)	0.0029(3)	0.1303(2)	0.1211(14)	
01	0.20001 (18)	0.38/32(1/)	0.20223 (12)	0.0380 (3)	

data reports

O2	0.24583 (18)	0.61680 (15)	0.24693 (11)	0.0555 (5)
CO1	0.18236 (3)	0.46551 (3)	0.21245 (2)	0.04969 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0650 (14)	0.0425 (15)	0.0427 (14)	0.0144 (13)	0.0106 (12)	0.0201 (12)
C2	0.068 (2)	0.0421 (15)	0.0498 (16)	0.0136 (13)	0.0111 (14)	0.0206 (13)
C3	0.074 (2)	0.0530 (18)	0.0533 (17)	0.0214 (15)	0.0070 (15)	0.0296 (14)
C4	0.078 (2)	0.0535 (17)	0.0477 (16)	0.0153 (15)	0.0127 (15)	0.0278 (14)
C5	0.071 (2)	0.0628 (19)	0.0530 (17)	0.0158 (16)	0.0174 (15)	0.0315 (15)
C6	0.0666 (16)	0.0554 (17)	0.0505 (16)	0.0163 (14)	0.0141 (12)	0.0287 (13)
C7	0.071 (2)	0.066 (2)	0.0652 (19)	0.0236 (16)	0.0148 (16)	0.0361 (16)
C8	0.083 (2)	0.074 (2)	0.077 (2)	0.0095 (19)	0.0156 (19)	0.0350 (19)
C9	0.097 (3)	0.082 (3)	0.090 (3)	0.034 (2)	0.031 (2)	0.015 (2)
C10	0.091 (3)	0.135 (4)	0.125 (4)	0.051 (3)	0.031 (3)	0.090 (3)
C11	0.111 (2)	0.0800 (19)	0.0583 (17)	0.0217 (18)	0.0234 (15)	0.0449 (16)
C12	0.126 (3)	0.085 (2)	0.076 (2)	0.027 (2)	0.022 (2)	0.053 (2)
C13	0.127 (3)	0.096 (3)	0.064 (2)	0.026 (3)	0.015 (2)	0.045 (2)
C14	0.118 (3)	0.100 (3)	0.080(3)	0.025 (3)	0.035 (2)	0.054 (2)
C12A	0.123 (3)	0.093 (3)	0.079 (2)	0.024 (3)	0.029 (2)	0.054 (2)
C13A	0.128 (3)	0.092 (3)	0.071 (2)	0.027 (3)	0.016 (2)	0.050(2)
C14A	0.118 (3)	0.099 (4)	0.078 (3)	0.029 (3)	0.038 (3)	0.053 (3)
C15	0.0612 (16)	0.0652 (19)	0.0501 (16)	0.0156 (14)	0.0145 (13)	0.0291 (14)
C16	0.060(2)	0.0617 (18)	0.0428 (14)	0.0209 (15)	0.0140 (13)	0.0245 (13)
C17	0.065 (2)	0.067 (2)	0.0631 (19)	0.0134 (17)	0.0117 (16)	0.0302 (16)
C18	0.061 (2)	0.095 (3)	0.068 (2)	0.0235 (19)	0.0130 (17)	0.035 (2)
C19	0.066 (2)	0.105 (3)	0.0531 (18)	0.042 (2)	0.0182 (16)	0.0343 (19)
C20	0.090 (3)	0.079 (2)	0.0600 (19)	0.040 (2)	0.0245 (17)	0.0408 (17)
C21	0.063 (2)	0.073 (2)	0.0563 (17)	0.0219 (16)	0.0161 (15)	0.0372 (16)
C22	0.128 (5)	0.204 (6)	0.199 (6)	0.102 (4)	0.050 (4)	0.137 (5)
C23	0.079 (4)	0.197 (6)	0.216 (7)	0.071 (4)	0.035 (4)	0.106 (5)
C24	0.0474 (16)	0.0487 (16)	0.0452 (15)	0.0152 (12)	0.0095 (12)	0.0218 (13)
C25	0.0591 (19)	0.0501 (17)	0.0531 (17)	0.0097 (14)	0.0086 (14)	0.0179 (14)
