ISSN 2414-3146

Received 11 July 2018 Accepted 12 July 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bond; benzodiazepine.

CCDC reference: 1855622

Structural data: full structural data are available from iucrdata.iucr.org

# 4-Phenyl-5a,6,7,8,9,9a-hexahydro-1*H*-1,5-benzodiazepin-2(5*H*)-one

Wedad Al Garadi,<sup>a</sup> Youssef Ramli,<sup>b</sup>\* Lhoussaine El Ghayati,<sup>a</sup> Ahmed Moussaif,<sup>c</sup> El Mokhtar Essassi<sup>a</sup> and Joel T. Mague<sup>d</sup>

<sup>a</sup>Laboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, <sup>b</sup>Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, <sup>c</sup>National Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, and <sup>d</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. \*Correspondence e-mail: y.ramli@um5s.net.ma

In the title compound,  $C_{15}H_{18}N_2O$ , the cyclohexyl portion is disordered over two alternate chair conformations in a 0.911 (2):0.089 (2) ratio. In the crystal, inversion-related pairwise  $N-H\cdots O$  hydrogen bonds form dimers, which are connected into (100) layers by additional  $N-H\cdots O$  hydrogen bonds.



### Structure description

Benzodiazepines a nowadays well known for their therapeutic virtues. These heterocylic compounds are commonly used as anti-inflammatory (Bhat & Kumar, 2016), antioxidant (Patil *et al.*, 2015) and anticancer (Chen *et al.*, 2014) agents. As part of our studies in this area, we report here the synthesis and structure of a new 1,5-benzodiazepine derivative.

The cyclohexyl ring (C1–C6) in the title molecule (Fig. 1) is disordered over two alternate chair conformations in a 0.911 (2):0.089 (2) ratio. The major component has puckering parameters Q = 0.561 (2) Å,  $\theta = 173.1$  (2)° and  $\varphi = 321.1$  (19)°. A puckering analysis of the major conformation of the seven-membered ring yielded the parameters Q(2) = 0.4234 (19) Å, Q(3) = 0.3884 (18) Å,  $\varphi(2) = 123.91$  (2)° and  $\varphi(3) = 40.0$  (3)°, with a total puckering amplitude of 0.574 (2) Å.

In the crystal, inversion-related pairwise  $N2-H2\cdots O1^{i}$  hydrogen bonds form dimers which are connected into (100) layers by  $N1-H1B\cdots O1^{ii}$  hydrogen bonds (Table 1 and Fig. 2). These layers have the phenyl rings protruding from both surfaces.

Synthesis and crystallization

To a stirred boiling solution of 0.1 mol (11.4 g) of 1,2-diaminocyclohexane in 60 ml *p*-xylene, 0.12 mol (23.06 g) of ethyl benzoylacetate in 10 ml *p*-xylene was added dropwise and refluxed for 2 h. The reaction mixture was left at room temperature for 24 h. The



# data reports

# Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                | D-H                                       | $H \cdot \cdot \cdot A$ | $D \cdots A$             | $D - H \cdots A$ |
|---------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------|------------------|
| $\begin{array}{c} N1 - H1B \cdots O1^{i} \\ N2 - H2 \cdots O1^{ii} \end{array}$ | $\begin{array}{c} 0.88\\ 0.88\end{array}$ | 2.32<br>2.04            | 3.096 (2)<br>2.8936 (19) | 148<br>162       |

Symmetry codes: (i)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii) -x + 1, -y + 1, -z + 2.



#### Figure 1

The title molecule, shown with 50% probability displacement ellipsoids. Only the major conformation is shown.



Figure 2

Packing viewed along the *a*-axis direction.  $N-H \cdots O$  hydrogen bonds are depicted by dashed lines.

precipitated solid was collected by filtration and recrystallized from dry ethanol solution to give colourless blocks (m.p.  $230-232^{\circ}$ C).

