

ISSN 2414-3146

Received 21 March 2018 Accepted 16 April 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; intermetallics; crystal structure; X-ray diffraction.

CCDC reference: 1837556

Structural data: full structural data are available from iucrdata.iucr.org

$AI_{13}Fe_3$

Zheng Xia, Cong Liu and Changzeng Fan*

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

A new trigonal phase with composition $Al_{13}Fe_3$ (tridecaaluminium triiron) was obtained in the binary Fe–Al diagram by high-pressure sintering (HPS) of a stoichiometric Al_3Fe mixture. The refined crystal structure agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago [Chandrasekaran *et al.* (1988). *Scr. Metall.* **22**, 797–802]. The structure was refined as an inversion twin with a ratio of 0.506 (18):0.494 (18) for the two twin components.

Structure description

Investigations on the crystal structure of a phase with composition Al_3Fe can be traced back to as early as one century ago (Groth, 1906). Similar efforts continued in the following half century (Osawa, 1933; Bachmetew, 1934; Phragmén, 1950). However, an accurate composition and crystal structure analysis of this phase has been generally accepted to result in a compound with formula λ - $Al_{13}Fe_4$ (Black, 1955*a*,*b*; Armbrüster *et al.*, 2012). A new mineral named hollisterite (Al₃Fe with the λ - $Al_{13}Fe_4$ structure) was discovered very recently during investigation of one fragment of a recovered Khatyrka CV3 carbonaceous chondrite (Ma *et al.*, 2017) while searching for samples to explain the origin of a quasicrystal mineral (Bindi & Steinhardt, 2018). In the present work, a trigonal phase with composition $Al_{13}Fe_3$ was uncovered to be coexistent with the λ - $Al_{13}Fe_4$ phase in the products while simulating the formation of hollisterite under high-pressure and high-temperature conditions (HPHT) by the HPS approach.

There are 96 atoms (78 aluminium plus 18 iron) in the unit cell of the $Al_{13}Fe_3$ structure. The projection of the structure along [001] is shown in Fig. 1, using coordination polyhedra around Al4 atoms for visualization. It is found that there are 18 Al atoms in the unit cell, each of which is coordinated in form of a distorted icosahedron that is formed by two, three, four and three atoms of Fe1, Al2, Al3 and Al6, respectively. All the above

Figure 1

Projection of the new $Al_{13}Fe_3$ phase along the [001] direction showing Al4 atoms with their coordination polyhedra.

mentioned atoms occupy the 18b Wyckoff sites while the Al5 atom occupies the 6a Wyckoff site.

Fig. 2 shows the environments of the Fe1 and Al5 atoms. Each Fe1 atom is surrounded by ten aluminium atoms including two Al2, two Al3, two Al4, one Al5 and three Al6 atoms, while each Al5 atom is surrounded by three Fe1 atoms, three Al2 and three Al6 atoms.

It should be noted that the present $Al_{13}Fe_3$ phase agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago (Chandrasekaran *et al.*, 1988).

Synthesis and crystallization

Pure aluminium powder (indicated purity 99.8%) and pure iron powder (indicated purity 99.8%) were mixed according to an atomic ratio of 3:1. The detailed description and the assembled crucible sketch map of the employed HPS process can be found elsewhere (Liu & Fan, 2018). In the current work, the sample was pressurized up to 5 GPa and heated to 1493 K for 30 min, cooled to 1343 K and held at this temperature for one h, and then cooled down rapidly to room temperature. A brick-shaped fragment with dimensions $0.09 \times$ $0.06 \times 0.03 \text{ mm}^3$ was selected and mounted on a thin glass fiber for single-crystal X-ray diffraction measurements.

