

IUCrData

ISSN 2414-3146

Received 26 July 2017 Accepted 30 July 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 3-phosphorated coumarin; hydrogen bonding.

CCDC reference: 1565652

Structural data: full structural data are available from iucrdata.iucr.org

Dimethyl (7-hydroxy-4-methyl-2-oxo-2*H*-chromen-3-yl)phosphonate

Yunfei Li, Yongmei Xiao, Xinchi Zhang, Liangru Yang,* Jinwei Yuan and Pu Mao

College of Chemistry and Chemical engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China. *Correspondence e-mail: Iryang@haut.edu.cn

In the title compound, $C_{12}H_{13}O_6P$, the coumarin ring system is essentially planar [dihedral angle between the rings = 1.32 (16)°] and the methoxy groups and double-bonded O atom of the phosphonate group are disordered over two sets of sites [occupancy ratio 0.537 (2):0.463 (2)]. In the crystal, $C-H\cdots$ O hydrogen bonds involving the disordered phosphonate O atom as acceptor occur, which generate [100] chains. Weak $C-H\cdots$ O and aromatic $\pi-\pi$ stacking interactions [minimum centroid–centroid separation = 3.713 (2) Å] are also observed.

Structure description

Several 3-phosphorated coumarins have been proved to exhibit cytotoxicity on some human leukemia cell lines as well as having high alkylating activity (Budzisz *et al.*, 2003) and the selective synthesis of phosphorated coumarins has been a quite active topic (Yuan *et al.*, 2015; Mi *et al.*, 2013). Our group has investigated the phosphorylation of coumarins catalysed by chelating N-heterocyclic palladium complexes and obtained 3-phosphorated coumarins selectively (Yang *et al.*, 2016). The structure of one of these products, *viz.*: the title compound, was characterized unambiguously by single-crystal X-ray diffraction studies.

As shown in Fig. 1, the coumarin ring system is essentially planar [dihedral angle between the rings = $1.32 (16)^{\circ}$]. The methoxyl groups and the double-bonded oxygen atom of the phosphonate group show disorder, with the major and minor components of the disorder having an occupancy factor of 0.537 (2) and 0.463 (2), respectively. In the crystal, O-H···O hydrogen bonds (Table 1) involving the disordered phosphonate group are observed, which generate [100] chains. Weak C-H···O and aromatic π - π stacking interactions [minimum centroid–centroid separation = 3.713 (2) Å] are also observed.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H3\cdots O4^i$	0.82	1.78	2.562 (6)	159
$O3-H3\cdots O4A^{i}$	0.82	2.01	2.812 (7)	168
C8−H8···O1 ⁱⁱ	0.93	2.44	3.220 (4)	142
C10−H10B····O4	0.96	2.22	2.831 (6)	121
$C12-H12A\cdots O1$	0.96	2.20	2.96 (5)	135

Symmetry codes: (i) x + 1, y, z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Only the major disorder component is shown.

Synthesis and crystallization

The synthesis of the title compound is based on our reported literature procedure (Yang *et al.*, 2016). A Schlenk tube charged with 7-hydroxy-4-methyl coumarin (0.5 mmol, 88 mg), dimethyl phosphite (1.0 mmol, 110 mg), NHC palladium complex (0.05 mmol), AgNO₃ (1.0 mmol, 170 mg) and CH₃CN (2 ml) was heated at 80°C for 10 h. The mixture was then cooled, filtered and the filtrate was evaporated. Purification of the residue by column chromatography (silica, petroleum ether/ethyl acetate = 2/11/4, v/v) produced the pure products. Recrystallization of the product from CH₂Cl₂/ diethyl ether (1/1, v/v) solution afforded the title compound as colourless prisms.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{12}H_{13}O_6P$
M _r	284.19
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	9.9684 (7), 7.8695 (6), 16.6927 (10)
β (°)	106.097 (7)
$V(Å^3)$	1258.13 (16)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.24
Crystal size (mm)	$0.25 \times 0.12 \times 0.1$
Data collection	
Diffractometer	Agilent Xcalibur Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.007, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5507, 2572, 1364
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.173, 1.01
No. of reflections	2572
No. of parameters	194
No. of restraints	26
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.30, -0.28

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21172055); Foundation of Henan Education Committee (grant No. 18A150004); the Program for Innovative Research Team from Zhengzhou (grant No. 131PCXTD605); Natural Science Foundation of Henan University of Technology (grant No. 2017RCJH08).