## Refinement

Crystal and refinement details are presented in Table 2. The cyclohexyl ring and its attached N atoms are disordered over two chair conformations in a 91:9 ratio. The minor component

| Table  | 2      |         |
|--------|--------|---------|
| Experi | mental | details |

| Crystal data                                                             |                                        |
|--------------------------------------------------------------------------|----------------------------------------|
| Chemical formula                                                         | $C_{15}H_{18}N_2O$                     |
| $M_{ m r}$                                                               | 242.31                                 |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                   |
| Temperature (K)                                                          | 100                                    |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                       | 11.4283 (18), 9.2294 (15),             |
|                                                                          | 12.3632 (19)                           |
| $\beta$ (°)                                                              | 96.890 (2)                             |
| $V(Å^3)$                                                                 | 1294.6 (4)                             |
| Ζ                                                                        | 4                                      |
| Radiation type                                                           | Μο Κα                                  |
| $\mu (\text{mm}^{-1})$                                                   | 0.08                                   |
| Crystal size (mm)                                                        | $0.30 \times 0.27 \times 0.19$         |
| Data collection                                                          |                                        |
| Data conection                                                           | Druker SMADT ADEX CCD                  |
| Absorption correction                                                    | Multi coop (TWINAPS: Sholdrick         |
| Absorption correction                                                    | 2009)                                  |
| $T_{\min}, T_{\max}$                                                     | 0.98, 0.99                             |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 44744, 44744, 25002                    |
| R <sub>int</sub>                                                         | 0.046                                  |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                     | 0.686                                  |
| Refinement                                                               |                                        |
| $R[F^2 > 2\sigma(F^2)] w R(F^2) S$                                       | 0.054 0.152 0.93                       |
| No. of reflections                                                       | 44744                                  |
| No. of parameters                                                        | 207                                    |
| No. of restraints                                                        | 18                                     |
| H-atom treatment                                                         | H atoms treated by a mixture of        |
|                                                                          | independent and constrained refinement |
| $\Delta  ho_{ m max},  \Delta  ho_{ m min}  ({ m e} \; { m \AA}^{-3})$   | 0.32, -0.24                            |

Computer programs: *APEX3* (Bruker, 2016), *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2008) and *SHELXTL* (Bruker, 2016).

of the disorder was restrained to have a comparable geometry to that of the major one and the attached H atoms on both were included as riding contributions in idealized positions. The final model was refined as a two-component twin.

### Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

### References

- Bhat, I. & Kumar, A. (2016). Asian J. Pharm. Clin. Res. 9, 63-66.
- Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y., Le, V., Xu, X., Shao, X., Liu, J. & Li, Z. (2014). Bioorg. Med. Chem. Lett. 24, 3948–3951.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Patil, R. B., Sawant, S. D., Reddy, K. V. & Shirsat, M. (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 381–391.
- Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

# full crystallographic data

## IUCrData (2018). 3, x181011 [https://doi.org/10.1107/S2414314618010118]

# 4-Phenyl-5a,6,7,8,9,9a-hexahydro-1H-1,5-benzodiazepin-2(5H)-one

Wedad Al Garadi, Youssef Ramli, Lhoussaine El Ghayati, Ahmed Moussaif, El Mokhtar Essassi and Joel T. Mague

4-Phenyl-5a,6,7,8,9,9a-hexahydro-1H-1,5-benzodiazepin-2(5H)-one

Crystal data

C<sub>15</sub>H<sub>18</sub>N<sub>2</sub>O  $M_r = 242.31$ Monoclinic,  $P2_1/c$  a = 11.4283 (18) Å b = 9.2294 (15) Å c = 12.3632 (19) Å  $\beta = 96.890$  (2)° V = 1294.6 (4) Å<sup>3</sup> Z = 4

## Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm<sup>-1</sup>  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (*TWINABS*; Sheldrick, 2009)  $T_{\min} = 0.98, T_{\max} = 0.99$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.054$  $wR(F^2) = 0.152$ S = 0.9344744 reflections 207 parameters 18 restraints Primary atom site location: structure-invariant direct methods F(000) = 520  $D_x = 1.243 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9967 reflections  $\theta = 2.8-29.2^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 100 KBlock, colourless  $0.30 \times 0.27 \times 0.19 \text{ mm}$ 

44744 measured reflections 44744 independent reflections 25002 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.046$  $\theta_{max} = 29.2^{\circ}, \theta_{min} = 1.8^{\circ}$  $h = -15 \rightarrow 15$  $k = -12 \rightarrow 12$  $l = -16 \rightarrow 16$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0804P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.32$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.24$  e Å<sup>-3</sup>

## Special details

**Experimental**. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, collected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 30 sec/frame. Analysis of 1323 reflections having  $I/\sigma(I) > 12$  and chosen from the full data set with *CELL\_NOW* (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about *b*. The raw data were processed using the multi-component version of *SAINT* under control of the two-component orientation file generated by *CELL\_NOW*.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The cyclohexyl ring and its attached nitrogen atoms are disordered over two chair conformations in a 91:9 ratio. The minor component of the disorder was restrained to have a comparable geometry to that of the major one and the attached hydrogens on both were included as riding contributions in idealized positions. The final model was refined as a 2-component twin.

