

ISSN 2414-3146

Received 13 June 2018 Accepted 26 June 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: cadmium; coordination polymer; layer; crystal structure.

CCDC reference: 1851771

Structural data: full structural data are available from iucrdata.iucr.org

data reports

Poly[(μ_5 -cis-cyclohex-4-ene-1,2-dicarboxylato)-(μ_3 -cis-cyclohex-4-ene-1,2-dicarboxylato)dicadmium(II)]

Andrew R. LaDuca^a* and Robert L. LaDuca^b

^aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and ^bE-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA. *Correspondence e-mail: laduca@msu.edu

The title compound, $[Cd_2(C_8H_8O_4)_2]_n$, crystallizes in the centrosymmetric monoclinic $P2_1/n$ space group. *Via cis*-cyclohex-4-ene-1,2-dicarboxylate ligands in two different binding modes, square pyramidally and pentagonal bipyramidally coordinated Cd atoms are connected into coordination polymer layer motifs oriented parallel to the *ab* plane. These layered motifs are aggregated into the three-dimensional supramolecular crystal structure of the title compound by means of crystal packing forces.

Structure description

The dipodal tethering ligand propane-1,3-diylbis(piperidine-4,1-diyl)bis(pyridin-4-ylmethanone (4-pbpp) has recently proven useful in preparing metal 1,3-thiophenedicarboxylate coordination polymers with intriguing and diverse interpenetrated topologies (Sample & LaDuca, 2016). The title compound was prepared during synthetic attempts to prepare cadmium coordination polymers containing both *cis*-cyclohex-4-ene-1,2-dicarboxylate (chedc) and 4-pbpp ligands. There have only been two reports of cadmium chedc coordination polymers with dipyridyl-type coligands to the best of our knowledge. One possessed 1,10-phenanthroline capping coligands (Xu *et al.*, 2010), and the other 4,4'-bipyridine tethering coligands (Cui *et al.*, 2013).

The asymmetric unit of the title compound contains two crystallographically distinct Cd atoms (Cd1, Cd2) and two crystallographically distinct chedc ligands (chedc-A, chedc-B) (Fig. 1). The crystallographic distinction within the chedc ligands arises from different binding modes. The Cd1 atom displays a distorted square-pyramidal coordination environment while the Cd2 atom displays a pentagonal-bipyramidal coordination

Table I	. •		
Selected geometric	parameters (A,	▷).	
Cd1-O1	2.269 (4)	Cd2-O2	2.346 (3)
Cd1-O2	2.430 (4)	Cd2-O3	2.286 (4)
Cd1-O5	2.173 (4)	Cd2-O3 ^{iv}	2.357 (4)
$Cd1 - O6^{i}$	2.181 (4)	$Cd2-O4^{iv}$	2.387 (4)
Cd1-O8 ⁱⁱ	2.283 (4)	Cd2-O7	2.231 (4)
Cd2–O2 ⁱⁱⁱ	2.555 (4)	$Cd2-O8^{iv}$	2.286 (4)
O1 - Cd1 - O2	55.39 (12)	$O3-Cd2-O3^{iv}$	155.99 (11)
$O1 - Cd1 - O8^{ii}$	118.49 (14)	$O3-Cd2-O4^{iv}$	145.60 (13)
O5-Cd1-O1	133.22 (15)	$O3^{iv}$ -Cd2-O4 ^{iv}	54.92 (13)
O5-Cd1-O2	99.66 (14)	O4 ^{iv} -Cd2-O2 ⁱⁱⁱ	76.42 (12)
$O5-Cd1-O6^{i}$	110.36 (16)	O7-Cd2-O2 ⁱⁱⁱ	82.99 (13)
$O5-Cd1-O8^{ii}$	92.17 (15)	O7-Cd2-O2	92.78 (14)
$O6^{i}-Cd1-O1$	99.08 (14)	O7-Cd2-O3	90.21 (14)
$O6^{i}-Cd1-O2$	149.76 (13)	O7-Cd2-O3 ^{iv}	101.45 (13)
$O6^{i}-Cd1-O8^{ii}$	99.42 (14)	O7-Cd2-O4 ^{iv}	94.95 (14)
$O8^{ii}$ -Cd1-O2	82.52 (13)	O7-Cd2-O8 ^{iv}	162.73 (14)
$O2-Cd2-O2^{iii}$	155.57 (11)	$O8^{iv}$ -Cd2-O2 ⁱⁱⁱ	79.75 (12)
$O2-Cd2-O3^{iv}$	73.13 (13)	$O8^{iv}$ -Cd2-O2	102.80 (13)
$O2-Cd2-O4^{iv}$	128.00 (13)	$O8^{iv}$ -Cd2-O3	83.70 (14)
$O3^{iv}$ -Cd2-O2 ⁱⁱⁱ	131.30 (12)	$O8^{iv}$ -Cd2-O3 ^{iv}	90.31 (14)
$O3-Cd2-O2^{iii}$	70.49 (12)	$O8^{iv}$ -Cd2-O4 ^{iv}	81.41 (14)
O3-Cd2-O2	85.52 (13)		