C26	0.093 (3)	0.0420 (17)	0.075 (2)	0.0084 (16)	0.0313 (19)	0.0221 (16)
C27	0.112 (3)	0.0514 (19)	0.070 (2)	0.0149 (18)	0.041 (2)	0.0295 (17)
C28	0.092 (2)	0.0548 (19)	0.0534 (17)	0.0240 (16)	0.0267 (16)	0.0292 (15)
C29	0.0518 (17)	0.0464 (16)	0.0458 (15)	0.0145 (12)	0.0136 (12)	0.0227 (12)
C30	0.0551 (17)	0.0533 (17)	0.0378 (13)	0.0180 (13)	0.0091 (12)	0.0236 (12)
C31	0.091 (3)	0.059 (2)	0.0564 (19)	0.0043 (18)	0.0025 (18)	0.0159 (16)
C32	0.121 (4)	0.099 (3)	0.083 (3)	0.008 (3)	-0.039 (3)	0.024 (2)
C33	0.139 (4)	0.080(3)	0.063 (2)	0.021 (2)	0.042 (2)	0.0110 (19)
C34	0.155 (4)	0.063 (2)	0.071 (2)	-0.002 (2)	0.005 (3)	0.004 (2)
C35	0.223 (5)	0.079 (2)	0.100 (3)	0.025 (2)	0.080 (3)	0.056 (2)
C36	0.222 (5)	0.080 (2)	0.126 (3)	0.027 (3)	0.078 (3)	0.063 (2)
C37	0.224 (5)	0.087 (2)	0.118 (3)	0.031 (3)	0.077 (3)	0.070 (2)
C38	0.217 (5)	0.089 (2)	0.116 (3)	0.026 (3)	0.086 (3)	0.066 (2)
C36A	0.223 (5)	0.084 (2)	0.124 (3)	0.029(3)	0.076 (3)	0.067 (3)

C37A	0.221 (5)	0.090 (2)	0.117 (3)	0.028 (3)	0.082 (3)	0.068 (3)
C38A	0.219 (5)	0.085 (2)	0.121 (3)	0.024 (3)	0.082 (3)	0.066 (3)
C39	0.0624 (19)	0.0498 (17)	0.0451 (15)	0.0113 (14)	0.0098 (13)	0.0225 (13)
C40	0.063 (2)	0.0558 (19)	0.0617 (19)	0.0130 (15)	0.0015 (15)	0.0246 (15)
C41	0.081 (2)	0.065 (2)	0.063 (2)	0.0063 (18)	-0.0075 (17)	0.0180 (17)
C42	0.117 (3)	0.052 (2)	0.060 (2)	0.004 (2)	-0.001 (2)	0.0122 (17)
C43	0.162 (4)	0.053 (2)	0.080 (3)	0.031 (2)	-0.013 (3)	0.022 (2)
C44	0.122 (3)	0.055 (2)	0.063 (2)	0.022 (2)	-0.017 (2)	0.0209 (17)
C45	0.174 (5)	0.098 (4)	0.090 (3)	0.009 (3)	-0.024 (3)	-0.018 (3)
C46	0.298 (14)	0.053 (4)	0.101 (7)	0.046 (7)	0.024 (8)	0.025 (4)
C46A	0.301 (14)	0.057 (4)	0.101 (7)	0.039 (7)	0.025 (7)	0.025 (3)
N1	0.0582 (15)	0.0523 (14)	0.0473 (13)	0.0157 (11)	0.0083 (11)	0.0251 (11)
N2	0.0561 (14)	0.0433 (13)	0.0424 (12)	0.0138 (10)	0.0055 (10)	0.0192 (10)
N3	0.084 (3)	0.154 (4)	0.122 (3)	0.067 (2)	0.026 (2)	0.085 (3)
N4	0.184 (4)	0.057 (2)	0.083 (2)	-0.001 (2)	-0.016 (2)	0.0049 (18)
01	0.0688 (13)	0.0738 (14)	0.0542 (11)	0.0259 (10)	0.0205 (10)	0.0417 (10)
O2	0.0741 (14)	0.0513 (11)	0.0418 (10)	0.0081 (9)	0.0097 (9)	0.0213 (9)