Figure 2

Environments of Fe1 (left) and Al5 (right) atoms. Displacement ellipsoids are given at the 99% probability level. [Symmetry codes: (i) $\frac{1}{3} - x + y, -\frac{1}{3} + y, \frac{1}{6} + z;$ (ii) $\frac{1}{3} - x + y, \frac{2}{3} - x, -\frac{1}{3} + z;$ (iii) $1 - y, 1 - x, -\frac{1}{2} + z;$ (iv) $x, x - y, \frac{1}{2} + z;$ (v) $x, x - y, -\frac{1}{2} + z;$ (vi) 1 - y, x - y, z; (vii) $\frac{2}{3} - y, \frac{1}{3} + x - y, \frac{1}{3} + z;$ (viii) $-\frac{1}{3} + x, \frac{1}{3} + x - y, -\frac{1}{6} + z;$ (ix) $1 - y, 1 - x, \frac{1}{2} + z;$ (x) 1 - x + y, 1 - x, z; (xi) $\frac{2}{3} - x + y, \frac{1}{3} + y, -\frac{1}{6} + z;$ (xii) $\frac{1}{3} + x, \frac{2}{3} + x - y, \frac{1}{6} + z.$]

Table 1	
Experimental details.	
Crystal data	
Chemical formula	Al13Fe3
M _r	518.29
Crystal system, space group	Trigonal, R3c:H
Temperature (K)	293
<i>a</i> , <i>c</i> (Å)	14.5784 (9), 7.7020 (5)
$V(Å^3)$	1417.6 (2)
Ζ	6
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	5.69
Crystal size (mm)	$0.09\times0.06\times0.03$
Data collection	
Diffractometer	Bruker D8 Venture Photon 100 COMS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.590, 0.746
No. of measured, independent and	20029, 1017, 954
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.735
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.039, 1.12
No. of reflections	1017
No. of parameters	50
No. of restraints	1
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.45, -0.82
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.494 (18)

Computer programs: *APEX3* and *SAINT* (Bruker, 2015), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2017) and *publCIF* (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal was refined as an inversion twin with a ratio of 0.506 (18): 0.494 (18) for the two twin components. Although the ADDSYM function in *PLATON* (Spek, 2009) suggested a change from the present space group *R3c* to centrosymmetric $R\overline{3}c$, the reliability factors were significantly higher for the centrosymmetric case. Hence the non-centrosymmetric space group was used for the present model.

Acknowledgements

We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).

References

- Armbrüster, M., Kovnir, K., Friedrich, M., Teschner, D., Wowsnick, G., Hahne, M., Gille, P., Szentmiklósi, L., Feuerbacher, M., Heggen, M., Girgsdies, F., Rosenthal, D., Schlögl, R. & Grin, Y. (2012). Nat. Mater. 11, 690–693.
- Bachmetew, E. (1934). Z. Kristallogr. 89, 575-586.
- Bindi, L. & Steinhardt, P. J. (2018). Rocks Miner. 93, 50-59.
- Black, P. J. (1955a). Acta Cryst. 8, 43-48.
- Black, P. J. (1955b). Acta Cryst. 8, 175-182.
- Brandenburg, K. & Putz, H. (2017). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.
- Chandrasekaran, M., Lin, Y. P., Vincent, R. & Staniek, G. (1988). Scr. Metall. 22, 797–802.
- Groth, P. (1906). *Chemische Krystallographie, Erster Teil*, pp. 47–48. Leipzig: Verlag Wilhelm Engelmann.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.

- Ma, C., Lin, C., Bindi, L. & Steinhardt, P. J. (2017). Am. Mineral. 102, 690–693.
- Osawa, A. (1933). Sci. Rep. Tohoku Univ. 22, 803-823.
- Phragmén, G. (1950). J. Inst. Met. 77, 489-551.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x180593 [https://doi.org/10.1107/S241431461800593X]

$AI_{13}Fe_3 \\$

Zheng Xia, Cong Liu and Changzeng Fan

Tridecaaluminium triiron

Crystal data	
Al13Fe3 $M_r = 518.29$ Trigonal, $R3c:H$ a = 14.5784 (9) Å c = 7.7020 (5) Å V = 1417.6 (2) Å ³ Z = 6 F(000) = 741	$D_x = 3.642 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21502 reflections $\theta = 2.8-31.5^{\circ}$ $\mu = 5.69 \text{ mm}^{-1}$ T = 293 K Grain, metallic $0.09 \times 0.06 \times 0.03 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 100 COMS diffractometer phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) $T_{\min} = 0.590, T_{\max} = 0.746$ 20029 measured reflections	1017 independent reflections 954 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 31.5^\circ, \ \theta_{min} = 2.8^\circ$ $h = -21 \rightarrow 21$ $k = -20 \rightarrow 21$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.039$ S = 1.12 1017 reflections 50 parameters 1 restraint	$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0208P)^2 + 1.1916P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} < 0.001 \\ &\Delta\rho_{\text{max}} = 0.45 \text{ e } \text{Å}^{-3} \\ &\Delta\rho_{\text{min}} = -0.81 \text{ e } \text{Å}^{-3} \\ &\text{Absolute structure: Refined as an inversion} \\ &\text{twin.} \\ &\text{Absolute structure parameter: } 0.494 (18) \end{split}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates an	<i>id isotropic or</i>	equivalent isotropic	displacement	parameters ($(Å^2)$
----------------------------------	------------------------	----------------------	--------------	--------------	---------

