

ISSN 2414-3146

Received 11 July 2018 Accepted 12 July 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2-thioxoimidazolidin-4-one; DMSO solvate; hydrogen bonds; C—H··· π (ring) contacts.

CCDC reference: 1855614

Structural data: full structural data are available from iucrdata.iucr.org

5,5-Diphenyl-2-thioxoimidazolidin-4-one dimethyl sulfoxide monosolvate

Hamid Aziz,^a* Aamer Saeed^a and Jim Simpson^b

^aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. *Correspondence e-mail: hamidazizwazir@gmail.com

In the title solvate, $C_{15}H_{12}N_2OS \cdot C_2H_6OS$, the thioxoimidazolidin-4-one molecule and solvent molecule are linked by an N-H···O hydrogen bond. The planar imidazolidine ring (r.m.s. deviation = 0.022 Å) is inclined to the phenyl substituents in the 5-position by 69.57 (7) and 72.62 (6)°. In the crystal, N-H···O, C-H···O and C-H···S hydrogen bonds, together with C-H··· π interactions, generate [100] chains, which stack along the *a*-axis direction.

Structure description

Thiohydantoins (2-thioxoimidazolidin-4-one derivatives) display a broad and potent biological profile and are found in anticonvulsant, antimetastatic, anti-angiogenic (Mudit *et al.*, 2009; Kumar *et al.*, 2009), antimicrobial (Kieć-Kononowicz & Szymańska, 2003; Khodair *et al.*, 2001) and anticancer drugs (Azizmohammadi *et al.*, 2013). As part of our studies in this area, we now present the synthesis and structural analysis of 5,5-diphenyl-2-thioxoimidazolidin-4-one dimethyl sulfoxide monosolvate. A search of the Cambridge Structural Database (Groom *et al.*, 2016) for related structures found 27 hits, including 2-thiohydantoin itself (Walker *et al.*, 1969), the unsolvated stucture of the molecule reported here (Roszak & Weaver, 1998) and the closely related 5-phenyl-2-thioxoimidazolidin-4-one (Ogawa *et al.*, 2007).

The asymmetric unit of the title compound consists of a thiohydantoin molecule with two phenyl substituents at the 5-position and a dimethyl sulfoxide solvent molecule. The molecules are linked by an N3–H3N···O1S hydrogen bond (Fig. 1 and Table 1). As expected, the imidazolidine ring is almost planar, with an r.m.s. deviation of 0.022 Å from the best-fit plane, with atoms S2 and O4 deviating by 0.138 (3) and -0.021 (3) Å, respectively, from that plane. The C51–C56 and C61–C66 phenyl rings are inclined to the imidazolidine ring plane by 69.57 (7) and 72.62 (6)°, respectively.

Table 1 Hydrogen-bond geo	-bond geometry (Å, $^{\circ}$).				
Cg3 is the centroid of	the C61–C6	6 phenyl ring	ç.		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
N3−H3 <i>N</i> ···O1 <i>S</i>	0.77 (2)	2.00 (2)	2.766 (2)	171 (2)	
$N1 - H1N \cdots O1S^{i}$	0.86(2)	1.95 (2)	2.8089 (19)	174 (2)	
$C66-H66\cdots O4^{i}$	0.95	2.62	3.341 (2)	133	
$C1S - H1S3 \cdot \cdot \cdot S2^{ii}$	0.98	3.17	4.077 (2)	154	
$C1S - H1S2 \cdot \cdot \cdot O4^{iii}$	0.98	2.58	3.393 (2)	141	
$C2S - H2S2 \cdot \cdot \cdot O4^{iii}$	0.98	2.43	3.283 (2)	145	
$C2S - H2S1 \cdots S2^{ii}$	0.98	2.93	3.874 (2)	162	
$C2S - HS23 \cdots Cg3^{ii}$	0.98	2.98	3.887 (2)	154	

