ISSN 2414-3146

Received 12 July 2017
Accepted 22 August 2017

Edited by P. McArdle, National University of Ireland, Ireland

Keywords: crystal structure; imidazole; thione; vinyl.

CCDC reference: 1570185
Structural data: full structural data are available from iucrdata.iucr.org

1-Vinyl-4-imidazoline-2-thione

Martin Lampl, Gerhard Laus, Klaus Wurst, Hubert Huppertz and Herwig Schottenberger*

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$, was obtained by deprotonation of 1-vinylimidazole and subsequent reaction with elemental sulfur. In the crystal, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, and arranged in layers parallel to the $a b$ plane.

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Structure description

Imidazoline-2-thiones (Laus et al., 2013) are versatile and easy-to-synthesize building blocks. The title compound is one of the small molecules whose structure, surprisingly, has not yet been described. Not only is the molecule itself interesting, it also allows further derivatization at the S and N atoms (Hummel et al., 2017; Oberparleiter et al., 2016), and gives access to a plethora of functionalized imidazolium salts. The primary alkylation takes place at the S atom; the resulting salt can then be deprotonated to yield a neutral 2-alkylsulfanyl-1-vinylimidazole, which can then be transformed into a quaternary salt. In addition, the vinyl substituent renders the molecule polymerizable and thus permits a path to imidazole-based polymers (Anderson \& Long, 2010; Nakabayashi \& Mori, 2013).

The synthesis of the title compound involves deprotonation of 1-vinylimidazole and subsequent reaction with elemental sulfur. Strong bases, such as isopropylmagnesium chloride or hexyllithium, are required. Other reaction conditions, such as sulfur in $\mathrm{KOH} /$ DMSO (Yuan et al., 2010), $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ (Ansell et al., 1970) or $\mathrm{Et}_{3} \mathrm{~N} /$ pyridine (Becker et al., 1973), did not yield the desired product.

The $\mathrm{C}=\mathrm{S}$ bond length of 1.688 (1) \AA is in agreement with the accepted value of $1.68 \pm 0.02 \AA$ for imidazoline-2-thiones (Laus et al., 2013), ruling out the possibility of a thiol tautomer. The molecular structure is depicted in Fig. 1. The imidazoline-2-thione molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1) to form layers, which are arranged parallel to the $a b$ plane (Fig. 2).

Table 1
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2N $\cdot \mathrm{S} 1^{\mathrm{i}}$	$0.86(1)$	$2.54(1)$	$3.378(1)$	$167(1)$
C2-H2 $\cdots \mathrm{S}^{\mathrm{ii}}$	0.95	2.82	$3.728(1)$	160

Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$.

Related structures, such as $3-(1 H, 1 H, 2 H, 2 H$-perfluorooct-yl)-1-vinylimidazoline-2-thione (Partl, Laus, Gelbrich et al., 2017) and 3,3'-(hexane-1,6-diyl)bis(1-vinylimidazoline-2thione) (Partl, Laus, Kahlenberg et al., 2017), have been reported recently. Polymorphs of the analogous 1-methyl-imidazoline-2-thione ('methimazole') have been described (Lodochnikova et al., 2013).

Synthesis and crystallization

Method A: isopropylmagnesium chloride solution ($10 \mathrm{ml}, 2$ M in $\mathrm{Et}_{2} \mathrm{O}, 20.0 \mathrm{mmol}$) was added to a solution of 1 -vinylimidazole ($1.52 \mathrm{~g}, 16.1 \mathrm{mmol}$) in anhydrous tetrahydrofuran (THF; 15 ml), and the mixture was stirred for 17 h under an argon atmosphere. Elemental sulfur ($573 \mathrm{mg}, 17.9 \mathrm{mmol}$) was added to the clear solution and stirring was continued at room temperature. After $28 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and acidified with $\mathrm{HCl}(30 \mathrm{ml}, 1 M, 30.0 \mathrm{mmol})$. The mixture was extracted with chloroform ($3 \times 40 \mathrm{ml}$). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 60 \mathrm{ml})$. The solvent was removed under reduced pressure, yielding 1.43 g (70%) of 1-vinyl-imidazoline-2-thione as an off-white solid.