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| 01  | 0.35039 (10) | 0.54728 (14) | 0.97683 (10) | 0.0323 (4)                  |           |
| N1  | 0.35229 (12) | 0.69692 (17) | 0.63902 (12) | 0.0309 (4)                  | 0.911 (2) |
| H1B | 0.336391     | 0.742292     | 0.576378     | 0.037*                      | 0.911 (2) |
| N2  | 0.48216 (12) | 0.58638 (16) | 0.85897 (12) | 0.0291 (4)                  | 0.911 (2) |
| H2  | 0.530411     | 0.528523     | 0.899541     | 0.035*                      | 0.911 (2) |
| C1  | 0.53237 (16) | 0.6625 (2)   | 0.77215 (16) | 0.0264 (5)                  | 0.911 (2) |
| H1  | 0.527560     | 0.769274     | 0.784632     | 0.032*                      | 0.911 (2) |
| C2  | 0.66216 (17) | 0.6171 (3)   | 0.78221 (19) | 0.0338 (7)                  | 0.911 (2) |
| H2A | 0.702263     | 0.651335     | 0.853023     | 0.041*                      | 0.911 (2) |
| H2B | 0.666875     | 0.510004     | 0.781610     | 0.041*                      | 0.911 (2) |
| C3  | 0.72628 (18) | 0.6767 (3)   | 0.69142 (18) | 0.0359 (6)                  | 0.911 (2) |
| H3A | 0.809178     | 0.643256     | 0.701073     | 0.043*                      | 0.911 (2) |
| H3B | 0.726174     | 0.783939     | 0.693833     | 0.043*                      | 0.911 (2) |
| C4  | 0.66544 (18) | 0.6250(3)    | 0.58212 (19) | 0.0367 (6)                  | 0.911 (2) |
| H4A | 0.668078     | 0.517946     | 0.578709     | 0.044*                      | 0.911 (2) |
| H4B | 0.706872     | 0.664164     | 0.522574     | 0.044*                      | 0.911 (2) |
| C5  | 0.53792 (17) | 0.6761 (2)   | 0.56791 (17) | 0.0303 (6)                  | 0.911 (2) |
| H5A | 0.498609     | 0.639623     | 0.497463     | 0.036*                      | 0.911 (2) |
| H5B | 0.536658     | 0.783314     | 0.564929     | 0.036*                      | 0.911 (2) |
| C6  | 0.46797 (16) | 0.6259 (2)   | 0.65916 (16) | 0.0259 (5)                  | 0.911 (2) |
| H6  | 0.456677     | 0.518621     | 0.653614     | 0.031*                      | 0.911 (2) |
| N1A | 0.35229 (12) | 0.69692 (17) | 0.63902 (12) | 0.0309 (4)                  | 0.089 (2) |
| H1C | 0.331921     | 0.683920     | 0.568769     | 0.037*                      | 0.089 (2) |
| N2A | 0.48216 (12) | 0.58638 (16) | 0.85897 (12) | 0.0291 (4)                  | 0.089 (2) |
| H2C | 0.538385     | 0.583969     | 0.914203     | 0.035*                      | 0.089 (2) |
| C1A | 0.5210 (11)  | 0.5822 (19)  | 0.7504 (9)   | 0.0264 (5)                  | 0.089 (2) |
| H1A | 0.489134     | 0.492652     | 0.712003     | 0.032*                      | 0.089 (2) |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C2A  | 0.6553 (12)   | 0.573 (3)    | 0.7681 (15)  | 0.0338 (7) | 0.089 (2) |
|------|---------------|--------------|--------------|------------|-----------|
| H2AA | 0.685897      | 0.652867     | 0.816838     | 0.041*     | 0.089 (2) |
| H2AB | 0.678265      | 0.480545     | 0.805409     | 0.041*     | 0.089 (2) |
| C3A  | 0.7129 (15)   | 0.581 (2)    | 0.6642 (16)  | 0.0359 (6) | 0.089 (2) |
| H3AA | 0.688596      | 0.496789     | 0.617389     | 0.043*     | 0.089 (2) |
| H3AB | 0.799659      | 0.578199     | 0.681997     | 0.043*     | 0.089 (2) |
| C4A  | 0.6773 (13)   | 0.720 (2)    | 0.6032 (18)  | 0.0367 (6) | 0.089 (2) |