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

In the crystal, N1–H1 $N \cdots O1S^{i}$ and the already-mentioned N3–H3 $N \cdots O1S$ hydrogen bonds (Table 1) link two DMSO solvent molecules to each thiohydantoin ring, with the former contact augmented by a C2S–H2 $S1\cdots$ S2 hydrogen bonds and a weaker C2S–H2 $S3\cdots$ Cg3 contact to the C61–C66 phenyl ring. In addition, O4 acts as a triple acceptor with C66–H66 \cdots O4ⁱ hydrogen bonds linking adjacent main molecules, while C1S–H1 $S2\cdots$ O4ⁱⁱⁱ and C2S–H2 $S2\cdots$ O4ⁱⁱⁱ hydrogen bonds bind a third DMSO molecule to a thiohydantoin unit, enclosing an R_2^2 (6) ring (Fig. 2 and Table 1). The net effect of these contacts is to create independent chains of thiohydantoin and solvent molecules along c and these independent chains are stacked along the a-axis direction (Fig. 3).

Synthesis and crystallization

The synthesis of 5,5-diphenyl-2-thioxoimidazolidin-4-one was performed by a method reported in the literature (Ghanbari *et al.*, 2014) (Fig. 4). The resulting colourless solid was purified by recrystallization from DMSO solution to give colourless blocks (yield 90%). FT–IR (ATR cm⁻¹): 3251 (N–H amide,

Figure 1

The asymmetric unit, showing 50% probability displacement ellipsoids. The $N-H\cdots O$ hydrogen bond is drawn as a dashed line.

Figure 2

Rows of the thiohydantoin and DMSO solvent molecules formed along *a*. In Figs. 2 and 3, $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots S$ hydrogen bonds are shown as dark-blue, light-blue and yellow dashed lines, respectively. $C-H\cdots \pi(\text{ring})$ contacts are drawn as dotted green lines, with the ring centroids shown as red spheres.

CO-NH-CS), 3156 (N-H, amide, CPh_2 -NH-CS), 3022 (aromatic C-H stretch), 1746 (*s*, C=O amide), 1584, 1526, 1495 (Ar-C=C), 1226.10 (C=S).

Overall packing, viewed along the *a*-axis direction. For clarity, only a single representative $C-H \cdots \pi$ (ring) contact is shown.

Figure 4 Synthesis of 5,5-diphenyl-2-thioxoimidazolidin-4-one

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

HA is very grateful to the Higher Education Commission (HEC), Pakistan, for providing a scholarship award for MS/ MPhil leading to PhD studies under the Indigenous PhD fellowship for 5000 Scholars Phase-II, Batch-1. We also thank the University of Otago, for purchase of the diffractometer and the Chemistry Department, University of Otago for support of the work of JS.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Azizmohammadi, M., Khoobi, M., Ramazani, A., Emami, S., Zarrin, A., Firuzi, O., Miri, R. & Shafiee, A. (2013). *Eur. J. Med. Chem.* 59, 15–22.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghanbari, M. M., Jamali, M. & Batta, G. (2014). J. Sulfur Chem. 35, 394–398.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hunter, K. A. & Simpson, J. (1999). *TITAN2000*. University of Otago, New Zealand.
- Khodair, A. I., El-barbary, A. A., Abbas, Y. A. & Imam, D. R. (2001). *Phosphorus Sulfur Silicon*, **170**, 261–278.
- Kieć-Kononowicz, K. & Szymańska, E. (2003). Farmaco, 57, 909-916.
- Kumar, C. A., Swamy, S. N., Sugahara, K. & Rangappa, K. S. (2009). Bioorg, Med. Chem. 17, 4928–4934.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table 2Experimental details.

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

Crystal data	
Chemical formula	$C_{15}H_{12}N_2OS \cdot C_2H_6OS$
$M_{ m r}$	346.45
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	7.3167 (2), 15.5894 (4), 15.5627 (3)
β (°)	101.820 (2)
$V(Å^3)$	1737.49 (7)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.86
Crystal size (mm)	$0.23 \times 0.16 \times 0.09$
Data collection	
Diffractometer	Rigaku SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD. 2015)
T_{\min}, T_{\max}	0.932, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6995, 3444, 2966
Rint	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.624
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.093, 1.07
No. of reflections	3444
No. of parameters	216
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