References

- Budzisz, E., Brzezinska, E., Krajewska, U. & Rozalski, M. (2003). *Eur. J. Med. Chem.* 38, 597–603.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Mi, X., Huang, M., Zhang, J., Wang, C. & Wu, Y. (2013). Org. Lett. 15, 6266–6269.
- Rigaku OD (2011). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179–184.
- Yuan, J., Li, Y., Yang, L., Mai, W., Mao, P., Xiao, Y. & Qu, L. (2015). *Tetrahedron*, **71**, 8178–8186.

full crystallographic data

IUCrData (2017). **2**, x171119 [https://doi.org/10.1107/S2414314617011191]

Dimethyl (7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)phosphonate

F(000) = 592

 $\theta = 3.8 - 25.4^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$

Prism, colourless

 $0.25 \times 0.12 \times 0.1 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.500 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1046 reflections

Yunfei Li, Yongmei Xiao, Xinchi Zhang, Liangru Yang, Jinwei Yuan and Pu Mao

Dimethyl (7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)phosphonate

Crystal data

 $\begin{array}{l} C_{12}H_{13}O_6P\\ M_r = 284.19\\ \text{Monoclinic, } P2_1/c\\ a = 9.9684 \ (7) \ \text{\AA}\\ b = 7.8695 \ (6) \ \text{\AA}\\ c = 16.6927 \ (10) \ \text{\AA}\\ \beta = 106.097 \ (7)^\circ\\ V = 1258.13 \ (16) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Agilent Xcalibur Eos	$T_{\min} = 0.007, T_{\max} = 1.000$
diffractometer	5507 measured reflections
Radiation source: fine-focus sealed X-ray tube,	2572 independent reflections
Enhance (Mo) X-ray Source	1364 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
Detector resolution: 16.2312 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan	$k = -6 \rightarrow 9$
(CrysAlis PRO; Rigaku Oxford Diffraction,	$l = -20 \rightarrow 20$
2015)	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0763P)^2]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
2572 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
194 parameters	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
26 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Aromatic H atoms were placed geometrically and refined as riding, with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atoms associated to hydroxyl and methyl groups were refined as rotating groups, with $U_{iso}(H) = 1.5 U_{eq}(C)$. The O5A—C11A and O6A—C12A bonds were refined with restrained distances of 1.55 (2) Å.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.4062 (3)	0.3873 (5)	0.6581 (2)	0.0552 (10)	
C2	0.2791 (3)	0.3234 (4)	0.6012 (2)	0.0468 (8)	
C3	0.2797 (3)	0.2579 (5)	0.5251 (2)	0.0486 (9)	
C4	0.4104 (3)	0.2502 (4)	0.5029 (2)	0.0451 (8)	
C5	0.5316 (3)	0.3061 (4)	0.56004 (19)	0.0450 (8)	
C6	0.6615 (3)	0.3005 (5)	0.5456 (2)	0.0547 (10)	
H6	0.7404	0.3383	0.5858	0.066*	
C7	0.6715 (4)	0.2381 (5)	0.4706 (2)	0.0552 (10)	
C8	0.5532 (4)	0.1831 (5)	0.4109 (2)	0.0617 (10)	
H8	0.5604	0.1421	0.3600	0.074*	
С9	0.4261 (4)	0.1891 (5)	0.4269 (2)	0.0562 (10)	
H9	0.3476	0.1516	0.3862	0.067*	
C10	0.1510 (3)	0.1924 (6)	0.4629 (2)	0.0725 (12)	
H10A	0.0967	0.2863	0.4345	0.109*	
H10B	0.0965	0.1275	0.4912	0.109*	
H10C	0.1774	0.1213	0.4230	0.109*	
C11	0.209 (3)	0.077 (3)	0.733 (2)	0.086 (5)	0.537 (2)
H11A	0.1408	0.0093	0.6941	0.129*	0.537 (2)
H11B	0.2170	0.0382	0.7888	0.129*	0.537 (2)
H11C	0.2979	0.0652	0.7215	0.129*	0.537 (2)
C11A	0.209 (4)	0.036 (4)	0.723 (2)	0.086 (5)	0.463 (2)