| H4AA | 0.712770      | 0.723251     | 0.533981     | 0.044*     | 0.089 (2) |
| H4AB | 0.706448      | 0.804972     | 0.647678     | 0.044*     | 0.089 (2) |
| C5A  | 0.5437 (12)   | 0.727 (3)    | 0.5796 (14)  | 0.0303 (6) | 0.089 (2) |
| H5AA | 0.516753      | 0.646747     | 0.529269     | 0.036*     | 0.089 (2) |
| H5AB | 0.521217      | 0.819029     | 0.542015     | 0.036*     | 0.089 (2) |
| C6A  | 0.4795 (8)    | 0.7153 (18)  | 0.6810 (11)  | 0.0259 (5) | 0.089 (2) |
| H6A  | 0.491302      | 0.805811     | 0.725432     | 0.031*     | 0.089 (2) |
| C7   | 0.26759 (14)  | 0.69980 (19) | 0.70681 (15) | 0.0251 (4) |           |
| C8   | 0.27531 (16)  | 0.65248 (19) | 0.81167 (15) | 0.0264 (4) |           |
| C9   | 0.37109 (15)  | 0.59344 (19) | 0.88495 (15) | 0.0255 (4) |           |
| C10  | 0.15212 (15)  | 0.7588 (2)   | 0.65637 (16) | 0.0284 (4) |           |
| H10  | 0.1482 (17)   | 0.650 (2)    | 0.5102 (16)  | 0.039 (6)* |           |
| C11  | 0.10522 (17)  | 0.7196 (2)   | 0.55146 (18) | 0.0376 (5) |           |
| H11  | -0.0345 (19)  | 0.738 (2)    | 0.4304 (18)  | 0.052 (6)* |           |
| C12  | -0.00385 (18) | 0.7731 (3)   | 0.5068 (2)   | 0.0456 (6) |           |
| H12  | -0.1426 (19)  | 0.906 (2)    | 0.5324 (17)  | 0.047 (6)* |           |
| C13  | -0.06599 (18) | 0.8668 (3)   | 0.5657 (2)   | 0.0447 (6) |           |
| H13  | -0.0647 (19)  | 0.971 (2)    | 0.7134 (17)  | 0.048 (6)* |           |
| C14  | -0.02046 (18) | 0.9060 (2)   | 0.6693 (2)   | 0.0426 (6) |           |
| H14  | 0.2059 (16)   | 0.6540 (19)  | 0.8426 (14)  | 0.028 (5)* |           |
| C15  | 0.08779 (16)  | 0.8525 (2)   | 0.71489 (18) | 0.0346 (5) |           |
| H15  | 0.1212 (17)   | 0.881 (2)    | 0.7891 (17)  | 0.038 (6)* |           |
|      |               |              |              |            |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| 01  | 0.0263 (7)  | 0.0473 (9)  | 0.0239 (8)  | 0.0017 (6)  | 0.0055 (5)  | 0.0068 (6)  |
| N1  | 0.0225 (8)  | 0.0477 (10) | 0.0230 (9)  | 0.0055 (7)  | 0.0040 (7)  | 0.0068 (7)  |
| N2  | 0.0214 (8)  | 0.0412 (10) | 0.0253 (9)  | 0.0048 (6)  | 0.0052 (6)  | 0.0079 (7)  |
| C1  | 0.0227 (10) | 0.0308 (12) | 0.0265 (12) | -0.0013 (8) | 0.0063 (8)  | 0.0017 (9)  |
| C2  | 0.0228 (10) | 0.0436 (17) | 0.0351 (13) | 0.0008 (9)  | 0.0038 (9)  | 0.0074 (11) |
| C3  | 0.0234 (10) | 0.0419 (15) | 0.0433 (15) | 0.0004 (9)  | 0.0080 (10) | 0.0096 (11) |
| C4  | 0.0312 (11) | 0.0425 (14) | 0.0391 (14) | 0.0049 (10) | 0.0156 (10) | 0.0048 (11) |
| C5  | 0.0284 (10) | 0.0371 (15) | 0.0265 (12) | 0.0026 (9)  | 0.0087 (8)  | 0.0015 (10) |
| C6  | 0.0222 (10) | 0.0296 (12) | 0.0264 (12) | 0.0024 (8)  | 0.0049 (8)  | 0.0009 (9)  |
| N1A | 0.0225 (8)  | 0.0477 (10) | 0.0230 (9)  | 0.0055 (7)  | 0.0040 (7)  | 0.0068 (7)  |
| N2A | 0.0214 (8)  | 0.0412 (10) | 0.0253 (9)  | 0.0048 (6)  | 0.0052 (6)  | 0.0079 (7)  |
| C1A | 0.0227 (10) | 0.0308 (12) | 0.0265 (12) | -0.0013 (8) | 0.0063 (8)  | 0.0017 (9)  |
| C2A | 0.0228 (10) | 0.0436 (17) | 0.0351 (13) | 0.0008 (9)  | 0.0038 (9)  | 0.0074 (11) |
| C3A | 0.0234 (10) | 0.0419 (15) | 0.0433 (15) | 0.0004 (9)  | 0.0080 (10) | 0.0096 (11) |
| C4A | 0.0312 (11) | 0.0425 (14) | 0.0391 (14) | 0.0049 (10) | 0.0156 (10) | 0.0048 (11) |
|     |             |             |             |             |             |             |