0.34, -0.29

- Mudit, M., Khanfar, M., Muralidharan, A., Thomas, S., Shah, G. V., van Soest, R. W. & El Sayed, K. A. (2009). *Bioorg. Med. Chem.* 17, 1731–1738.
- Ogawa, T., Kitoh, S., Ichitani, M., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2007). *Anal. Sci. X*, **23**, x199–x200.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Roszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168-1170.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Walker, L. A., Folting, K. & Merritt, L. L. (1969). Acta Cryst. B25, 88– 93.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x181010 [https://doi.org/10.1107/S2414314618010106]

5,5-Diphenyl-2-thioxoimidazolidin-4-one dimethyl sulfoxide monosolvate

Hamid Aziz, Aamer Saeed and Jim Simpson

5,5-Diphenyl-2-sulfanylideneimidazolidin-4-one dimethyl sulfoxide monosolvate

Crystal data

C₁₅H₁₂N₂OS·C₂H₆OS $M_r = 346.45$ Monoclinic, $P2_1/n$ a = 7.3167 (2) Å b = 15.5894 (4) Å c = 15.5627 (3) Å $\beta = 101.820$ (2)° V = 1737.49 (7) Å³ Z = 4

Data collection

Rigaku SuperNova Dual Source diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Detector resolution: 5.1725 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.932$, $T_{\max} = 1.000$

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.036$ Hydrogen site location: mixed $wR(F^2) = 0.093$ H atoms treated by a mixture of independent S = 1.07and constrained refinement 3444 reflections $w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 0.8354P]$ 216 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 728 $D_x = 1.324 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4420 reflections $\theta = 4.0-74.1^{\circ}$ $\mu = 2.86 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.23 \times 0.16 \times 0.09 \text{ mm}$