H11D	0.2358	-0.0589	0.6947	0.129*	0.463 (2)
H11E	0.1707	-0.0036	0.7660	0.129*	0.463 (2)
H11F	0.2893	0.1057	0.7466	0.129*	0.463 (2)
C12	0.151 (5)	0.598 (2)	0.738 (2)	0.085 (3)	0.537 (2)
H12A	0.2501	0.6123	0.7468	0.127*	0.537 (2)
H12B	0.1341	0.5309	0.7816	0.127*	0.537 (2)
H12C	0.1082	0.7076	0.7366	0.127*	0.537 (2)
C12A	0.153 (6)	0.609 (3)	0.727 (3)	0.085 (3)	0.463 (2)
H12D	0.1767	0.6525	0.6793	0.127*	0.463 (2)
H12E	0.2202	0.6479	0.7770	0.127*	0.463 (2)
H12F	0.0618	0.6493	0.7272	0.127*	0.463 (2)
01	0.4182 (3)	0.4547 (4)	0.72427 (15)	0.0756 (9)	
O2	0.5290 (2)	0.3705 (3)	0.63588 (13)	0.0581 (7)	
O3	0.7946 (3)	0.2292 (4)	0.45079 (16)	0.0806 (9)	
Н3	0.8580	0.2619	0.4905	0.121*	
O4	0.0015 (5)	0.2510 (8)	0.5818 (3)	0.0693 (13)	0.537 (2)
O4A	0.0032 (6)	0.3910 (9)	0.5761 (4)	0.0693 (13)	0.463 (2)
O5	0.1688 (5)	0.2446 (7)	0.7256 (3)	0.0615 (10)	0.537 (2)
O5A	0.1013 (5)	0.1394 (7)	0.6613 (3)	0.0615 (10)	0.463 (2)
O6	0.0938 (5)	0.5143 (6)	0.6592 (3)	0.0679 (11)	0.537 (2)
O6A	0.1527 (6)	0.4150 (8)	0.7252 (3)	0.0679 (11)	0.463 (2)
P1	0.12560 (9)	0.32787 (13)	0.63845 (6)	0.0535 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0398 (19)	0.077 (3)	0.052 (2)	0.0053 (19)	0.0172 (17)	0.003 (2)
C2	0.0335 (16)	0.054 (2)	0.0544 (19)	0.0022 (16)	0.0142 (15)	0.0028 (18)
C3	0.0357 (18)	0.050 (2)	0.059 (2)	0.0072 (16)	0.0105 (16)	0.0102 (18)
C4	0.0351 (17)	0.051 (2)	0.0491 (19)	0.0040 (16)	0.0114 (15)	0.0039 (16)
C5	0.0386 (18)	0.052 (2)	0.0452 (18)	0.0016 (16)	0.0134 (15)	0.0002 (16)
C6	0.0325 (17)	0.076 (3)	0.055 (2)	-0.0001 (17)	0.0104 (16)	0.0016 (19)
C7	0.0388 (19)	0.076 (3)	0.054 (2)	0.0070 (19)	0.0188 (17)	0.0088 (19)
C8	0.052 (2)	0.081 (3)	0.055 (2)	0.009 (2)	0.0203 (19)	-0.002(2)
С9	0.0441 (19)	0.074 (3)	0.0492 (19)	0.0051 (19)	0.0100 (16)	-0.0008 (18)
C10	0.038 (2)	0.106 (4)	0.070 (2)	-0.003 (2)	0.0088 (18)	-0.015 (2)
C11	0.106 (4)	0.060 (11)	0.104 (5)	0.016 (7)	0.048 (5)	0.017 (7)
C11A	0.106 (4)	0.060 (11)	0.104 (5)	0.016 (7)	0.048 (5)	0.017 (7)
C12	0.081 (4)	0.076 (4)	0.102 (8)	0.012 (3)	0.035 (5)	-0.012 (3)
C12A	0.081 (4)	0.076 (4)	0.102 (8)	0.012 (3)	0.035 (5)	-0.012 (3)
01	0.0553 (15)	0.117 (3)	0.0575 (15)	-0.0005 (16)	0.0202 (13)	-0.0220 (16)
O2	0.0334 (12)	0.088 (2)	0.0542 (14)	-0.0038 (12)	0.0136 (11)	-0.0117 (13)
O3	0.0454 (15)	0.130 (3)	0.0747 (17)	0.0084 (18)	0.0302 (14)	0.0004 (18)
O4	0.0325 (15)	0.106 (4)	0.069 (2)	-0.003 (3)	0.0146 (15)	-0.004 (3)
O4A	0.0325 (15)	0.106 (4)	0.069 (2)	-0.003 (3)	0.0146 (15)	-0.004 (3)
05	0.059 (2)	0.064 (3)	0.069 (2)	0.0066 (19)	0.030(2)	0.0139 (18)
O5A	0.059 (2)	0.064 (3)	0.069 (2)	0.0066 (19)	0.030(2)	0.0139 (18)
O6	0.069 (3)	0.067 (3)	0.076 (3)	0.018 (2)	0.033 (2)	0.008 (2)
O6A	0.069 (3)	0.067 (3)	0.076 (3)	0.018 (2)	0.033 (2)	0.008 (2)
P1	0.0368 (5)	0.0680 (7)	0.0595 (6)	0.0055 (5)	0.0196 (4)	0.0059 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.446 (5)	C11—H11B	0.9600
C101	1.200 (4)	C11—H11C	0.9600
C1—O2	1.381 (4)	C11—O5	1.38 (2)
C2—C3	1.373 (4)	C11A—H11D	0.9600
C2—P1	1.805 (3)	C11A—H11E	0.9600
C3—C4	1.451 (4)	C11A—H11F	0.9600
C3—C10	1.501 (5)	C11A—O5A	1.499 (19)
C4—C5	1.387 (4)	C12—H12A	0.9600
C4—C9	1.405 (4)	C12—H12B	0.9600
C5—C6	1.382 (4)	C12—H12C	0.9600
C5—O2	1.370 (4)	C12—O6	1.43 (4)
С6—Н6	0.9300	C12A—H12D	0.9600
C6—C7	1.374 (5)	C12A—H12E	0.9600
С7—С8	1.385 (5)	C12A—H12F	0.9600
С7—ОЗ	1.358 (4)	C12A—O6A	1.529 (19)
С8—Н8	0.9300	O3—H3	0.8200
С8—С9	1.366 (4)	O4—P1	1.464 (5)
С9—Н9	0.9300	O4A—P1	1.454 (6)