CO1	0.0632 (3)	0.0506 (3)	0.0427 (2)	0.01369 (18)	0.01155 (17)	0.02546 (18)

Geometric parameters (Å, °)

C1-01	1.313 (3)	C25—C31	1.527 (4)
C1—C6	1.417 (4)	C26—C27	1.391 (5)
C1—C2	1.421 (4)	C26—H26	0.9300
C2—C3	1.380 (4)	C27—C28	1.362 (4)
C2—C7	1.535 (4)	C27—C35	1.532 (5)
C3—C4	1.402 (4)	C28—C29	1.415 (4)
С3—Н3	0.9300	C28—H28	0.9300
C4—C5	1.353 (4)	C29—C30	1.428 (4)
C4—C11	1.524 (4)	C30—N2	1.295 (3)
С5—С6	1.417 (4)	С30—Н30	0.9300
С5—Н5	0.9300	C31—C32	1.528 (5)
C6—C15	1.414 (4)	C31—C33	1.540 (5)
С7—С9	1.513 (5)	C31—C34	1.556 (5)
С7—С8	1.522 (4)	C32—H32A	0.9600
C7—C10	1.537 (5)	C32—H32B	0.9600
C8—H8A	0.9600	C32—H32C	0.9600
C8—H8B	0.9600	С33—Н33А	0.9600
C8—H8C	0.9600	С33—Н33В	0.9600
С9—Н9А	0.9600	С33—Н33С	0.9600
С9—Н9В	0.9600	C34—H34A	0.9600
С9—Н9С	0.9600	C34—H34B	0.9600
C10—H10A	0.9600	С34—Н34С	0.9600
C10—H10B	0.9600	C35—C37A	1.459 (9)
C10—H10C	0.9600	C35—C36	1.468 (7)
C11—C13A	1.512 (8)	C35—C38	1.513 (7)
C11—C12A	1.517 (8)	C35—C36A	1.514 (9)
C11—C14	1.530 (6)	C35—C37	1.594 (7)

C11—C13	1.540 (6)	C35—C38A	1.599 (9)
C11—C14A	1.547 (8)	С36—Н36А	0.9600
C11—C12	1.551 (6)	С36—Н36В	0.9600
C12—H12A	0.9600	С36—Н36С	0.9600
C12—H12B	0.9600	С37—Н37А	0.9600
C12—H12C	0.9600	С37—Н37В	0.9600
C13—H13A	0.9600	С37—Н37С	0.9600
C13—H13B	0.9600	C38—H38A	0.9600
C13—H13C	0.9600	C38—H38B	0.9600
C14—H14A	0.9600	C38—H38C	0.9600
C14—H14B	0.9600	C36A—H36D	0.9600
C14—H14C	0.9600	С36А—Н36Е	0.9600
C12A—H12D	0.9600	C36A—H36F	0.9600
C12A—H12E	0.9600	C37A—H37D	0.9600
C12A—H12F	0.9600	С37А—Н37Е	0.9600
C13A—H13D	0.9600	C37A—H37F	0.9600
С13А—Н13Е	0.9600	C38A—H38D	0.9600
C13A—H13F	0.9600	С38А—Н38Е	0.9600
C14A—H14D	0.9600	C38A—H38F	0.9600
C14A—H14E	0.9600	C39—C40	1.368 (4)
C14A—H14F	0.9600	C39—C44	1.381 (4)
C15—N1	1.307 (3)	C39—N2	1.426 (3)
C15—H15	0.9300	C40—C41	1.371 (4)
C16—C21	1.378 (4)	C40—H40	0.9300
C16—C17	1.395 (4)	C41—C42	1.381 (5)
C16—N1	1.428 (4)	C41—H41	0.9300
C17—C18	1.347 (5)	C42—C43	1.388 (5)
C17—H17	0.9300	C42—N4	1.395 (4)
C18—C19	1.403 (5)	C43—C44	1.369 (5)
C18—H18	0.9300	C43—H43	0.9300
C19—N3	1.368 (4)	C44—H44	0.9300
C19—C20	1.406 (5)	C45—N4	1.439 (6)
C20—C21	1.372 (4)	C45—H45A	0.9600
C20—H20	0.9300	C45—H45B	0.9600
C21—H21	0.9300	C45—H45C	0.9600
C22—N3	1.372 (6)	C46—N4	1.424 (10)