| C5A | 0.0284 (10) | 0.0371 (15) | 0.0265 (12) | 0.0026 (9)   | 0.0087 (8)   | 0.0015 (10) |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| C6A | 0.0222 (10) | 0.0296 (12) | 0.0264 (12) | 0.0024 (8)   | 0.0049 (8)   | 0.0009 (9)  |
| C7  | 0.0200 (8)  | 0.0286 (10) | 0.0269 (11) | -0.0008 (7)  | 0.0036 (7)   | 0.0002 (8)  |
| C8  | 0.0195 (9)  | 0.0338 (11) | 0.0269 (11) | 0.0004 (7)   | 0.0062 (8)   | 0.0020 (8)  |
| C9  | 0.0224 (9)  | 0.0303 (10) | 0.0241 (10) | -0.0008 (7)  | 0.0048 (7)   | -0.0018 (8) |
| C10 | 0.0206 (9)  | 0.0361 (11) | 0.0287 (11) | -0.0005 (7)  | 0.0041 (8)   | 0.0078 (8)  |
| C11 | 0.0279 (10) | 0.0523 (14) | 0.0326 (13) | 0.0006 (9)   | 0.0032 (9)   | 0.0050 (10) |
| C12 | 0.0295 (11) | 0.0690 (16) | 0.0362 (14) | -0.0041 (10) | -0.0042 (10) | 0.0123 (11) |
| C13 | 0.0202 (10) | 0.0603 (15) | 0.0533 (16) | 0.0024 (9)   | 0.0036 (10)  | 0.0244 (12) |
| C14 | 0.0281 (11) | 0.0490 (14) | 0.0525 (16) | 0.0097 (9)   | 0.0117 (10)  | 0.0143 (11) |
| C15 | 0.0261 (10) | 0.0423 (12) | 0.0359 (13) | 0.0037 (8)   | 0.0054 (9)   | 0.0068 (9)  |
|     |             |             |             |              |              |             |