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y + 1, z; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv)

geometry. Bond lengths and angles within the coordination environments are listed in Table 1.

The Cd atoms and chedc ligands construct $[Cd_2(chedc-A)(chedc-B)]_n$ ribbon motifs (Fig. 2) that are oriented parallel to the *b*-axis direction. Within the cores of the ribbon motifs are embedded $[Cd(\mu-O)]_n$ chains with a $Cd_2\cdots Cd_2$ internuclear distance of 3.606 (2) Å. The bridging oxygen atoms are the O3 atoms within the chedc-A ligands. The Cd1 atoms at the periphery of the ribbon motifs are anchored to the Cd1 atoms at the cores of the ribbon motifs by both chedc-A and chedc-B ligands.

Figure 1

The coordination environments within the title compound, showing the square-pyramidal coordination at atom Cd1 and the pentagonalbipyramidal coordination at atom Cd2. Displacement ellipsoids are drawn at the 50% probability level. All non-H atoms are labeled. Color code: Cd1, violet; Cd2, blue; O, red; C, black; H, pink. The symmetry codes are as listed in Table 1.

Figure 2

 $[Cd_2(chedc-A)(chedc-B)]_n$ ribbon motif parallel to *b*-axis direction in the crystal structure of the title compound. Color code: Cd1, violet; Cd2, blue; chedc-A ligands, green, chedc-B ligands, purple.

The ribbon motifs are connected into $[Cd_2(chedc-A)(chedc-B)]_n$ coordination polymer layers (Fig. 3) that are arranged parallel to the *ab* plane. The inter-ribbon connection is provided by O6 atoms belonging to the chedc-B ligands. Adjacent $[Cd_2(chedc-A)(chedc-B)]_n$ coordination polymer layer motifs stack in an *ABAB* pattern along the *c*-axis direction, related by crystallographic glide planes (Fig. 4). Crystal packing forces provide the impetus for the layer aggregation.

Synthesis and crystallization

Cd(NO₃)₂'4H₂O (115 mg, 0.37 mmol), *cis*-cyclohex-4-ene-1,2dicarboxylic acid (63 mg, 0.37 mol), propane-1,3-diylbis-(piperidine-4,1-diyl)bis(pyridin-4-ylmethanone (153 mg, 0.37 mol) and 0.75 ml of a 1.0 *M* NaOH solution were placed into 10 ml of distilled H₂O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 278 K. Colorless blockshaped crystals of the title compound were isolated after washing with distilled water and acetone, and drying in air.

 $[Cd_2(chedc-A)(chedc-B)]_n$ coordination polymer layer motif in the title compound, oriented parallel to the *ab* plane. Color code: Cd1, violet; Cd2, blue.