C22—H22A	0.9600	C46—H46A	0.9600
C22—H22B	0.9600	C46—H46B	0.9600
C22—H22C	0.9600	C46—H46C	0.9600
C23—N3	1.437 (6)	C46A—N4	1.445 (10)
C23—H23A	0.9600	C46A—H46D	0.9600
С23—Н23В	0.9600	C46A—H46E	0.9600
С23—Н23С	0.9600	C46A—H46F	0.9600
C24—O2	1.300 (3)	N1—CO1	1.980 (2)
C24—C25	1.418 (4)	N2—CO1	1.984 (2)
C24—C29	1.425 (4)	01—C01	1.8844 (19)
C25—C26	1.382 (4)	O2—CO1	1.8882 (19)

O1—C1—C6	121.6 (2)	C27—C28—H28	118.8
O1—C1—C2	120.1 (3)	C29—C28—H28	118.8
C6—C1—C2	118.2 (2)	C28—C29—C24	119.2 (3)
C3—C2—C1	118.5 (3)	C28—C29—C30	116.0 (2)
C3—C2—C7	121.0 (3)	C24—C29—C30	124.7 (2)
C1—C2—C7	120.5 (2)	N2—C30—C29	128.7 (2)
C2—C3—C4	124.5 (3)	N2-C30-H30	115.7
С2—С3—Н3	117.8	С29—С30—Н30	115.7
С4—С3—Н3	117.8	C25—C31—C32	109.6 (3)
C5—C4—C3	116.2 (3)	C25—C31—C33	109.7 (3)
C5-C4-C11	124.0 (3)	C_{32} — C_{31} — C_{33}	110.7(3)
$C_3 - C_4 - C_{11}$	119.8 (3)	C_{25} C_{31} C_{34}	111.2(3)
C4-C5-C6	123.2 (3)	$C_{32} = C_{31} = C_{34}$	108.5(3)
C4—C5—H5	118.4	C_{33} C_{31} C_{34}	1071(3)
С6—С5—Н5	118.4	C_{31} C_{32} H_{32A}	109.5
$C_{15} - C_{6} - C_{1}$	125 3 (3)	C31—C32—H32B	109.5
$C_{15} - C_{6} - C_{5}$	1154(3)	H32A_C32_H32B	109.5
C1 - C6 - C5	119.3 (3)	C_{31} C_{32} H_{32C}	109.5
C9-C7-C8	109.9(3)	$H_{32}A = C_{32} = H_{32}C$	109.5
$C_{2}^{0} = C_{1}^{0} = C_{2}^{0}$	109.9(3)	H32B_C32_H32C	109.5
$C_{2}^{2} = C_{1}^{2} = C_{2}^{2}$	109.9(3) 110.2(3)	C31_C33_H33A	109.5
C9-C7-C10	108.0(3)	C31_C33_H33B	109.5
$C_{8} = C_{7} = C_{10}$	106.8 (3)	H33A_C33_H33B	109.5
C_{2} C_{7} C_{10}	112.0(3)	C_{31} C_{33} H_{33} H_{33}	109.5
$C_2 = C_1 = C_{10}$	100 5	H33A C33 H33C	109.5
C^{7} C^{8} H8B	109.5	H33R C33 H33C	109.5
	109.5	$C_{21} C_{24} H_{24A}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{31} = C_{34} = H_{34} R$	109.5
C = C = C = C = C	109.5	C_{31} C_{34} C	109.5
$H^{0}A - C^{0} - H^{0}C$	109.5	$H_{34A} = C_{34} = H_{34B}$	109.5
	109.5	U24A C24 U24C	109.5
$C_{1} = C_{2} = H_{2}$	109.5	$H_{24}^{} = - H_{24}^{} $	109.5
C/-C9-H9B	109.5	H34B - C34 - H34C	109.5
H9A - C9 - H9B	109.5	$C_{30} = C_{35} = C_{36}$	122.2(0)
C/-C9-H9C	109.5	$C_{3/A} = C_{35} = C_{36A}$	120.9 (10)
H9A—C9—H9C	109.5	$C_3/A = C_3 = C_2/C_2$	118.0 (6)
H9B - C9 - H9C	109.5	$C_{30} = C_{35} = C_{27}$	117.0(5)