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe01	0.49239 (3)	0.33140 (5)	0.49860 (8)	0.00526 (10)

A102	0.48081 (7)	0.18100 (8)	0.33067 (12)	0.0153 (2)
A103	0.35885 (7)	0.36146 (7)	0.65909 (13)	0.00896 (16)
Al04	0.50297 (11)	0.49974 (10)	0.4148 (3)	0.01602 (18)
A105	0.666667	0.333333	0.4775 (3)	0.0134 (3)
A106	0.63864 (9)	0.47463 (10)	0.66904 (10)	0.0152 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe01	0.00493 (19)	0.00516 (14)	0.00559 (16)	0.00245 (16)	-0.00091 (16)	-0.00119 (11)
A102	0.0279 (6)	0.0094 (4)	0.0099 (4)	0.0103 (5)	-0.0025 (5)	-0.0030 (4)
A103	0.0149 (5)	0.0144 (5)	0.0049 (4)	0.0128 (3)	0.0002 (4)	-0.0011 (5)
A104	0.0114 (3)	0.0066 (3)	0.0311 (5)	0.0053 (3)	0.0047 (3)	0.0037 (3)
A105	0.0071 (3)	0.0071 (3)	0.0259 (10)	0.00355 (16)	0.000	0.000
A106	0.0129 (5)	0.0135 (5)	0.0096 (5)	-0.0006 (4)	-0.0016 (4)	-0.0056 (4)

Geometric parameters (Å, °)

Fe01—Al04	2.4667 (16)	Al02—Al04 ⁱⁱ	2.832 (2)
Fe01—Al04 ⁱ	2.4697 (15)	A102—A104 ⁱ	2.8522 (19)
Fe01—Al02	2.4776 (13)	A103—A103 ⁱⁱ	2.6558 (3)
Fe01—A106	2.4854 (12)	A103—A103 ^{vii}	2.6558 (4)
Fe01—A103 ⁱⁱ	2.5115 (12)	A103—A104 ^{vii}	2.7230 (19)
Fe01—A103	2.5226 (12)	A103—A104 ⁱ	2.7254 (18)
Fe01—A105	2.5319 (4)	Al03—Al06 ^{viii}	2.7454 (18)
Fe01—Al06 ⁱⁱⁱ	2.5797 (11)	A103—A104	2.790 (2)
Fe01—Al02 ^{iv}	2.5893 (13)	A103—A104 ^{ix}	2.821 (2)
A102—A106 ⁱⁱⁱ	2.6790 (17)	A104—A106 ⁱⁱⁱ	2.901 (2)
A102—A103 ^v	2.7043 (17)	A104—A106	2.933 (2)
A102—A106 ^{vi}	2.7269 (11)	Al04—Al06 ^{viii}	2.9428 (19)
A102—A106 ^v	2.7341 (18)	A105—A106 ^x	2.7253 (16)
A102—A105	2.7450 (13)	A105—A106 ^{vi}	2.7253 (16)
A102—A104 ^{vi}	2.820 (2)	A105—A106	2.7254 (16)
A104—Fe01—A104 ⁱ	126.125 (12)	Fe01 ^{xi} —A104—A102 ^x	108.89 (6)
A104—Fe01—A102	133.36 (8)	A103 ⁱⁱ —A104—A102 ^x	112.86 (6)
Al04 ⁱ —Fe01—Al02	70.41 (5)	A103 ^{xi} —A104—A102 ^x	67.36 (4)
A104—Fe01—A106	72.65 (5)	A103—A104—A102 ^x	126.10 (6)
Al04 ⁱ —Fe01—Al06	133.11 (7)	Fe01—A104—A103 ⁱⁱⁱ	125.60 (8)
A102—Fe01—A106	132.02 (4)	Fe01 ^{xi} —A104—A103 ⁱⁱⁱ	56.20 (4)
A104—Fe01—A103 ⁱⁱ	66.31 (4)	A103 ⁱⁱ —A104—A103 ⁱⁱⁱ	120.99 (10)
Al04 ⁱ —Fe01—Al03 ⁱⁱ	68.99 (6)	A103 ^{xi} —A104—A103 ⁱⁱⁱ	57.19 (3)
A102—Fe01—A103 ⁱⁱ	86.95 (4)	A103—A104—A103 ⁱⁱⁱ	176.46 (8)
A106—Fe01—A103 ⁱⁱ	137.21 (4)	A102 ^x —A104—A103 ⁱⁱⁱ	57.29 (4)
A104—Fe01—A103	67.99 (5)	Fe01—Al04—Al02 ^{vii}	121.54 (9)
Al04 ⁱ —Fe01—Al03	66.17 (4)	Fe01 ^{xi} —Al04—Al02 ^{vii}	57.99 (5)
Al02—Fe01—Al03	133.83 (4)	A103 ⁱⁱ —A104—A102 ^{vii}	122.36 (7)
Al06—Fe01—Al03	90.44 (4)	A103 ^{xi} —A104—A102 ^{vii}	58.20 (5)