Figure 4

 $A\bar{B}AB$ stacking pattern of the [Cd₂(chedc-A)(chedc-B)]_n coordination polymer layer motifs to construct the three-dimensional crystal structure of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

We thank the Honors College of Michigan State University for funding this work.

References

- Bruker (2015). APEX2, COSMO, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Cui, Z., Qi, J., Xu, X., Liu, L. & Wang, Y. (2013). J. Solid State Chem. 205, 142–148.

Experimental details.	
Crystal data	
Chemical formula	$[Cd_2(C_8H_8CdO_4)_2]$
M _r	561.09
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.8377 (11), 7.0700 (8), 24.268 (3)
β (°)	100.120(1)
$V(Å^3)$	1661.6 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.60
Crystal size (mm)	$0.25 \times 0.16 \times 0.15$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2015)
T_{\min}, T_{\max}	0.613, 0.745
No. of measured, independent and	12875, 3038, 2500
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.047
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.091, 1.07
No. of reflections	3038
No. of parameters	235
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.47, -0.84

Table 2

Computer programs: COSMO, APEX2 and SAINT (Bruker, 2015), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015)and OLEX2 (Dolomanov et al., 2009).

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Sample, A. D. & LaDuca, R. L. (2016). Inorg. Chim. Acta, 443, 198–206.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Xu, X., Liu, X., Zhang, X. & Sun, T. (2010). Solid State Sci. 12, 355–360.

full crystallographic data

IUCrData (2018). **3**, x180924 [https://doi.org/10.1107/S2414314618009240]

Poly[(μ_5 -cis-cyclohex-4-ene-1,2-dicarboxylato)(μ_3 -cis-cyclohex-4-ene-1,2-dicarboxylato)dicadmium(II)]

Andrew R. LaDuca and Robert L. LaDuca

 $Poly[(\mu_5 - cis - cyclohex - 4 - ene - 1, 2 - dicarboxylato)(\mu_3 - cis - cyclohex - 4 - ene - 1, 2 - dicarboxylato)dicadmium(II)]$

Crystal data

 $[Cd_{2}(C_{8}H_{8}CdO_{4})_{2}]$ M_r = 561.09 Monoclinic, P2₁/n a = 9.8377 (11) Å b = 7.0700 (8) Å c = 24.268 (3) Å $\beta = 100.120$ (1)° V = 1661.6 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.4 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2015) $T_{\min} = 0.613, T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.091$ S = 1.073038 reflections 235 parameters 0 restraints Primary atom site location: dual F(000) = 1088 $D_x = 2.243 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5975 reflections $\theta = 2.4-25.3^{\circ}$ $\mu = 2.60 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.25 \times 0.16 \times 0.15 \text{ mm}$

12875 measured reflections 3038 independent reflections 2500 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -8 \rightarrow 8$ $l = -29 \rightarrow 29$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0444P)^2 + 3.7886P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.47$ e Å⁻³ $\Delta\rho_{min} = -0.83$ e Å⁻³