Method B: n-hexyllithium ($16 \mathrm{ml}, 2.3 \mathrm{M}$ in hexanes, 36.8 mmol) was added to a cooled (193 K) solution of 1-vinylimidazole ($3.07 \mathrm{~g}, 32.6 \mathrm{mmol}$) in anhydrous THF $(40 \mathrm{ml})$ under an argon atmosphere. The mixture was stirred for 2 h at 195 K and then for 1 h at 263 K . Sulfur (1.1 g , 34.2 mmol) was added and stirring was continued for 68 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and acidified with

Figure 1
The molecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for the non-H atoms.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$
$M_{\text {r }}$	126.18
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	173
$a, b, c(\AA)$	10.7775 (3), 9.6848 (3), 12.1792 (4)
$\beta{ }^{\circ}$)	108.139 (1)
$V\left(\AA^{3}\right)$	1208.06 (6)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.42
Crystal size (mm)	$0.17 \times 0.12 \times 0.07$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
$T_{\text {min }}, T_{\text {max }}$	0.864, 0.911
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	16916, 1187, 1114
$R_{\text {int }}$	0.026
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.617
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.065, 1.08
No. of reflections	1187
No. of parameters	78
No. of restraints	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.24,-0.22$

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), XT in SHELXTL (Bruker, 2014), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Figure 2
The unit cell of the title compound, viewed in the direction of (a) the a axis, (b) the b axis and (c) the c axis.
$\mathrm{HCl}(51 \mathrm{ml}, 1 \mathrm{M}, 51.0 \mathrm{mmol})$. The THF was removed under reduced pressure, and the residue was extracted with CHCl_{3} (3 $\times 100 \mathrm{ml})$ and with EtOAc (100 ml). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The solution was treated with activated charcoal, followed by filtration over celite. The solvent was removed under reduced pressure and the product dried overnight at high vacuum, yielding 2.2 g (54\%) of 1-vinylimidazoline-2-thione as an off-white solid. Single crystals were obtained by slow evaporation of a solution in CHCl_{3} (m.p. 416-418 K; sublimation above 396 K). The PXRD (Mo $K \alpha$ radiation) of the bulk material was an excellent match to that calculated from the single-crystal diffraction data (Fig. 3), indicating phase purity.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.35(s, 1 \mathrm{H}), 7.52(t, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(d d, J=16.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(t, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.43(d d, J=16.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(d d, J=9.1,1.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta 161.8,129.0,116.3$, 113.8, 101.0. IR (neat): v 3120, 3108, 3006, 1646, 1568, 1462, $1414,1285,1267,1244,1122,1090,1022,960,875,772,742,682$, $651,545,491 \mathrm{~cm}^{-1}$.

Refinement

The H atom at N 2 was found and refined isotropically with an $\mathrm{N}-\mathrm{H}$ bond-length restraint of 0.87 (2) \AA. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We are grateful to Barbara Schmidt for technical assistance.

References

Anderson, E. B. \& Long, T. E. (2010). Polymer, 51, 2447-2454.
Ansell, G. B., Forkey, D. M. \& Moore, D. W. (1970). Chem. Commun. pp. 56-57.
Becker, H. G. O., Nagel, D. \& Timpe, H. J. (1973). J. Prakt. Chem. 315, 97-105.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 3
Rietveld fit $\left(R_{\mathrm{wp}}=0.126, R_{\exp }=0.121, R_{\mathrm{p}}=0.096\right.$, goodness-of-fit $\left.=1.04\right)$ of the PXRD data with a model calculated from the structural data of the single-crystal structure determination. Black dots indicate raw data, while the red line indicates the calculated model. Tick marks (green) are the 2θ positions for the $h k l$ reflections. The difference curve is shown in blue.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hummel, M., Markiewicz, M., Stolte, S., Noisternig, M., Braun, D. E., Gelbrich, T., Griesser, U. J., Partl, G., Naier, B., Wurst, K., Krüger, B., Kopacka, H., Laus, G., Huppertz, H. \& Schottenberger, H. (2017). Green Chem. 19, 3225-3237.

Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. \& Schottenberger, H. (2013). Z. Naturforsch. Teil B, 68, 1239-1252.
Lodochnikova, O. A., Bodrov, A. V., Saifina, A. F., Nikitina, L. E. \& Litvinov, I. A. (2013). J. Struct. Chem. 54, 140-147.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Nakabayashi, K. \& Mori, H. (2013). Eur. Polym. J. 49, 2808-2838.
Oberparleiter, S., Laus, G., Wurst, K. \& Schottenberger, H. (2016). IUCrData, 1, x161499.
Partl, G., Laus, G., Gelbrich, T., Wurst, K., Huppertz, H. \& Schottenberger, H. (2017). IUCrData, 2, x170648.
Partl, G., Laus, G., Kahlenberg, V., Huppertz, H. \& Schottenberger, H. (2017). IUCrData, 2, x170599.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Yuan, Y., Thom, I., Kim, S. H., Chen, D., Beyer, A., Bonnamour, J., Zuidema, E., Chang, S. \& Bolm, C. (2010). Adv. Synth. Catal. 352, 2892-2898.

full crystallographic data

IUCrData (2017). 2, x171207 [https://doi.org/10.1107/S241431461701207X]

1-Vinyl-4-imidazoline-2-thione

Martin Lampl, Gerhard Laus, Klaus Wurst, Hubert Huppertz and Herwig Schottenberger