C/-CIO-HIOA	109.5	$C_{38} = C_{35} = C_{27}$	107.6 (4)
	109.5	$C_{36A} = C_{35} = C_{27}$	107.2 (6)
HI0A—CI0—HI0B	109.5	$C_{36} = C_{35} = C_{37}$	97.9 (6)
C/—CIO—HIOC	109.5	$C_{38} = C_{35} = C_{37}$	102.5 (6)
H10A—C10—H10C	109.5	$C_{27} - C_{35} - C_{37}$	106.8 (4)
HI0B—CI0—HI0C	109.5	C37A—C35—C38A	102.2 (10)
CI3A—CII—CI2A	110.5 (7)	C36A—C35—C38A	91.4 (9)
C13A—C11—C4	114.1 (6)	C27—C35—C38A	104.6 (5)
C12A—C11—C4	108.6 (5)	C35—C36—H36A	109.5
C4—C11—C14	113.7 (3)	C35—C36—H36B	109.5
C4—C11—C13	109.0 (4)	H36A—C36—H36B	109.5
C14—C11—C13	108.3 (5)	С35—С36—Н36С	109.5

C13A—C11—C14A	105.7 (8)	H36A—C36—H36C	109.5
C12A—C11—C14A	110.2 (7)	H36B—C36—H36C	109.5
C4—C11—C14A	107.7 (5)	С35—С37—Н37А	109.5
C4—C11—C12	108.8 (3)	С35—С37—Н37В	109.5
C14—C11—C12	109.4 (4)	H37A—C37—H37B	109.5
C13—C11—C12	107.5 (4)	С35—С37—Н37С	109.5
C11—C12—H12A	109.5	Н37А—С37—Н37С	109.5
C11—C12—H12B	109.5	H37B—C37—H37C	109.5
H12A—C12—H12B	109.5	C35—C38—H38A	109.5
C11—C12—H12C	109.5	C35—C38—H38B	109.5
H12A—C12—H12C	109.5	H38A—C38—H38B	109.5
H12B-C12-H12C	109.5	C35—C38—H38C	109.5
C11—C13—H13A	109.5	H38A-C38-H38C	109.5
C11—C13—H13B	109.5	H38B-C38-H38C	109.5
H13A—C13—H13B	109.5	C35—C36A—H36D	109.5
C11—C13—H13C	109.5	C35—C36A—H36E	109.5
H_{13A} $-C_{13}$ $-H_{13C}$	109.5	H36D—C36A—H36E	109.5
H_{13B} C_{13} H_{13C}	109.5	C_{35} C_{36A} H_{36E}	109.5
C_{11} C_{14} H_{14A}	109.5	H36D_C36A_H36F	109.5
C11 C14 H14B	109.5	H36E C36A H36E	109.5
$H_{14} - C_{14} - H_{14}B$	109.5	C_{35} C_{37A} H_{37D}	109.5
C11 - C14 - H14C	109.5	C35 - C37A - H37E	109.5
$H_{14} - C_{14} - H_{14} C_{14}$	109.5	H37D_C37A_H37E	109.5
H14B C14 H14C	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$H_{37D} = C_{37A} = H_{37F}$	109.5
$C_{11} = C_{12A} = H_{12B}$	109.5	H37D - C37A - H37F	109.5
H_{12} H_{12} H_{12} H_{12}	109.5	$C_{25} C_{28} A H_{28} D$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{35} = C_{36A} = H_{36D}$	109.5
$\begin{array}{c} C11 - C12A - H12F \\ H12D - C12A - H12F \\ \end{array}$	109.5	C35 - C38A - H38E	109.5
H12D - C12A - H12F	109.5	$H_{30} - C_{30} - H_{30} = C_{30}$	109.5
$\begin{array}{cccc} \mathbf{H}12\mathbf{E} & \mathbf{H}12\mathbf{F} \\ \mathbf{C}11 & \mathbf{C}12\mathbf{A} & \mathbf{H}12\mathbf{D} \\ \end{array}$	109.5	C33 - C38A - H38F	109.5