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F2, SHELXL-97, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bound to C were placed in calculated positions with a riding model with $U_{iso} = 1.2U_{eq}$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.39348 (4)	0.94716 (6)	0.74436 (2)	0.02049 (14)	
Cd2	0.76663 (4)	0.61706 (5)	0.76431 (2)	0.01681 (13)	
01	0.3949 (4)	0.8233 (6)	0.65823 (15)	0.0237 (9)	
O2	0.5952 (4)	0.8119 (5)	0.71409 (14)	0.0194 (8)	
O3	0.7149 (4)	0.4133 (5)	0.69043 (16)	0.0224 (9)	
O4	0.5747 (4)	0.1907 (5)	0.65224 (16)	0.0300 (10)	
05	0.4160 (4)	0.8240 (6)	0.82752 (17)	0.0317 (10)	
O6	0.2972 (4)	0.6105 (5)	0.77425 (16)	0.0244 (9)	
O7	0.6164 (4)	0.4686 (5)	0.80826 (16)	0.0233 (9)	
08	0.5445 (4)	0.1854 (5)	0.77511 (16)	0.0230 (8)	
C1	0.5190 (6)	0.7816 (8)	0.6655 (2)	0.0199 (12)	
C2	0.5848 (5)	0.7039 (8)	0.6184 (2)	0.0180 (11)	
H2	0.6872	0.7182	0.6291	0.022*	
C3	0.5376 (6)	0.8158 (8)	0.5642 (2)	0.0213 (12)	
H3A	0.5285	0.9507	0.5738	0.026*	
H3B	0.6100	0.8068	0.5407	0.026*	
C4	0.4048 (6)	0.7508 (8)	0.5308 (2)	0.0270 (13)	
H4	0.3630	0.8274	0.5004	0.032*	
C5	0.3402 (6)	0.5921 (8)	0.5409 (2)	0.0280 (14)	
H5	0.2540	0.5634	0.5180	0.034*	
C6	0.3978 (6)	0.4568 (8)	0.5867 (3)	0.0275 (14)	
H6A	0.3835	0.3253	0.5728	0.033*	
H6B	0.3483	0.4724	0.6185	0.033*	
C7	0.5525 (6)	0.4926 (7)	0.6064 (2)	0.0204 (12)	
H7	0.5974	0.4602	0.5737	0.025*	
C8	0.6151 (6)	0.3584 (7)	0.6527 (2)	0.0203 (12)	
C9	0.3695 (6)	0.6591 (8)	0.8208 (2)	0.0219 (12)	
C10	0.4064 (6)	0.5202 (7)	0.8687 (2)	0.0191 (12)	
H10	0.3235	0.5082	0.8871	0.023*	
C11	0.5243 (6)	0.5972 (8)	0.9129 (2)	0.0240 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11A	0.5956	0.6531	0.8938	0.029*	
H11B	0.4879	0.6994	0.9341	0.029*	
C12	0.5896 (6)	0.4506 (9)	0.9528 (2)	0.0270 (13)	
H12	0.6480	0.4913	0.9861	0.032*	
C13	0.5711 (6)	0.2671 (9)	0.9448 (2)	0.0302 (14)	
H13	0.6184	0.1837	0.9724	0.036*	
C14	0.4806 (6)	0.1819 (8)	0.8949 (2)	0.0265 (13)	
H14A	0.3970	0.1294	0.9068	0.032*	