# Geometric parameters (Å, °)

| 01—C9     | 1.262 (2)   | C1A—C6A       | 1.541 (10) |  |
|-----------|-------------|---------------|------------|--|
| N1—C7     | 1.354 (2)   | C1A—H1A       | 1.0000     |  |
| N1—C6     | 1.470 (2)   | C2A—C3A       | 1.514 (10) |  |
| N1—H1B    | 0.8800      | C2A—H2AA      | 0.9900     |  |
| N2—C9     | 1.348 (2)   | C2A—H2AB      | 0.9900     |  |
| N2—C1     | 1.457 (2)   | C3A—C4A       | 1.519 (10) |  |
| N2—H2     | 0.8800      | СЗА—НЗАА      | 0.9900     |  |
| C1—C2     | 1.532 (3)   | СЗА—НЗАВ      | 0.9900     |  |
| C1—C6     | 1.536 (3)   | C4A—C5A       | 1.521 (10) |  |
| C1—H1     | 1.0000      | C4A—H4AA      | 0.9900     |  |
| C2—C3     | 1.515 (3)   | C4A—H4AB      | 0.9900     |  |
| C2—H2A    | 0.9900      | C5A—C6A       | 1.529 (10) |  |
| C2—H2B    | 0.9900      | С5А—Н5АА      | 0.9900     |  |
| C3—C4     | 1.520 (3)   | С5А—Н5АВ      | 0.9900     |  |
| C3—H3A    | 0.9900      | С6А—Н6А       | 1.0000     |  |
| С3—Н3В    | 0.9900      | C7—C8         | 1.361 (2)  |  |
| C4—C5     | 1.522 (3)   | C7—C10        | 1.493 (2)  |  |
| C4—H4A    | 0.9900      | C8—C9         | 1.441 (2)  |  |
| C4—H4B    | 0.9900      | C8—H14        | 0.922 (18) |  |
| С5—С6     | 1.531 (3)   | C10—C11       | 1.391 (3)  |  |
| С5—Н5А    | 0.9900      | C10—C15       | 1.392 (3)  |  |
| С5—Н5В    | 0.9900      | C11—C12       | 1.392 (3)  |  |
| С6—Н6     | 1.0000      | C11—H10       | 0.99 (2)   |  |
| N1A—C7    | 1.354 (2)   | C12—C13       | 1.381 (3)  |  |
| N1A—C6A   | 1.494 (9)   | C12—H11       | 1.02 (2)   |  |
| N1A—H1C   | 0.8800      | C13—C14       | 1.372 (3)  |  |
| N2A—C9    | 1.348 (2)   | C13—H12       | 0.99 (2)   |  |
| N2A—C1A   | 1.464 (9)   | C14—C15       | 1.388 (3)  |  |
| N2A—H2C   | 0.8800      | C14—H13       | 0.99 (2)   |  |
| C1A—C2A   | 1.526 (10)  | С15—Н15       | 0.99 (2)   |  |
| C7—N1—C6  | 126.79 (15) | C1A—C2A—H2AB  | 108.7      |  |
| C7—N1—H1B | 116.6       | H2AA—C2A—H2AB | 107.6      |  |
| C6—N1—H1B | 116.6       | C2A—C3A—C4A   | 110.2 (12) |  |