CII—CI3A—HI3D	109.5	НЗ8Д—СЗ8А—НЗ8Г	109.5
$U_{12} = U_{12} = U_{12}$	109.5	ПЗ8Е—СЗ8А—ПЗ8Г	109.3
HISD—CISA—HISE	109.5	C40 - C39 - C44	117.7 (3)
	109.5	C40 - C39 - N2	122.9 (3)
HISD—CISA—HISF	109.5	C44 - C39 - N2	119.4 (3)
HISE—CISA—HISF	109.5	$C_{39} = C_{40} = C_{41}$	121.8 (3)
CII—CI4A—HI4D	109.5	$C_{39} - C_{40} - H_{40}$	119.1
UII—UI4A—HI4E	109.5	C41 - C40 - H40	119.1
H14D - C14A - H14E	109.5	C40 - C41 - C42	121.0 (3)
CII—CI4A—HI4F	109.5	C40—C41—H41	119.5
HI4D—CI4A—HI4F	109.5	C42—C41—H41	119.5
HI4E—CI4A—HI4F	109.5	C41 - C42 - C43	116.9 (3)
NI-C15-C6	129.0 (3)	C41—C42—N4	121.6 (4)
NI-CI5-HI5	115.5	C43—C42—N4	121.4 (4)
Co-CIS-HIS	115.5	C44—C43—C42	121.8 (3)
$C_{21} = C_{16} = C_{17}$	117.5 (3)	C44—C43—H43	119.1
C21—C16—N1	119.0 (3)	C42—C43—H43	119.1
C17—C16—N1	123.4 (3)	C43—C44—C39	120.7 (3)

C18—C17—C16	121.7 (3)	C43—C44—H44	119.7
C18—C17—H17	119.1	С39—С44—Н44	119.7
С16—С17—Н17	119.1	N4—C45—H45A	109.5
C17—C18—C19	121.8 (3)	N4—C45—H45B	109.5
С17—С18—Н18	119.1	H45A—C45—H45B	109.5
С19—С18—Н18	119.1	N4—C45—H45C	109.5
N3—C19—C18	121.8 (4)	H45A—C45—H45C	109.5
N3—C19—C20	121.9 (4)	H45B—C45—H45C	109.5
C18—C19—C20	116.3 (3)	N4—C46—H46A	109.5
C21—C20—C19	121.3 (3)	N4—C46—H46B	109.5
С21—С20—Н20	119.4	H46A—C46—H46B	109.5
С19—С20—Н20	119.4	N4—C46—H46C	109.5
C20—C21—C16	121.3 (3)	H46A—C46—H46C	109.5
C20—C21—H21	119.3	H46B—C46—H46C	109.5
C16—C21—H21	119.3	N4—C46A—H46D	109.5
N3—C22—H22A	109.5	N4—C46A—H46E	109.5
N3—C22—H22B	109.5	H46D—C46A—H46E	109.5
H22A—C22—H22B	109.5	N4—C46A—H46F	109.5
N3—C22—H22C	109.5	H46D—C46A—H46F	109.5
$H_{22}A - C_{22} - H_{22}C$	109.5	H46E—C46A—H46F	109.5
H22B-C22-H22C	109.5	C15— $N1$ — $C16$	118.8 (2)
N3—C23—H23A	109.5	C15—N1—C01	118.8 (2)
N3—C23—H23B	109.5	C16-N1-C01	122.19 (18)
H23A—C23—H23B	109.5	C_{30} N2 C_{39}	117.2 (2)
N3—C23—H23C	109.5	C_{30} N2- C_{01}	120.48 (18)
$H_{23}A - C_{23} - H_{23}C$	109.5	C_{39} N2 C_{01}	122.15(17)
H_{23B} C_{23} H_{23C}	109.5	C19 - N3 - C22	122.3 (4)
02-C24-C25	119.9 (2)	C19—N3—C23	120.8 (4)
02-C24-C29	121.3(2)	C22 - N3 - C23	116.5 (4)
C25-C24-C29	118.7 (2)	C42 - N4 - C45	119.6 (4)
C26—C25—C24	117.8 (3)	C42—N4—C46A	121.1 (5)