H14B	0.5305	0.0757	0.8809	0.032*	
C15	0.4357 (5)	0.3224 (7)	0.8468 (2)	0.0178 (11)	
H15	0.3470	0.2743	0.8247	0.021*	
C16	0.5398 (5)	0.3300 (8)	0.8071 (2)	0.0180 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0174 (2)	0.0198 (2)	0.0242 (2)	0.00097 (16)	0.00357 (17)	-0.00307 (16)
Cd2	0.0151 (2)	0.0146 (2)	0.0210 (2)	-0.00088 (14)	0.00367 (16)	0.00038 (15)
O1	0.018 (2)	0.030(2)	0.022 (2)	0.0032 (17)	0.0035 (16)	-0.0028 (17)
O2	0.0166 (19)	0.021 (2)	0.0191 (19)	0.0036 (16)	-0.0009 (15)	-0.0020 (16)
O3	0.023 (2)	0.022 (2)	0.022 (2)	0.0041 (16)	0.0017 (17)	-0.0045 (16)
O4	0.043 (3)	0.012 (2)	0.031 (2)	-0.0039 (18)	-0.0055 (19)	-0.0007 (18)
05	0.046 (3)	0.019 (2)	0.029 (2)	-0.0047 (19)	0.003 (2)	-0.0005 (18)
O6	0.022 (2)	0.029 (2)	0.021 (2)	-0.0074 (17)	0.0020 (17)	0.0037 (17)
07	0.024 (2)	0.021 (2)	0.027 (2)	-0.0083 (17)	0.0091 (17)	-0.0044 (17)
08	0.026 (2)	0.018 (2)	0.028 (2)	0.0025 (17)	0.0099 (17)	-0.0079 (17)
C1	0.023 (3)	0.015 (3)	0.021 (3)	-0.003 (2)	0.004 (2)	0.003 (2)
C2	0.015 (3)	0.021 (3)	0.018 (3)	0.002 (2)	0.002 (2)	0.000 (2)
C3	0.027 (3)	0.015 (3)	0.023 (3)	0.004 (2)	0.008 (2)	0.004 (2)
C4	0.033 (3)	0.024 (3)	0.021 (3)	0.008 (3)	-0.004 (3)	0.001 (2)
C5	0.023 (3)	0.032 (4)	0.027 (3)	0.003 (3)	-0.001 (3)	-0.007 (3)
C6	0.028 (3)	0.020 (3)	0.029 (3)	-0.003 (2)	-0.010 (3)	-0.001 (3)
C7	0.025 (3)	0.015 (3)	0.020 (3)	-0.001 (2)	0.002 (2)	-0.003(2)
C8	0.023 (3)	0.018 (3)	0.021 (3)	0.008 (2)	0.006 (2)	-0.003 (2)
C9	0.020 (3)	0.022 (3)	0.028 (3)	0.001 (2)	0.015 (2)	-0.001 (2)
C10	0.019 (3)	0.017 (3)	0.023 (3)	-0.002 (2)	0.008 (2)	-0.003 (2)
C11	0.022 (3)	0.026 (3)	0.022 (3)	-0.003 (2)	0.001 (2)	-0.006(2)
C12	0.022 (3)	0.038 (4)	0.020 (3)	0.001 (3)	0.001 (2)	-0.006 (3)
C13	0.031 (3)	0.032 (4)	0.027 (3)	0.008 (3)	0.000 (3)	0.005 (3)
C14	0.032 (3)	0.022 (3)	0.028 (3)	-0.002 (3)	0.011 (3)	0.001 (3)
C15	0.016 (3)	0.015 (3)	0.024 (3)	0.000(2)	0.006 (2)	-0.004 (2)
C16	0.012 (3)	0.020 (3)	0.020 (3)	0.000 (2)	-0.001 (2)	0.001 (2)