A103 ⁱⁱ —Fe01—A103	63.682 (17)	A103—A104—A102 ^{vii}	75.26 (6)
A104—Fe01—A105	114.14 (4)	A102 ^x —A104—A102 ^{vii}	121.54 (6)
A104 ⁱ —Fe01—A105	119.65 (4)	A103 ⁱⁱⁱ —A104—A102 ^{vii}	103.99 (5)
Al02—Fe01—Al05	66.44 (4)	Fe01—Al04—Al02 ^{xi}	123.48 (7)
Al06—Fe01—Al05	65.80 (4)	Fe01 ^{xi} —A104—A102 ^{xi}	54.92 (4)
A103 ⁱⁱ —Fe01—A105	143.61 (5)	A103 ⁱⁱ —A104—A102 ^{xi}	66.93 (5)
A103—Fe01—A105	152.47 (5)	A103 ^{xi} —A104—A102 ^{xi}	111.09 (6)
A104—Fe01—A106 ⁱⁱⁱ	70.15 (6)	A103—A104—A102 ^{xi}	102.12 (5)
A104 ⁱ —Fe01—A106 ⁱⁱⁱ	115.20(7)	A102 ^x —A104—A102 ^{xi}	123.32 (8)
A102—Fe01—A106 ⁱⁱⁱ	63.94 (4)	A103 ⁱⁱⁱ —A104—A102 ^{xi}	74,46 (6)
A106—Fe01—A106 ⁱⁱⁱ	111.62.(3)	A102 ^{vii} —A104—A102 ^{xi}	95 95 (6)
$A103^{ii}$ —Fe01—A106 ⁱⁱⁱ	65 25 (4)	$Fe01 - A104 - A106^{iii}$	56 75 (5)
$A103 - Fe01 - A106^{iii}$	$123\ 20\ (4)$	$Fe01^{xi}$ A104 A106 ⁱⁱⁱ	123 79 (9)
$A105 - Fe01 - A106^{iii}$	80 44 (6)	$A103^{ii}$ $A104$ $A106^{iii}$	58 33 (5)
$A104 - Fe01 - A102^{iv}$	113 68 (7)	$A103^{xi}$ $A104$ $A106^{iii}$	$121\ 20\ (7)$
$A104^{i} Fe01 A102^{iv}$	68.04 (6)	A103—A104—A106 ⁱⁱⁱ	121.20(7) 104.09(5)
$A102 \text{Fe}01 A102^{\text{iv}}$	$112 \ 87 \ (3)$	$A102^{x}$ $A104$ $A106^{iii}$	57.08(5)
A102 - Fc01 - A102	112.07(3)	A102 - A104 - A106	76 70 (6)
$A103ii = E_0 1 = A102iv$	121.68(4)	A103 - A104 - A106	177.80 (8)
A103 - Fe01 - A102	121.00(4)	A102 - A104 - A100	177.00(0)
$A105 = Fe01 = A102^{\circ}$	03.80(4)	$A102^{}A104^{}A106^{}$	80.24 (0) 52.07 (5)
$A105 - Fe01 - A102^{\circ}$	92.30 (0)	Fe01 - A104 - A100	33.97 (3)
$A106^{m} - Fe01 - A102^{m}$	1/2./9 (4)	$Fe01^{A} - A104 - A106$	127.63 (7)
$Fe01 = A102 = Fe01^{\circ}$	129.49 (5)	$A103^{n}$ $A104$ $A106$	110.62 (6)