C26—C25—C31	122.3 (3)	C45—N4—C46A	118.3 (6)
C_{24} C_{25} C_{31}	119.8 (3)	C1	126.92 (18)
C25—C26—C27	124.9 (3)	C24—O2—CO1	129.44 (17)
C25—C26—H26	117.5	01	117.06 (9)
C27—C26—H26	117.5	O1-CO1-N1	96.23 (9)
C28—C27—C26	116.9 (3)	O2-CO1-N1	112.64 (9)
$C_{28} = C_{27} = C_{35}$	121.2 (3)	O1-CO1-N2	119.77 (9)
$C_{26} = C_{27} = C_{35}$	121.9 (3)	O2-CO1-N2	95.20 (8)
C_{27} C_{28} C_{29}	122.4(3)	N1 - CO1 - N2	117.31 (9)
027 020 027	122.1 (5)		11,151 (5)
01 - C1 - C2 - C3	-178.0(3)	C25—C24—C29—C30	178.6 (3)
C6-C1-C2-C3	2.5 (4)	C_{28} C_{29} C_{30} N_{2}	174.1 (3)
01-C1-C2-C7	3.1 (4)	C_{24} C_{29} C_{30} N_{2}	-3.2(5)
C6-C1-C2-C7	-176.4(3)	$C_{26} - C_{25} - C_{31} - C_{32}$	-116.3(4)
C1 - C2 - C3 - C4	-1.6(4)	C_{24} C_{25} C_{31} C_{32}	62.8 (4)
C7-C2-C3-C4	177.3 (3)	$C_{26} - C_{25} - C_{31} - C_{33}$	122.0 (4)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.2(5)	C_{24} C_{25} C_{31} C_{33}	-589(4)
02 03 07 03	0.2 (3)	027 - 025 - 051 - 055	JU.J (+)

C2—C3—C4—C11	-179.6 (3)	C26—C25—C31—C34	3.7 (5)
C3—C4—C5—C6	0.2 (5)	C24—C25—C31—C34	-177.2 (3)
C11—C4—C5—C6	180.0 (3)	C28—C27—C35—C37A	-27.5 (11)
O1—C1—C6—C15	-2.0(5)	C26—C27—C35—C37A	152.6 (10)
C2-C1-C6-C15	177.5 (3)	C28—C27—C35—C36	157.3 (7)
01 - C1 - C6 - C5	178.3 (3)	C26—C27—C35—C36	-22.6(9)
C_{2} C_{1} C_{6} C_{5}	-2.2(4)	C_{28} C_{27} C_{35} C_{38}	-60.5(7)
C4-C5-C6-C15	-1788(3)	$C_{26} - C_{27} - C_{35} - C_{38}$	119.6 (6)
C4-C5-C6-C1	0.9(5)	C_{28} C_{27} C_{35} C_{36A}	123.7(8)
$C_{3} - C_{2} - C_{7} - C_{9}$	1203(3)	$C_{26} = C_{27} = C_{35} = C_{36A}$	-56.2(9)
$C_1 - C_2 - C_7 - C_9$	-60.8(4)	C_{28} C_{27} C_{35} C_{37}	48.9 (6)
$C_{3} - C_{2} - C_{7} - C_{8}$	-1185(3)	$C_{20} = C_{27} = C_{35} = C_{37}$	-1310(5)
$C_1 - C_2 - C_7 - C_8$	60.4(3)	$C_{20} = C_{27} = C_{35} = C_{38}$	-140.2(6)
$C_1 = C_2 = C_7 = C_0$	0.4(3)	$C_{26} - C_{27} - C_{35} - C_{38A}$	39.9(7)
$C_{1} = C_{2} = C_{1} = C_{10}$	0.2(4)	$C_{20} = C_{27} = C_{35} = C_{36} = C_{46}$	-11(5)
$C_{1} - C_{2} - C_{1} - C_{10}$	-1510(7)	$N_2 C_{39} C_{40} C_{41}$	1.1(3) 178 0(3)
$C_2 = C_4 = C_{11} = C_{12A}$	131.0(7)	$N_2 - C_{39} - C_{40} - C_{41}$	178.9(3)
C_{5} C_{4} C_{11} C_{12A}	20.0 (0)	$C_{39} = C_{40} = C_{41} = C_{42}$	-0.8(3)