Geometric parameters (Å, °)

Cd1—O1	2.269 (4)	С3—НЗА	0.9900
Cd1—O2	2.430 (4)	С3—Н3В	0.9900
Cd1—O5	2.173 (4)	C3—C4	1.483 (8)

Cd1—O6 ⁱ	2.181 (4)	C4—H4	0.9500
Cd1—O8 ⁱⁱ	2.283 (4)	C4—C5	1.332 (8)
Cd2—O2 ⁱⁱⁱ	2.555 (4)	С5—Н5	0.9500
Cd2—O2	2.346 (3)	C5—C6	1.500 (8)
Cd2—O3	2.286 (4)	С6—Н6А	0.9900
Cd2—O3 ^{iv}	2.357 (4)	С6—Н6В	0.9900
Cd2—O4 ^{iv}	2.387 (4)	C6—C7	1.534 (8)
Cd207	2 231 (4)	С7—Н7	1 0000
$Cd2 - O8^{iv}$	2,286 (4)	C7—C8	1.515(7)
01-C1	1 239 (6)	$C8 - Cd2^{iii}$	2739(5)
Ω^2 —Cd2 ^{iv}	2554(4)	C9-C10	1.517(8)
02 - C1	1 300 (6)	C10—H10	1 0000
$O_3 - Cd^{2iii}$	2357(4)	C10-C11	1.534(7)
03 - 03	2.337(4) 1 280(7)	C_{10} C_{15}	1.537(7) 1 542 (7)
$O4 - Cd2^{iii}$	2387(4)	C11_H11A	0.9900
04 - C8	2.367(4) 1 250(7)	C11_H11B	0.9900
05 C9	1.250(7) 1.253(7)		1 486 (8)
05-05	1.233(7)	$C_{11} = C_{12}$	0.0500
$O_{6} = C_{0}$	2.101(4)	C_{12} $-H_{12}$ C_{12} C_{13}	0.9300
07 C16	1.2/1(7)	C12 - C13	1.320 (8)
O^{2} C^{1}	1.233(0)	C_{12} C_{14}	0.9300
	2.285(4)	C13 - C14	1.497 (8)
08—C12	2.280 (4)	C14—H14A	0.9900
08 - 016	1.290 (6)		0.9900
	1.512 (7)		1.538 (8)
C2—H2	1.0000		1.0000
C2—C3	1.535 (7)	C15—C16	1.524 (7)
C2—C7	1.545 (7)		
01 011 02	55.00 (10)		1144(5)
OI - CaI - O2	55.39 (12)	C4 - C3 - C2	114.4 (5)
01	118.49 (14)	C4—C3—H3A	108.7
O5—Cd1—O1	133.22 (15)	C4—C3—H3B	108.7
05—Cd1—O2	99.66 (14)	C3—C4—H4	117.8
05—Cd1—O6 ¹	110.36 (16)	C5—C4—C3	124.3 (5)
05—Cd1—08 ⁿ	92.17 (15)	C5—C4—H4	117.8
$O6^{i}$ —Cd1—O1	99.08 (14)	C4—C5—H5	118.6
$O6^{i}$ —Cd1—O2	149.76 (13)	C4—C5—C6	122.8 (5)
$O6^{i}$ —Cd1—O8 ⁱⁱ	99.42 (14)	С6—С5—Н5	118.6
$O8^{n}$ —Cd1—O2	82.52 (13)	С5—С6—Н6А	109.5
$O2-Cd2-O2^{iii}$	155.57 (11)	С5—С6—Н6В	109.5
$O2$ — $Cd2$ — $O3^{iv}$	73.13 (13)	C5—C6—C7	110.6 (5)
O2—Cd2—O4 ^{iv}	128.00 (13)	H6A—C6—H6B	108.1
O3 ^{iv} —Cd2—O2 ⁱⁱⁱ	131.30 (12)	С7—С6—Н6А	109.5
O3—Cd2—O2 ⁱⁱⁱ	70.49 (12)	С7—С6—Н6В	109.5
O3—Cd2—O2	85.52 (13)	С2—С7—Н7	105.4
O3—Cd2—O3 ^{iv}	155.99 (11)	C6—C7—C2	112.2 (4)
O3—Cd2—O4 ^{iv}	145.60 (13)	С6—С7—Н7	105.4
$O3^{iv}$ — $Cd2$ — $O4^{iv}$	54.92 (13)	C8—C7—C2	115.0 (4)
$O4^{iv}$ — $Cd2$ — $O2^{iii}$	76.42 (12)	C8—C7—C6	112.3 (5)