| C9—N2—C1                  | 128.15 (15) | С2А—С3А—НЗАА                               | 109.6                    |
|---------------------------|-------------|--------------------------------------------|--------------------------|
| C9—N2—H2                  | 115.9       | С4А—С3А—НЗАА                               | 109.6                    |
| C1—N2—H2                  | 115.9       | С2А—С3А—НЗАВ                               | 109.6                    |
| N2—C1—C2                  | 105.75 (16) | С4А—С3А—НЗАВ                               | 109.6                    |
| N2—C1—C6                  | 112.07 (16) | НЗАА—СЗА—НЗАВ                              | 108.1                    |
| C2—C1—C6                  | 111.55 (16) | C3A—C4A—C5A                                | 109.3 (12)               |
| N2—C1—H1                  | 109.1       | СЗА—С4А—Н4АА                               | 109.8                    |
| C2-C1-H1                  | 109.1       | C5A—C4A—H4AA                               | 109.8                    |
| C6-C1-H1                  | 109.1       | $C_{3A}$ $C_{4A}$ $H_{4AB}$                | 109.8                    |
| $C_{3}$ $C_{2}$ $C_{1}$   | 112.06 (18) |                                            | 109.0                    |
| $C_2 = C_2 = C_1$         | 112.90 (10) |                                            | 109.0                    |
| $C_3 = C_2 = H_2 A$       | 109.0       | $\Pi 4AA - C4A - \Pi 4AB$                  | 108.5                    |
| CI-C2-H2A                 | 109.0       |                                            | 114.2 (11)               |
| С3—С2—Н2В                 | 109.0       | С4А—С5А—Н5АА                               | 108.7                    |
| C1—C2—H2B                 | 109.0       | С6А—С5А—Н5АА                               | 108.7                    |
| H2A—C2—H2B                | 107.8       | C4A—C5A—H5AB                               | 108.7                    |
| C2—C3—C4                  | 109.52 (18) | C6A—C5A—H5AB                               | 108.7                    |
| С2—С3—Н3А                 | 109.8       | Н5АА—С5А—Н5АВ                              | 107.6                    |
| C4—C3—H3A                 | 109.8       | N1A—C6A—C5A                                | 105.4 (9)                |
| С2—С3—Н3В                 | 109.8       | N1A—C6A—C1A                                | 108.9 (10)               |
| C4—C3—H3B                 | 109.8       | C5A—C6A—C1A                                | 111.4 (11)               |
| НЗА—СЗ—НЗВ                | 108.2       | N1A—C6A—H6A                                | 110.3                    |
| $C_{3}-C_{4}-C_{5}$       | 109 57 (18) | С5А—С6А—Н6А                                | 110.3                    |
| C3—C4—H4A                 | 109.8       | C1A - C6A - H6A                            | 110.3                    |
| $C_5 - C_4 - H_{4A}$      | 109.8       | N1A - C7 - C8                              | 127.86 (16)              |
| $C_3 = C_4 = H_4 R$       | 100.8       | NIA = C - C S                              | 127.86 (16)              |
| $C_5 = C_4 = H_4 D$       | 109.8       | NI - C = C = C = C = C = C = C = C = C = C | 127.80(10)<br>114.21(15) |
|                           | 109.0       | NIA = C = C I 0                            | 114.21(15)               |
| H4A—C4—H4B                | 108.2       | NI = C / = C I 0                           | 114.21 (15)              |
| C4—C5—C6                  | 113.50 (18) |                                            | 117.90 (15)              |
| С4—С5—Н5А                 | 108.9       | C7—C8—C9                                   | 132.66 (17)              |
| С6—С5—Н5А                 | 108.9       | C7—C8—H14                                  | 115.5 (11)               |
| C4—C5—H5B                 | 108.9       | C9—C8—H14                                  | 111.8 (11)               |
| C6—C5—H5B                 | 108.9       | O1—C9—N2A                                  | 118.81 (16)              |
| H5A—C5—H5B                | 107.7       | O1—C9—N2                                   | 118.81 (16)              |
| N1—C6—C5                  | 106.19 (15) | O1—C9—C8                                   | 118.89 (16)              |
| N1-C6-C1                  | 112.28 (15) | N2A—C9—C8                                  | 122.30 (16)              |
| C5—C6—C1                  | 111.59 (16) | N2—C9—C8                                   | 122.30 (16)              |
| N1—C6—H6                  | 108.9       | C11—C10—C15                                | 118.54 (18)              |
| С5—С6—Н6                  | 108.9       | C11—C10—C7                                 | 121.13 (17)              |
| C1—C6—H6                  | 108.9       | $C_{15} - C_{10} - C_{7}$                  | 120 31 (18)              |
| C7 - N1A - C6A            | 121 4 (6)   | $C_{10}$ $C_{11}$ $C_{12}$                 | 120.31(10)<br>120.3(2)   |
| C7 N1A H1C                | 110.3       | $C_{10}$ $C_{11}$ $H_{10}$                 | 120.3(2)                 |
| $C_{A}$ N1A H1C           | 119.5       | $C_{12} = C_{11} = H_{10}$                 | 119.4(11)<br>120.2(11)   |
| CO N2A C1A                | 119.5       | $C_{12} = C_{11} = C_{11}$                 | 120.2(11)                |
| $U_{2}$ $N_{2}A$ $U_{2}C$ | 128.1 (3)   | $C_{12} = C_{12} = C_{11}$                 | 120.4(2)                 |
| CIA-NZA-HZC               | 115.9       | CI3—CI2—HII                                | 123.1 (12)               |
| CIA—N2A—H2C               | 115.9       | CII—CI2—HII                                | 116.5 (12)               |
| N2A—C1A—C2A               | 106.3 (9)   | C14—C13—C12                                | 119.7 (2)                |
| N2A—C1A—C6A               | 112.5 (10)  | C14—C13—H12                                | 120.5 (12)               |
| C2A—C1A—C6A               | 111.2 (11)  | C12—C13—H12                                | 119.8 (12)               |