1-Vinyl-4-imidazoline-2-thione

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=126.18$
Monoclinic, $C 2 / c$
$a=10.7775$ (3) \AA
$b=9.6848$ (3) \AA
$c=12.1792(4) \AA$
$\beta=108.139(1)^{\circ}$
$V=1208.06(6) \AA^{3}$
$Z=8$
$F(000)=528$

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer
Radiation source: Incoatec Microfocus
Multi layered optics monochromator
Detector resolution: 10.4 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.864, T_{\text {max }}=0.911$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.065$
$S=1.08$
1187 reflections
78 parameters
1 restraint
Hydrogen site location: mixed
$D_{\mathrm{x}}=1.387 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 418 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9910 reflections
$\theta=2.9-26.4^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.17 \times 0.12 \times 0.07 \mathrm{~mm}$

16916 measured reflections
1187 independent reflections
1114 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-13 \rightarrow 13$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$

> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0314 P)^{2}+1.0869 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$
> Extinction correction: SHELXL2014 $\quad\left(\mathrm{Sheldrick}^{*}, 2015\right)$,
> $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0068 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atom at N2 were found and refined isotropically with bond restraint ($\mathrm{d}=87 \mathrm{pm}$) .

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.11344(3)$	$0.54728(4)$	$0.42718(3)$	$0.02539(14)$
N1	$0.31623(10)$	$0.38500(11)$	$0.41324(9)$	$0.0200(2)$
N2	$0.17797(11)$	$0.43417(12)$	$0.24678(9)$	$0.0225(2)$
H2N	$0.1110(15)$	$0.4659(17)$	$0.1942(13)$	$0.034(4)^{*}$
C1	$0.20309(12)$	$0.45566(12)$	$0.36118(11)$	$0.0192(3)$
C2	$0.35897(13)$	$0.32017(14)$	$0.32890(11)$	$0.0241(3)$
H2	0.4349	0.2647	0.3421	0.029^{*}
C3	$0.27288(13)$	$0.35079(14)$	$0.22622(11)$	$0.0250(3)$
H3	0.2762	0.3209	0.1529	0.030^{*}
C4	$0.37875(13)$	$0.38285(14)$	$0.53361(11)$	$0.0262(3)$
H4	0.3320	0.4176	0.5821	0.031^{*}
C5	$0.49716(14)$	$0.33608(16)$	$0.58291(12)$	$0.0327(3)$
H5A	0.5466	0.3006	0.5369	0.039^{*}
H5B	0.5335	0.3376	0.6647	0.039^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01913(19)$	$0.0318(2)$	$0.0239(2)$	$0.00659(12)$	$0.00469(13)$	$-0.00509(12)$
N1	$0.0173(5)$	$0.0214(5)$	$0.0203(5)$	$0.0030(4)$	$0.0045(4)$	$0.0000(4)$
N2	$0.0179(5)$	$0.0267(6)$	$0.0197(5)$	$0.0030(4)$	$0.0014(4)$	$-0.0020(4)$
C1	$0.0159(6)$	$0.0192(6)$	$0.0213(6)$	$-0.0016(4)$	$0.0042(5)$	$-0.0007(4)$
C2	$0.0215(6)$	$0.0253(7)$	$0.0260(7)$	$0.0045(5)$	$0.0081(5)$	$-0.0034(5)$
C3	$0.0226(6)$	$0.0280(7)$	$0.0244(7)$	$0.0015(5)$	$0.0074(5)$	$-0.0055(5)$
C4	$0.0277(7)$	$0.0303(7)$	$0.0199(6)$	$0.0060(5)$	$0.0066(5)$	$0.0020(5)$
C5	$0.0319(8)$	$0.0397(8)$	$0.0227(7)$	$0.0104(6)$	$0.0028(6)$	$0.0026(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 1$	$1.6884(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3380(19)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3695(16)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{~N} 1-\mathrm{C} 2$	$1.3986(16)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{~N} 1-\mathrm{C} 4$	$1.4102(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3104(19)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.3502(16)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{~N} 2-\mathrm{C} 3$	$1.3858(17)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9500
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.859(14)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9500
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$109.49(10)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	126.4
$\mathrm{C} 1 — \mathrm{~N} 1-\mathrm{C} 4$	$123.85(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$107.24(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$126.64(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	126.4
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$110.74(11)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$	126.4
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$124.5(11)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1$	$124.29(13)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$124.7(11)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	117.9

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$105.33(11)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4$	117.9
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{S} 1$	$127.71(10)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{S} 1$	$126.95(10)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$107.21(11)$	$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$			
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$0.31(14)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.01(15)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$-178.63(10)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.69(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$-0.18(14)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$0.19(15)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$178.55(11)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$-0.32(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$-167.81(14)$	
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$-2.51(18)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$10.7(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.86(1)$	$2.54(1)$	$3.378(1)$	$167(1)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.95	2.82	$3.728(1)$	160

Symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $x+1 / 2, y-1 / 2, z$.