O7—Cd2—O2 ⁱⁱⁱ	82.99 (13)	С8—С7—Н7	105.4
O7—Cd2—O2	92.78 (14)	O3—C8—Cd2 ⁱⁱⁱ	59.3 (3)
O7—Cd2—O3	90.21 (14)	O3—C8—C7	120.1 (5)
O7—Cd2—O3 ^{iv}	101.45 (13)	O4—C8—Cd2 ⁱⁱⁱ	60.6 (3)
$O7$ — $Cd2$ — $O4^{iv}$	94.95 (14)	O4—C8—O3	119.8 (5)
O7—Cd2—O8 ^{iv}	162.73 (14)	O4—C8—C7	120.0 (5)
O8 ^{iv} —Cd2—O2 ⁱⁱⁱ	79.75 (12)	C7—C8—Cd2 ⁱⁱⁱ	178.8 (4)
$O8^{iv}$ —Cd2—O2	102.80 (13)	Q5—C9—Q6	120.1 (5)
$O8^{iv}$ —Cd2—O3	83.70 (14)	Q5—C9—C10	118.0 (5)
$O8^{iv}$ —Cd2—O3 ^{iv}	90.31 (14)	O6—C9—C10	121.9 (5)
$O8^{iv}$ —Cd2—O4 ^{iv}	81.41 (14)	C9-C10-H10	107.1
C1 - O1 - Cd1	97.3 (3)	C9-C10-C11	110.9 (5)
$Cd1 = O2 = Cd2^{iv}$	92.24 (12)	C9-C10-C15	110.9(4)
Cd2 = O2 = Cd1	128 66 (15)	C11—C10—H10	107.1
$Cd2 = O2 = Cd2^{iv}$	94 67 (12)	$C_{11} - C_{10} - C_{15}$	1135(4)
C1 = O2 = Cd1	88 2 (3)	C_{15} C_{10} H_{10}	107.1
$C1 = O2 = Cd^{iv}$	121.8(3)	C10-C11-H11A	107.1
C1 = O2 = Cd2	121.0(3) 128.5(3)	C10 $C11$ $H11B$	108.9
$C_{1} = 02 = C_{1} = 02$	120.5(3) 101.89(14)		107.7
$C_{42} = 0.3 C_{42}^{iii}$	020(3)	$C_{12} C_{11} C_{10}$	113 3 (5)
$C_8 = O_3 = C_{42}$	$\frac{1}{2}$	$C_{12} = C_{11} = C_{10}$	108.0
$C_{3} = C_{4} = C_{4}$	(1+2) (2) (3)	$C_{12} = C_{11} = H_{11}B$	108.0
$C_{0} = C_{1} = C_{1}$	$\frac{1060}{4}$	C_{12} C_{11} C_{12} H_{12}	118 1
$C_{2} = 05 = Cd_{1}^{2}$	100.0(4)	$C_{12} = C_{12} = C_{11}$	122 8 (5)
$C_{2} = 00 = C_{1}$	130.8(3) 144.7(4)	$C_{13} = C_{12} = C_{11}$	125.6 (5)
$C_{10} = 07 = C_{12}$	144.7(4) 102 74 (14)	$C_{13} = C_{12} = H_{12}$	110.1
$C_{11} = 0_{0} = C_{11}$	103.74(14) 122.8(2)	C12 - C13 - C14	117.9 124.2(5)
$C_{10} = 08 = C_{42}$	133.0(3) 122.5(2)	C12 - C13 - C14	124.2(3)
$C_{10} = 08 = Cd^{2}$	122.3(3)	C12 - C12 - C14 - U14A	117.9
OI = CI = CdI	55.8 (5) 110 1 (5)	C13 - C14 - H14A	108.8
01 - 01 - 02	119.1(3)	C12 - C14 - H14B	100.0
01 - C1 - C2	121.5(5)		113.9 (5)
02-C1-Cd1	03.3(3)	H14A - C14 - H14B	10/./
02-C1-C2	119.4 (5)	C15—C14—H14A	108.8
$C_2 = C_1 = C_0$	1/5.1 (4)	C15—C14—H14B	108.8
C1 = C2 = H2	108.1	C10—C15—H15	10/.1
C1 - C2 - C3	110.8 (4)	C14-C15-C10	111.7 (4)
C1 - C2 - C7	113.1 (4)	C14—C15—H15	107.1
C3—C2—H2	108.1	C16—C15—C10	111.9 (4)
C3-C2-C7	108.4 (4)	C16—C15—C14	111.6 (4)
С7—С2—Н2	108.1	С16—С15—Н15	107.1
С2—С3—НЗА	108.7	07	123.8 (5)
C2—C3—H3B	108.7	07	119.3 (5)
H3A—C3—H3B	107.6	08—C16—C15	116.8 (5)
Cd1—O1—C1—O2	2.4 (5)	O6—C9—C10—C11	164.5 (5)
Cd1-01-C1-C2	-175.1 (4)	O6—C9—C10—C15	37.4 (7)
Cd1—O2—C1—O1	-2.2 (5)	C1—C2—C3—C4	-85.0 (6)
Cd1—O2—C1—C2	175.3 (4)	C1—C2—C7—C6	63.1 (6)