C10—H10A	0.9600	O5—P1	1.543 (4)
C10—H10B	0.9600	O5A—P1	1.567 (5)
C10—H10C	0.9600	O6—P1	1.561 (5)
C11—H11A	0.9600	O6A—P1	1.556 (6)
01 C1 C2	127 1 (2)	05 C11 H11C	100.5
01 - 01 - 02	12/.1(3)		109.5
01 - 01 - 02	114.0(3)	HIID—CIIA—HIIE	109.5
02 - C1 - C2	116.0(3)	HIID—CIIA—HIIF	109.5
C1 = C2 = F1	110.0(2)		109.5
$C_3 = C_2 = C_1$	120.7(3)	OSA—CIIA—HIID	109.5
$C_3 = C_2 = P_1$	123.2(3)	OSA—CIIA—HIIE	109.5
$C_2 - C_3 - C_4$	119.1 (3)	USA—CIIA—HIIF	109.5
$C_2 = C_3 = C_{10}$	123.2 (3)	H12A—C12—H12B	109.5
C4—C3—C10	117.7 (3)	HI2A—CI2—HI2C	109.5
C5—C4—C3	118.9 (3)	H12B—C12—H12C	109.5
C5-C4-C9	115.9 (3)	O6—C12—H12A	109.5
C9—C4—C3	125.2 (3)	O6—C12—H12B	109.5
C6—C5—C4	123.3 (3)	O6—C12—H12C	109.5
O2—C5—C4	121.1 (3)	H12D—C12A—H12E	109.5
O2—C5—C6	115.5 (3)	H12D—C12A—H12F	109.5
С5—С6—Н6	120.7	H12E—C12A—H12F	109.5
C7—C6—C5	118.6 (3)	O6A—C12A—H12D	109.5
С7—С6—Н6	120.7	O6A—C12A—H12E	109.5
C6—C7—C8	120.3 (3)	O6A—C12A—H12F	109.5
O3—C7—C6	122.6 (3)	C5—O2—C1	121.9 (3)
O3—C7—C8	117.1 (3)	С7—О3—Н3	109.5
С7—С8—Н8	120.0	C11—O5—P1	119.4 (15)
C9—C8—C7	120.0 (3)	C11A—O5A—P1	123.3 (17)
С9—С8—Н8	120.0	C12—O6—P1	125.5 (12)
С4—С9—Н9	119.0	C12A—O6A—P1	117.5 (19)
C8—C9—C4	121.9 (3)	O4—P1—C2	114.5 (2)
С8—С9—Н9	119.0	O4—P1—O5	113.5 (3)
C3-C10-H10A	109.5	O4—P1—O6	110.2 (3)
C3—C10—H10B	109.5	O4A—P1—C2	112.6 (2)
C3—C10—H10C	109.5	O4A—P1—O5A	110.0 (3)
H10A—C10—H10B	109.5	O4A—P1—O6A	114.2 (3)
H10A—C10—H10C	109.5	O5—P1—C2	105.91 (19)
H10B—C10—H10C	109.5	O5—P1—O6	102.1 (3)
H11A—C11—H11B	109.5	O5A—P1—C2	105.6 (2)
H11A—C11—H11C	109.5	O6—P1—C2	109.8 (2)
H11B—C11—H11C	109.5	O6A - P1 - C2	112.6 (2)
05-C11-H11A	109.5	O6A - P1 - O5A	100.9(3)
05—C11—H11B	109.5		
C1 $C2$ $C3$ $C4$	1 2 (5)	C7 C9 C0 C4	
$C_1 = C_2 = C_3 = C_4$	1.3(3) -170.0(2)	$C_1 - C_2 - C_3 - C_4$	0.0(0)
$C_1 = C_2 = C_3 = C_1 U$	-1/9.0(3)	$C_{2} = C_{4} = C_{5} = C_{6}$	-1.2(5)
$C_1 = C_2 = P_1 = O_4$	-1/5./(4)	$C_{9} - C_{4} - C_{5} - O_{2}$	1/9.1 (3)
C1—C2—P1—O4A	135.4 (4)	C10—C3—C4—C5	-178.5 (3)