C_{3} C_{4} C_{11} C_{12A}	85.5 (8)	C40 - C41 - C42 - C43	0.8 (6)
$C_3 - C_4 - C_{11} - C_{12A}$	-94.9 (8)	C40 - C41 - C42 - N4	-1/9./(4)
C_{2}	-1.4(6)	C41 - C42 - C43 - C44	1.1 (/)
C3—C4—C11—C14	178.4 (4)	N4—C42—C43—C44	-178.4 (4)
C5—C4—C11—C13	-122.3 (5)	C42—C43—C44—C39	-3.0(7)
C3—C4—C11—C13	57.6 (5)	C40—C39—C44—C43	3.0 (6)
C5—C4—C11—C14A	-34.0 (8)	N2—C39—C44—C43	-177.1 (4)
C3—C4—C11—C14A	145.8 (7)	C6—C15—N1—C16	179.2 (3)
C5—C4—C11—C12	120.8 (5)	C6—C15—N1—CO1	-5.0 (4)
C3—C4—C11—C12	-59.4 (5)	C21—C16—N1—C15	146.7 (3)
C1—C6—C15—N1	-2.1 (5)	C17—C16—N1—C15	-34.3 (4)
C5—C6—C15—N1	177.6 (3)	C21—C16—N1—CO1	-29.0 (3)
C21—C16—C17—C18	-1.9 (4)	C17—C16—N1—CO1	150.0 (2)
N1-C16-C17-C18	179.1 (3)	C29—C30—N2—C39	-179.9 (3)
C16—C17—C18—C19	1.3 (5)	C29—C30—N2—CO1	4.9 (4)
C17—C18—C19—N3	179.3 (3)	C40—C39—N2—C30	-46.4 (4)
C17—C18—C19—C20	-1.1 (5)	C44—C39—N2—C30	133.7 (3)
N3-C19-C20-C21	-178.8 (3)	C40-C39-N2-CO1	128.7 (3)
C18—C19—C20—C21	1.5 (5)	C44—C39—N2—CO1	-51.2 (4)
C19—C20—C21—C16	-2.3 (5)	C18—C19—N3—C22	178.2 (4)
C17—C16—C21—C20	2.4 (4)	C20-C19-N3-C22	-1.4(6)
N1-C16-C21-C20	-178.6 (3)	C18—C19—N3—C23	5.4 (6)
O2—C24—C25—C26	178.2 (3)	C20-C19-N3-C23	-174.2 (4)
C29—C24—C25—C26	-1.6(4)	C41—C42—N4—C45	5.4 (7)
O2—C24—C25—C31	-0.9(4)	C43—C42—N4—C45	-175.1 (5)
C29—C24—C25—C31	179.3 (3)	C41—C42—N4—C46A	-162.7 (14)
C24—C25—C26—C27	0.7 (5)	C43—C42—N4—C46A	16.7 (15)
C31—C25—C26—C27	179.8 (3)	C6—C1—O1—CO1	13.7 (4)
C25—C26—C27—C28	0.4 (6)	C2-C1-O1-CO1	-165.78(19)
C_{25} C_{26} C_{27} C_{35}	-179.6(4)	C25-C24-O2-CO1	-176.91 (19)
$C_{26} - C_{27} - C_{28} - C_{29}$	-0.7(5)	C29-C24-O2-CO1	2.9 (4)
		02/ 02/ 00/	(-)

data reports

C35—C27—C28—C29	179.4 (4)	C1	102.9 (2)
C27—C28—C29—C24	-0.3 (5)	C1	-16.5 (2)
C27—C28—C29—C30	-177.7 (3)	C1	-143.0 (2)
O2—C24—C29—C28	-178.4 (3)	C24—O2—CO1—O1	126.3 (2)
C25—C24—C29—C28	1.4 (4)	C24—O2—CO1—N1	-123.5 (2)
O2—C24—C29—C30	-1.3 (4)	C24—O2—CO1—N2	-1.1 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
С8—Н8С…О1	0.96	2.38	3.007 (4)	123
С9—Н9А…О1	0.96	2.28	2.953 (4)	126
C32—H32 <i>C</i> ···O2	0.96	2.33	2.974 (4)	124
С33—Н33С…О2	0.96	2.28	2.925 (4)	124
C45—H45 B ···· Cg^{i}	0.96	2.96	3.914 (5)	171

Symmetry code: (i) -x, -y, -z.