Fe01—A102—A106 ^m	59.88 (4)	$A103^{A1}$ $A104$ $A106$	71.35 (5)
Fe01v—Al02—Al06 ^m	69.76 (3)	Al03—Al04—Al06	76.75 (6)
Fe01—Al02—Al03 ^v	148.34 (5)	Al02 ^x —Al04—Al06	56.54 (4)
Fe01 ^v —Al02—Al03 ^v	56.87 (3)	Al03 ^m —Al04—Al06	106.71 (5)
Al06 ⁱⁱⁱ —Al02—Al03 ^v	117.46 (5)	Al02 ^{vii} —Al04—Al06	86.01 (6)
Fe01—A102—A106 ^{vi}	70.58 (4)	Al02 ^{xi} —Al04—Al06	177.44 (7)
Fe01 ^v —Al02—Al06 ^{vi}	154.40 (4)	Al06 ⁱⁱⁱ —Al04—Al06	91.80 (6)
Al06 ⁱⁱⁱ —Al02—Al06 ^{vi}	125.55 (5)	Fe01—Al04—Al06 ^{viii}	110.76 (6)
A103 ^v —A102—A106 ^{vi}	116.47 (6)	Fe01 ^{xi} —A104—A106 ^{viii}	67.01 (4)
Fe01—Al02—Al06 ^v	129.03 (5)	A103 ⁱⁱ —A104—A106 ^{viii}	71.23 (5)
Fe01 ^v —Al02—Al06 ^v	55.58 (3)	A103 ^{xi} —A104—A106 ^{viii}	108.48 (6)
A106 ⁱⁱⁱ —A102—A106 ^v	94.31 (6)	Al03—Al04—Al06viii	57.15 (5)
A103 ^v —A102—A106 ^v	81.63 (4)	A102 ^x —A104—A106 ^{viii}	175.59 (6)
A106 ^{vi} —A102—A106 ^v	100.22 (3)	A103 ⁱⁱⁱ —A104—A106 ^{viii}	119.52 (6)
Fe01—Al02—Al05	57.73 (3)	A102 ^{vii} —A104—A106 ^{viii}	55.24 (4)
Fe01 ^v —Al02—Al05	113.86 (6)	A102 ^{xi} —A104—A106 ^{viii}	56.11 (4)
A106 ⁱⁱⁱ —A102—A105	74.96 (5)	A106 ⁱⁱⁱ —A104—A106 ^{viii}	126.25 (7)
A103 ^v —A102—A105	153.71 (5)	A106—A104—A106 ^{viii}	124.25 (8)
A106 ^{vi} —A102—A105	59.74 (5)	Fe01 ^{vi} —A105—Fe01 ^x	119.592 (12)
A106 ^v —A102—A105	74.09 (5)	Fe01 ^{vi} —A105—Fe01	119.591 (12)
Fe01—A102—A104vi	134.41 (5)	Fe01 ^x —A105—Fe01	119.593 (12)
Fe01 ^v —A102—A104 ^{vi}	94.65 (5)	Fe01 ^{vi} —A105—A106 ^x	69.84 (4)
A106 ⁱⁱⁱ —A102—A104 ^{vi}	157.26 (5)	Fe01 ^x —A105—A106 ^x	56.28 (3)
A103 ^v —A102—A104 ^{vi}	61.38 (5)	Fe01—A105—A106 ^x	142.70 (10)
A106 ^{vi} —A102—A104 ^{vi}	63.83 (5)	$Fe01^{vi}$ —A105—A106 ^{vi}	56.28 (3)
	(-)		