6995 measured reflections 3444 independent reflections 2966 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 74.3^\circ, \theta_{min} = 4.1^\circ$ $h = -5 \rightarrow 8$ $k = -19 \rightarrow 17$ $l = -19 \rightarrow 19$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.5315 (2)	0.63041 (10)	0.26867 (10)	0.0130 (3)
H1N	0.629 (3)	0.6288 (14)	0.2450 (14)	0.016*
C2	0.3597 (2)	0.61437 (12)	0.22220 (11)	0.0137 (3)
S2	0.30117 (6)	0.57231 (3)	0.12248 (3)	0.01927 (13)
N3	0.2341 (2)	0.64016 (10)	0.27276 (10)	0.0150 (3)
H3N	0.128 (3)	0.6354 (15)	0.2566 (15)	0.018*
C4	0.3192 (2)	0.67809 (11)	0.34936 (11)	0.0131 (4)
O4	0.24401 (17)	0.70732 (9)	0.40519 (8)	0.0172 (3)
C5	0.5311 (2)	0.67650 (12)	0.35075 (11)	0.0129 (4)
C51	0.6305 (2)	0.62745 (12)	0.43169 (11)	0.0144 (4)
C52	0.6650 (3)	0.66932 (13)	0.51249 (12)	0.0192 (4)
H52	0.631743	0.727945	0.515909	0.023*
C53	0.7479 (3)	0.62539 (15)	0.58791 (13)	0.0248 (4)
H53	0.769965	0.653945	0.642995	0.030*
C54	0.7987 (3)	0.54028 (15)	0.58349 (14)	0.0274 (5)
H54	0.856898	0.510665	0.635227	0.033*
C55	0.7642 (3)	0.49844 (14)	0.50326 (14)	0.0270 (5)
H55	0.798726	0.439965	0.500054	0.032*
C56	0.6792 (3)	0.54174 (13)	0.42730 (13)	0.0205 (4)
H56	0.654498	0.512635	0.372505	0.025*
C61	0.6099 (2)	0.76653 (12)	0.34460 (11)	0.0133 (4)
C62	0.4968 (3)	0.83874 (12)	0.32742 (12)	0.0164 (4)
H62	0.365790	0.833533	0.322920	0.020*
C63	0.5742 (3)	0.91861 (13)	0.31679 (12)	0.0202 (4)
H63	0.496298	0.967842	0.306047	0.024*
C64	0.7652 (3)	0.92639 (13)	0.32186 (13)	0.0211 (4)
H64	0.818091	0.980714	0.313805	0.025*
C65	0.8781 (3)	0.85458 (13)	0.33871 (12)	0.0194 (4)
H65	1.008674	0.859784	0.341895	0.023*
C66	0.8021 (3)	0.77493 (12)	0.35102 (11)	0.0158 (4)
H66	0.880976	0.726208	0.363810	0.019*
S1S	-0.14712 (6)	0.68634 (3)	0.11382 (3)	0.01591 (12)
O1S	-0.14346 (17)	0.63681 (8)	0.19917 (8)	0.0152 (3)
C1S	-0.2253 (3)	0.61145 (14)	0.02807 (12)	0.0223 (4)
H1S1	-0.132121	0.565890	0.030446	0.033*
H1S2	-0.242805	0.640771	-0.028726	0.033*
H1S3	-0.344131	0.586385	0.035218	0.033*
C2S	-0.3494 (3)	0.75316 (14)	0.09889 (13)	0.0223 (4)
H2S1	-0.460088	0.717679	0.098649	0.033*
H2S2	-0.363686	0.783686	0.042859	0.033*
H2S3	-0.335511	0.794801	0.146974	0.033*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0117 (7)	0.0138 (7)	0.0142 (7)	-0.0002 (6)	0.0041 (6)	-0.0017 (6)
C2	0.0133 (8)	0.0123 (8)	0.0166 (8)	-0.0001 (7)	0.0055 (7)	0.0008 (7)
S2	0.0159 (2)	0.0247 (3)	0.0172 (2)	-0.00250 (18)	0.00345 (17)	-0.00768 (18)
N3	0.0090 (7)	0.0193 (8)	0.0166 (7)	-0.0012 (6)	0.0027 (6)	-0.0030 (6)
C4	0.0135 (9)	0.0104 (8)	0.0151 (8)	0.0006 (7)	0.0024 (7)	0.0034 (7)
O4	0.0155 (6)	0.0212 (7)	0.0162 (6)	0.0026 (5)	0.0063 (5)	-0.0006 (5)
C5	0.0119 (8)	0.0132 (9)	0.0144 (8)	0.0007 (7)	0.0043 (6)	-0.0003 (7)
C51	0.0101 (8)	0.0181 (9)	0.0152 (8)	-0.0009 (7)	0.0031 (6)	0.0040 (7)
C52	0.0174 (9)	0.0224 (10)	0.0178 (9)	-0.0025 (8)	0.0034 (7)	0.0007 (8)
C53	0.0227 (10)	0.0337 (12)	0.0169 (9)	-0.0062 (9)	0.0019 (8)	0.0051 (8)
C54	0.0199 (10)	0.0348 (12)	0.0257 (10)	-0.0010 (9)	0.0003 (8)	0.0164 (9)
C55	0.0257 (11)	0.0206 (11)	0.0345 (12)	0.0025 (9)	0.0054 (9)	0.0099 (9)
C56	0.0190 (9)	0.0189 (10)	0.0238 (10)	0.0016 (8)	0.0050 (8)	0.0026 (8)
C61	0.0147 (8)	0.0141 (9)	0.0109 (8)	-0.0011 (7)	0.0021 (6)	-0.0012 (7)
C62	0.0144 (9)	0.0174 (9)	0.0171 (8)	0.0023 (7)	0.0026 (7)	0.0006 (7)
C63	0.0233 (10)	0.0154 (9)	0.0215 (9)	0.0029 (8)	0.0039 (8)	0.0005 (8)
C64	0.0267 (10)	0.0145 (9)	0.0214 (9)	-0.0061 (8)	0.0034 (8)	-0.0005 (7)
C65	0.0157 (9)	0.0199 (10)	0.0222 (9)	-0.0034 (8)	0.0033 (7)	-0.0004 (8)
C66	0.0151 (9)	0.0152 (9)	0.0161 (8)	0.0016 (7)	0.0014 (7)	-0.0004 (7)
S1S	0.0153 (2)	0.0171 (2)	0.0165 (2)	-0.00021 (17)	0.00602 (16)	0.00133 (17)
O1S	0.0147 (6)	0.0181 (7)	0.0134 (6)	0.0014 (5)	0.0039 (5)	0.0010 (5)
C1S	0.0261 (10)	0.0249 (10)	0.0153 (9)	0.0010 (9)	0.0027 (7)	-0.0024 (8)
C2S	0.0256 (10)	0.0213 (10)	0.0216 (9)	0.0071 (8)	0.0088 (8)	0.0063 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C2	1.339 (2)	С56—Н56	0.9500
N1—C5	1.466 (2)	C61—C62	1.390 (3)
N1—H1N	0.86 (2)	C61—C66	1.396 (3)
C2—N3	1.387 (2)	C62—C63	1.392 (3)
C2—S2	1.6581 (18)	С62—Н62	0.9500
N3—C4	1.362 (2)	C63—C64	1.389 (3)
N3—H3N	0.77 (2)	С63—Н63	0.9500
C4—O4	1.209 (2)	C64—C65	1.384 (3)
C4—C5	1.546 (2)	C64—H64	0.9500
C5—C51	1.525 (2)	C65—C66	1.390 (3)
C5—C61	1.528 (2)	С65—Н65	0.9500
C51—C56	1.388 (3)	С66—Н66	0.9500
C51—C52	1.393 (3)	S1S-01S	1.5318 (13)
С52—С53	1.387 (3)	S1S—C1S	1.777 (2)
С52—Н52	0.9500	S1S-C2S	1.786 (2)
C53—C54	1.383 (3)	C1S—H1S1	0.9800
С53—Н53	0.9500	C1S—H1S2	0.9800
C54—C55	1.385 (3)	C1S—H1S3	0.9800
С54—Н54	0.9500	C2S—H2S1	0.9800