Cd1—O5—C9—O6	-14.5 (6)	C1—C2—C7—C8	-67.0 (6)
Cd1O5C9C10	163.5 (4)	C2—C3—C4—C5	-10.2 (8)
Cd1 ^v —O6—C9—O5	-136.2 (4)	C2—C7—C8—O3	-17.8 (7)
Cd1 ^v —O6—C9—C10	45.9 (7)	C2C7C8O4	166.3 (5)
Cd1 ^{vi} 0807	-161.3 (4)	C3—C2—C7—C6	-60.2 (6)
Cd1 ^{vi} —O8—C16—C15	20.7 (7)	C3—C2—C7—C8	169.8 (5)
Cd2 ^{iv} —O2—C1—Cd1	-91.5 (3)	C3—C4—C5—C6	-1.9 (9)
Cd2—O2—C1—Cd1	140.6 (4)	C4—C5—C6—C7	-17.5 (8)
Cd2—O2—C1—O1	138.4 (4)	C5—C6—C7—C2	48.7 (6)
Cd2 ^{iv} —O2—C1—O1	-93.7 (5)	C5—C6—C7—C8	-179.9 (5)
Cd2 ^{iv} —O2—C1—C2	83.8 (5)	C6—C7—C8—O3	-147.8 (5)
Cd2—O2—C1—C2	-44.1 (6)	C6—C7—C8—O4	36.3 (7)
Cd2—O3—C8—Cd2 ⁱⁱⁱ	-113.7 (5)	C7—C2—C3—C4	39.7 (6)
Cd2 ⁱⁱⁱ —O3—C8—O4	-2.9 (5)	C9-C10-C11-C12	-164.9 (5)
Cd2—O3—C8—O4	-116.6 (6)	C9-C10-C15-C14	177.1 (4)
Cd2—O3—C8—C7	67.4 (8)	C9-C10-C15-C16	51.2 (6)
Cd2 ⁱⁱⁱ —O3—C8—C7	-178.9 (4)	C10-C11-C12-C13	14.2 (8)
Cd2 ⁱⁱⁱ —O4—C8—O3	2.9 (5)	C10-C15-C16-O7	19.9 (7)
Cd2 ⁱⁱⁱ —O4—C8—C7	178.9 (4)	C10-C15-C16-O8	-162.0 (4)
Cd2—O7—C16—O8	13.4 (10)	C11—C10—C15—C14	51.5 (6)
Cd2—O7—C16—C15	-168.7 (4)	C11—C10—C15—C16	-74.4 (6)
Cd2 ⁱⁱⁱ —O8—C16—O7	19.6 (7)	C11—C12—C13—C14	-1.0 (10)
Cd2 ⁱⁱⁱ —O8—C16—C15	-158.4 (3)	C12-C13-C14-C15	13.3 (8)
O1—C1—C2—C3	44.2 (7)	C13—C14—C15—C10	-37.7 (7)
O1—C1—C2—C7	-77.8 (6)	C13—C14—C15—C16	88.4 (6)
O2—C1—C2—C3	-133.3 (5)	C14—C15—C16—O7	-106.0 (6)
O2—C1—C2—C7	104.8 (6)	C14—C15—C16—O8	72.1 (6)
O5-C9-C10-C11	-13.4 (7)	C15—C10—C11—C12	-39.4 (7)
O5—C9—C10—C15	-140.4 (5)		

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+3/2; (ii) *x*, *y*+1, *z*; (iii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iv) -*x*+3/2, *y*+1/2, -*z*+3/2; (v) -*x*+1/2, *y*-1/2, -*z*+3/2; (vi) *x*, *y*-1, *z*.