Al06 ^v —Al02—Al04 ^{vi}	62.96 (5)	Fe01 ^x —A105—A106 ^{vi}	142.70 (10)
A105—A102—A104vi	97.86 (5)	Fe01—A105—A106 ^{vi}	69.84 (4)
Fe01—Al02—Al04 ⁱⁱ	98.01 (5)	A106 ^x —A105—A106 ^{vi}	93.47 (6)
Fe01 ^v —Al02—Al04 ⁱⁱ	53.97 (4)	Fe01 ^{vi} —A105—A106	142.70 (10)
A106 ⁱⁱⁱ —A102—A104 ⁱⁱ	64.48 (4)	Fe01 ^x —A105—A106	69.84 (4)
A103 ^v —A102—A104 ⁱⁱ	58.92 (4)	Fe01—A105—A106	56.28 (3)
A106 ^{vi} —A102—A104 ⁱⁱ	148.11 (6)	A106 ^x —A105—A106	93.47 (6)
A106 ^v —A102—A104 ⁱⁱ	109 50 (4)	A106 ^{vi} —A105—A106	93 47 (6)
A105—A102—A104 ⁱⁱ	139.40 (6)	$Fe01^{vi}$ A105 A102	73 73 (3)
$A104^{vi}$ $A102^{-A104^{ii}}$	120,25 (6)	$Fe01^{x}$ Alo5 Alo2	157.09.(9)
$Fe01_{4102} = A104^{i}$	54 67 (4)	Fe01 = 4105 = 4102	55 83 (3)
$Fe01^v - 4102 - 4104^i$	138 74 (6)	$A106^{x} A105 A102$	142.93(3)
	138.74(0) 100.82(5)	A106 - A105 - A102	142.93(3)
A100 - A102 - A104	100.82(3)	A106 - A105 - A102	39.00(3)
$A105 - A102 - A104^{\circ}$	99.00 (3) (2.(2.(5)	A100 - A103 - A102	111.97 (2) 55.82 (2)
$A106^{4}$ $A102$ $A104^{4}$	63.62 (5)	$Fe01^{4} - A105 - A102^{4}$	55.83 (3)
A106 ^v —A102—A104 ⁱ	162.42 (6)	Fe01 A105 A102	/3./3 (3)
A105—A102—A104 ¹	101.15 (6)	$Fe01 - Al05 - Al02^{v_1}$	157.09 (9)
Al04 ^{v1} —Al02—Al04 ¹	101.74 (6)	A106 ^x —A105—A102 ^{v1}	59.80 (3)
Al04 ⁿ —Al02—Al04 ⁿ	85.30 (5)	$A106^{v_1}$ $A105 - A102^{v_1}$	111.97 (2)
Fe01 ^{vii} —A103—Fe01	143.98 (3)	A106—A105—A102 ^{vi}	142.93 (3)
Fe01 ^{vii} —A103—A103 ⁱⁱ	133.94 (6)	A102—A105—A102 ^{vi}	104.21 (6)
Fe01—Al03—Al03 ⁱⁱ	57.96 (4)	Fe01 ^{vi} —Al05—Al02 ^x	157.09 (9)
Fe01vii—Al03—Al03vii	58.36 (4)	Fe01 ^x —Al05—Al02 ^x	55.83 (3)
Fe01—A103—A103 ^{vii}	129.21 (6)	Fe01—Al05—Al02 ^x	73.73 (3)
A103 ⁱⁱ —A103—A103 ^{vii}	154.39 (4)	A106 ^x —A105—A102 ^x	111.97 (2)