data reports

C55—C56	1.392 (3)	C2S—H2S2	0.9800
С55—Н55	0.9500	C2S—H2S3	0.9800
C2—N1—C5	113.14 (15)	С55—С56—Н56	120.0
C2—N1—H1N	121.8 (14)	C62—C61—C66	119.29 (17)
C5—N1—H1N	122.2 (15)	C62—C61—C5	122.59 (16)
N1—C2—N3	107.31 (15)	C66—C61—C5	117.99 (16)
N1—C2—S2	127.83 (14)	C61—C62—C63	120.45 (17)
N3—C2—S2	124.86 (14)	С61—С62—Н62	119.8
C4—N3—C2	112.64 (16)	С63—С62—Н62	119.8
C4—N3—H3N	125.3 (17)	C64—C63—C62	120.04 (18)
C2—N3—H3N	122.0 (17)	С64—С63—Н63	120.0
O4—C4—N3	126.78 (17)	С62—С63—Н63	120.0
O4—C4—C5	126.79 (16)	C65—C64—C63	119.65 (18)
N3—C4—C5	106.44 (14)	С65—С64—Н64	120.2
N1—C5—C51	112.84 (14)	С63—С64—Н64	120.2
N1—C5—C61	109.12 (14)	C64—C65—C66	120.58 (17)
C51—C5—C61	112.97 (15)	С64—С65—Н65	119.7
N1—C5—C4	100.17 (14)	С66—С65—Н65	119.7
C51—C5—C4	109.08 (14)	C65—C66—C61	119.98 (18)
C61—C5—C4	111.99 (15)	С65—С66—Н66	120.0
C56—C51—C52	119.65 (17)	С61—С66—Н66	120.0
C56—C51—C5	121.72 (16)	O1S—S1S—C1S	105.41 (9)
C52—C51—C5	118.56 (17)	O1S—S1S—C2S	105.88 (8)
C53—C52—C51	119.96 (19)	C1S—S1S—C2S	98.90 (10)
С53—С52—Н52	120.0	S1S-C1S-H1S1	109.5
С51—С52—Н52	120.0	S1S—C1S—H1S2	109.5
C54—C53—C52	120.5 (2)	H1S1—C1S—H1S2	109.5
С54—С53—Н53	119.8	S1S-C1S-H1S3	109.5
С52—С53—Н53	119.8	H1S1—C1S—H1S3	109.5
C53—C54—C55	119.69 (19)	H1S2—C1S—H1S3	109.5
С53—С54—Н54	120.2	S1S-C2S-H2S1	109.5
С55—С54—Н54	120.2	S1S—C2S—H2S2	109.5
C54—C55—C56	120.3 (2)	H2S1—C2S—H2S2	109.5
С54—С55—Н55	119.9	S1S—C2S—H2S3	109.5
С56—С55—Н55	119.9	H2S1—C2S—H2S3	109.5
C51—C56—C55	119.95 (19)	H2S2—C2S—H2S3	109.5
С51—С56—Н56	120.0		
C5—N1—C2—N3	-5.9 (2)	C5-C51-C52-C53	177.23 (16)
C5—N1—C2—S2	173.76 (14)	C51—C52—C53—C54	0.7 (3)
N1-C2-N3-C4	4.0 (2)	C52—C53—C54—C55	-0.8 (3)
S2—C2—N3—C4	-175.60 (14)	C53—C54—C55—C56	0.1 (3)
C2—N3—C4—O4	179.16 (18)	C52—C51—C56—C55	-0.8 (3)
C2—N3—C4—C5	-0.7 (2)	C5—C51—C56—C55	-177.83 (17)
C2—N1—C5—C51	120.98 (16)	C54—C55—C56—C51	0.7 (3)
C2—N1—C5—C61	-112.57 (17)	N1-C5-C61-C62	101.61 (19)
C2—N1—C5—C4	5.14 (18)	C51—C5—C61—C62	-132.01 (17)