C1—C2—P1—O5	-49.9 (4)	C10—C3—C4—C9	1.3 (5)
C1—C2—P1—O5A	-104.6 (3)	C11—O5—P1—C2	-63.3 (18)
C1—C2—P1—O6	59.7 (3)	C11—O5—P1—O4	63.1 (18)
C1-C2-P1-O6A	4.6 (4)	C11—O5—P1—O6	-178.3 (18)
C2—C1—O2—C5	4.3 (5)	C11A—O5A—P1—C2	57 (2)
C2—C3—C4—C5	1.3 (5)	C11A—O5A—P1—O4A	179 (2)
C2—C3—C4—C9	-178.9 (3)	C11A—O5A—P1—O6A	-60 (2)
C3—C2—P1—O4	1.8 (4)	C12—O6—P1—C2	-87 (2)
C3—C2—P1—O4A	-47.0 (4)	C12—O6—P1—O4	146 (2)
C3—C2—P1—O5	127.6 (3)	C12—O6—P1—O5	25 (2)
C3—C2—P1—O5A	73.0 (4)	C12A—O6A—P1—C2	80 (2)
C3—C2—P1—O6	-122.8 (3)	C12A—O6A—P1—O4A	-50 (2)
C3—C2—P1—O6A	-177.9 (3)	C12A—O6A—P1—O5A	-168 (2)
C3—C4—C5—C6	178.6 (3)	O1—C1—C2—C3	176.1 (4)
C3—C4—C5—O2	-1.1 (5)	O1—C1—C2—P1	-6.3 (5)
C3—C4—C9—C8	-178.9 (4)	O1—C1—O2—C5	-175.8 (3)
C4—C5—C6—C7	0.6 (6)	O2—C1—C2—C3	-4.1 (5)
C4—C5—O2—C1	-1.8 (5)	O2—C1—C2—P1	173.5 (2)
C5—C4—C9—C8	0.9 (5)	O2—C5—C6—C7	-179.7 (3)
C5—C6—C7—C8	0.4 (6)	O3—C7—C8—C9	-179.9 (4)
C5—C6—C7—O3	179.5 (3)	P1-C2-C3-C4	-176.1 (2)
C6—C5—O2—C1	178.5 (3)	P1—C2—C3—C10	3.6 (5)
C6—C7—C8—C9	-0.7 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3…O4 ⁱ	0.82	1.78	2.562 (6)	159
O3—H3···O4 <i>A</i> ⁱ	0.82	2.01	2.812 (7)	168
C8—H8····O1 ⁱⁱ	0.93	2.44	3.220 (4)	142
C10—H10 <i>B</i> ····O4	0.96	2.22	2.831 (6)	121
C12—H12A…O1	0.96	2.20	2.96 (5)	135

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, –*y*+1/2, *z*-1/2.