Fe01 ^{vii} —A103—A102 ^{iv}	111.32 (4)	A106 ^{vi} —A105—A102 ^x	142.93 (3)
Fe01—Al03—Al02 ^{iv}	59.27 (4)	A106—A105—A102 ^x	59.80 (3)
A103 ⁱⁱ —A103—A102 ^{iv}	112.41 (7)	A102—A105—A102 ^x	104.21 (6)
A103 ^{vii} —A103—A102 ^{iv}	70.04 (4)	A102 ^{vi} —A105—A102 ^x	104.21 (6)
Fe01 ^{vii} —Al03—Al04 ^{vii}	56.05 (5)	Fe01—Al06—Fe01 ^{ix}	132.10 (5)
Fe01—A103—A104 ^{vii}	158.60 (6)	Fe01—A106—A102 ^{ix}	140.79 (6)
A103 ⁱⁱ —A103—A104 ^{vii}	103.57 (8)	Fe01 ^{ix} —A106—A102 ^{ix}	56.18 (3)
A103 ^{vii} —A103—A104 ^{vii}	62.47 (6)	Fe01—A106—A105	57.92 (3)
$A102^{iv}$ $A103$ $A104^{vii}$	12943(7)	$Fe01^{ix}$ A106 A105	126 73 (6)
$Fe01^{vii}$ A103 A104 ⁱ	155 79 (6)	$A102^{ix} - A106 - A105$	86 27 (5)
$Fe01 - A103 - A104^{i}$	55.99 (5)	$Fe01 = A106 = A102^{x}$	74.77(3)
$\Delta 103^{ii}$ $\Delta 103$ $\Delta 104^{i}$	63.22(7)	$Fe01^{ix} = A106 = A102^{x}$	153 01 (4)
	03.22(7)	$\frac{1001}{100} = \frac{100}{100} = \frac{1002}{100}$	102.72(3)
$A103 - A103 - A104$ $A102^{iv} A103 - A104^{i}$	62.88 (6)	A102 - A100 - A102	60.46(5)
A102 - A103 - A104	107.73(2)	$F_{2}01 = A106 = A102iv$	50.25(4)
$A104^{} A103 - A104^{-}$	107.75(2)	$Fe01 - A100 - A102^{\circ}$	39.23 (4) 72.10 (2)
$Fe01^{\text{m}} - A103 - A106^{\text{m}}$	58.57 (4)	$Fe01^{x} - A106 - A102^{x}$	/3.19(3)
Fe01—A103—A106 ^{vm}	115.62 (4)	A102 ¹ —A106—A102 ¹	106.32 (5)
A103 ⁿ —A103—A106 ^{vm}	75.42 (4)	A105—A106—A102 ¹	85.20 (6)
A103 ^{vn} —A103—A106 ^{vm}	112.38 (7)	$A102^{x}$ $A106$ $A102^{v}$	132.89 (4)
A102 ^{IV} —A103—A106 ^{VIII}	157.83 (4)	Fe01—Al06—Al03 ^{xii}	140.38 (5)
Al04 ^{vii} —Al03—Al06 ^{viii}	64.09 (6)	Fe01 ^{ix} —Al06—Al03 ^{xii}	56.18 (3)
Al04 ⁱ —Al03—Al06 ^{viii}	134.87 (8)	Al02 ^{ix} —Al06—Al03 ^{xii}	78.51 (3)
Fe01 ^{vii} —A103—A104	98.30 (5)	Al05—Al06—Al03 ^{xii}	157.46 (5)