04 C4 C5 N1	177 (2 (19)	C4 C5 C(1 C(2	9.4.(2)
04—C4—C5—N1	1//.03 (18)	C4 - C5 - C61 - C62	-8.4 (2)
N3—C4—C5—N1	-2.46 (17)	N1—C5—C61—C66	-74.20 (19)
O4—C4—C5—C51	59.0 (2)	C51—C5—C61—C66	52.2 (2)
N3—C4—C5—C51	-121.10 (16)	C4—C5—C61—C66	175.82 (15)
O4—C4—C5—C61	-66.8 (2)	C66—C61—C62—C63	0.0 (3)
N3—C4—C5—C61	113.10 (16)	C5-C61-C62-C63	-175.80 (16)
N1-C5-C51-C56	-12.6 (2)	C61—C62—C63—C64	1.1 (3)
C61—C5—C51—C56	-136.94 (17)	C62—C63—C64—C65	-0.9 (3)
C4—C5—C51—C56	97.82 (19)	C63—C64—C65—C66	-0.3 (3)
N1-C5-C51-C52	170.41 (15)	C64—C65—C66—C61	1.4 (3)
C61—C5—C51—C52	46.0 (2)	C62—C61—C66—C65	-1.2 (3)
C4—C5—C51—C52	-79.2 (2)	C5-C61-C66-C65	174.80 (16)
C56—C51—C52—C53	0.1 (3)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C61–C66 phenyl ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N3—H3 <i>N</i> ···O1 <i>S</i>	0.77 (2)	2.00 (2)	2.766 (2)	171 (2)
$N1$ — $H1N$ ···O1 S^{i}	0.86 (2)	1.95 (2)	2.8089 (19)	174 (2)
C66—H66…O4 ⁱ	0.95	2.62	3.341 (2)	133
C1 <i>S</i> —H1 <i>S</i> 3···S2 ⁱⁱ	0.98	3.17	4.077 (2)	154
C1 <i>S</i> —H1 <i>S</i> 2···O4 ⁱⁱⁱ	0.98	2.58	3.393 (2)	141
C2 <i>S</i> —H2 <i>S</i> 2···O4 ⁱⁱⁱ	0.98	2.43	3.283 (2)	145
C2 <i>S</i> —H2 <i>S</i> 1···S2 ⁱⁱ	0.98	2.93	3.874 (2)	162
C2S—HS23···Cg3 ⁱⁱ	0.98	2.98	3.887 (2)	154

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*-1/2, -*y*+3/2, *z*-1/2.