| N2A—C1A—H1A     | 108.9        | C13—C14—C15     | 120.4 (2)    |
|-----------------|--------------|-----------------|--------------|
| C2A—C1A—H1A     | 108.9        | C13—C14—H13     | 120.9 (12)   |
| C6A—C1A—H1A     | 108.9        | C15—C14—H13     | 118.7 (13)   |
| C3A—C2A—C1A     | 114.1 (12)   | C14—C15—C10     | 120.7 (2)    |
| СЗА—С2А—Н2АА    | 108.7        | C14—C15—H15     | 120.5 (11)   |
| C1A—C2A—H2AA    | 108.7        | C10-C15-H15     | 118.8 (11)   |
| СЗА—С2А—Н2АВ    | 108.7        |                 |              |
|                 |              |                 |              |
| C9—N2—C1—C2     | 178.49 (18)  | C2A—C1A—C6A—C5A | 47.7 (17)    |
| C9—N2—C1—C6     | -59.8 (3)    | C6A—N1A—C7—C8   | -33.3 (8)    |
| N2—C1—C2—C3     | 175.09 (18)  | C6A—N1A—C7—C10  | 148.6 (7)    |
| C6—C1—C2—C3     | 53.0 (3)     | C6—N1—C7—C8     | 7.9 (3)      |
| C1—C2—C3—C4     | -58.6 (3)    | C6—N1—C7—C10    | -170.20 (17) |
| C2—C3—C4—C5     | 59.2 (2)     | N1A-C7-C8-C9    | 3.5 (3)      |
| C3—C4—C5—C6     | -57.0 (2)    | N1—C7—C8—C9     | 3.5 (3)      |
| C7—N1—C6—C5     | -170.40 (17) | C10—C7—C8—C9    | -178.47 (19) |
| C7—N1—C6—C1     | -48.2 (2)    | C1A—N2A—C9—O1   | 155.9 (9)    |
| C4—C5—C6—N1     | 174.11 (17)  | C1A—N2A—C9—C8   | -24.4 (9)    |
| C4—C5—C6—C1     | 51.5 (2)     | C1—N2—C9—O1     | -163.67 (18) |
| N2-C1-C6-N1     | 74.5 (2)     | C1—N2—C9—C8     | 16.0 (3)     |
| C2-C1-C6-N1     | -167.09 (16) | C7—C8—C9—O1     | -174.44 (19) |
| N2-C1-C6-C5     | -166.35 (16) | C7—C8—C9—N2A    | 5.9 (3)      |
| C2-C1-C6-C5     | -48.0 (2)    | C7—C8—C9—N2     | 5.9 (3)      |
| C9—N2A—C1A—C2A  | -179.4 (11)  | N1A-C7-C10-C11  | 43.1 (2)     |
| C9—N2A—C1A—C6A  | 58.6 (15)    | N1-C7-C10-C11   | 43.1 (2)     |
| N2A—C1A—C2A—C3A | -174.7 (17)  | C8—C7—C10—C11   | -135.20 (19) |
| C6A—C1A—C2A—C3A | -52 (2)      | N1A-C7-C10-C15  | -138.29 (18) |
| C1A—C2A—C3A—C4A | 57 (2)       | N1—C7—C10—C15   | -138.29 (18) |
| C2A—C3A—C4A—C5A | -57 (2)      | C8—C7—C10—C15   | 43.4 (2)     |
| C3A—C4A—C5A—C6A | 57 (2)       | C15-C10-C11-C12 | -0.2 (3)     |
| C7—N1A—C6A—C5A  | -172.4 (10)  | C7—C10—C11—C12  | 178.49 (18)  |
| C7—N1A—C6A—C1A  | 67.9 (12)    | C10-C11-C12-C13 | 0.7 (3)      |
| C4A—C5A—C6A—N1A | -170.1 (15)  | C11—C12—C13—C14 | -0.7 (3)     |
| C4A—C5A—C6A—C1A | -52 (2)      | C12—C13—C14—C15 | 0.3 (3)      |
| N2A—C1A—C6A—N1A | -77.3 (15)   | C13—C14—C15—C10 | 0.3 (3)      |
| C2A—C1A—C6A—N1A | 163.6 (13)   | C11—C10—C15—C14 | -0.3 (3)     |
| N2A—C1A—C6A—C5A | 166.9 (13)   | C7—C10—C15—C14  | -178.97 (18) |
|                 |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H  | Н…А  | D···A       | D—H…A |
|-----------------------------------|------|------|-------------|-------|
| N1—H1 <i>B</i> ···O1 <sup>i</sup> | 0.88 | 2.32 | 3.096 (2)   | 148   |
| N2—H2···O1 <sup>ii</sup>          | 0.88 | 2.04 | 2.8936 (19) | 162   |

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+2.