55.06 (4)	Al02 ^x —Al06—Al03 ^{xii}	106.64 (6)
59.94 (6)	Al02 ^{iv} —Al06—Al03 ^{xii}	114.89 (4)
145.67 (7)	Fe01—Al06—Al04 ^{ix}	94.96 (5)
100.78 (5)	Fe01 ^{ix} —A106—A104 ^{ix}	53.10 (4)
128.21 (7)	Al02 ^{ix} —Al06—Al04 ^{ix}	108.84 (4)
105.86 (8)	Al05—Al06—Al04 ^{ix}	144.45 (6)
64.23 (5)	Al02 ^x —Al06—Al04 ^{ix}	139.57 (6)
54.81 (4)	Al02 ^{iv} —Al06—Al04 ^{ix}	59.96 (4)
96.12 (5)	A103 ^{xii} —A106—A104 ^{ix}	57.58 (4)
145.22 (7)	Fe01—Al06—Al04	53.38 (3)
59.59 (5)	Fe01 ^{ix} —A106—A104	134.06 (6)
61.33 (5)	Al02 ^{ix} —Al06—Al04	157.10 (6)
105.06 (8)	A105—A106—A104	95.64 (6)
124.15 (7)	A102 ^x —A106—A104	59.63 (5)
99.98 (5)	Al02 ^{iv} —Al06—Al04	96.58 (4)
86.68 (2)	A103 ^{xii} —A106—A104	92.20 (6)
177.68 (6)	Al04 ^{ix} —Al06—Al04	82.61 (5)
57.63 (4)	Fe01—Al06—Al04 ^{xii}	134.86 (5)
120.42 (7)	Fe01 ^{ix} —Al06—Al04 ^{xii}	93.02 (5)
124.13 (7)	Al02 ^{ix} —Al06—Al04 ^{xii}	60.28 (4)
57.85 (4)	Al05—Al06—Al04 ^{xii}	99.36 (5)
177.86 (11)	Al02 ^x —Al06—Al04 ^{xii}	60.26 (5)
56.96 (4)	Al02 ^{iv} —Al06—Al04 ^{xii}	165.19 (5)
121.17 (7)	Al03 ^{xii} —Al06—Al04 ^{xii}	58.62 (5)
57.58 (3)	Al04 ^{ix} —Al06—Al04 ^{xii}	116.13 (6)
124.16 (10)	Al04—Al06—Al04 ^{xii}	96.98 (5)
73.36 (4)		
	55.06 (4) 59.94 (6) 145.67 (7) 100.78 (5) 128.21 (7) 105.86 (8) 64.23 (5) 54.81 (4) 96.12 (5) 145.22 (7) 59.59 (5) 61.33 (5) 105.06 (8) 124.15 (7) 99.98 (5) 86.68 (2) 177.68 (6) 57.63 (4) 120.42 (7) 124.13 (7) 57.85 (4) 177.86 (11) 56.96 (4) 121.17 (7) 57.58 (3) 124.16 (10) 73.36 (4)	55.06 (4) $Al02^{x}$ — $Al06$ — $Al03^{xii}$ 59.94 (6) $Al02^{iv}$ — $Al06$ — $Al04^{ix}$ 145.67 (7) $Fe01^{ix}$ — $Al06$ — $Al04^{ix}$ 100.78 (5) $Fe01^{ix}$ — $Al06$ — $Al04^{ix}$ 128.21 (7) $Al02^{ix}$ — $Al06$ — $Al04^{ix}$ 105.86 (8) $Al05$ — $Al06$ — $Al04^{ix}$ 64.23 (5) $Al02^{x}$ — $Al06$ — $Al04^{ix}$ 54.81 (4) $Al02^{iv}$ — $Al06$ — $Al04^{ix}$ 96.12 (5) $Al03^{xii}$ — $Al06$ — $Al04$ 145.22 (7) $Fe01^{-x}$ — $Al06$ — $Al04$ 59.59 (5) $Fe01^{ix}$ — $Al06$ — $Al04$ 61.33 (5) $Al02^{x}$ — $Al06$ — $Al04$ 105.06 (8) $Al05$ — $Al06$ — $Al04$ 105.06 (8) $Al05$ — $Al06$ — $Al04$ 105.06 (8) $Al02^{-x}$ — $Al06$ — $Al04$ 124.15 (7) $Al02^{-x}$ — $Al06$ — $Al04$ 99.98 (5) $Al02^{iv}$ — $Al06$ — $Al04$ 177.68 (6) $Al04^{ix}$ 120.42 (7) $Fe01^{-x}$ — $Al06$ — $Al04^{xii}$ 124.13 (7) $Al02^{-x}$ — $Al06$ — $Al04^{xii}$ 177.85 (4) $Al02^{-x}$ — $Al06$ — $Al04^{xii}$ 177.86 (11) $Al02^{-x}$ — $Al06$ — $Al04^{xii}$ 121.17 (7) $Al03^{xii}$ — $Al06$ — $Al04^{xii}$ 124.16 (10) $Al04^{-x}$ — $Al06$ — $Al04^{xii}$ 124.16 (10) $Al04^{-x}$ — $Al06$ — $Al04^{xii}$

Symmetry codes: (i) -*x*+*y*+1/3, *y*-1/3, *z*+1/6; (ii) -*x*+*y*+1/3, -*x*+2/3, *z*-1/3; (iii) -*y*+1, -*x*+1, *z*-1/2; (iv) *x*, *x*-*y*, *z*+1/2; (v) *x*, *x*-*y*, *z*-1/2; (vi) -*y*+1, *x*-*y*, *z*; (vii) -*y*+2/3, *x*-*y*+1/3, *z*+1/3; (viii) *x*-1/3, *x*-*y*+1/3, *z*-1/6; (ix) -*y*+1, -*x*+1, *z*+1/2; (x) -*x*+*y*+1, -*x*+1, *z*; (xi) -*x*+*y*+2/3, *y*+1/3, *z*-1/6; (xii) *x*+1/3, *x*-*y*+2/3, *z*+1/6.