IUCrData

ISSN 2414-3146

Received 9 July 2018 Accepted 20 July 2018

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; hydrogen bond; dihydropyrimidinium.

CCDC reference: 1857057

Structural data: full structural data are available from iucrdata.iucr.org

2-(4-Hydroxyphenyl)-4,6-dimethyl-2,3-dihydropyrimidin-1-ium acetate

Kedila Rasheeda,^a Seranthimata Samshuddin,^b Phadke N. Swathi,^b Vijaya D. P. Alva,^a Joel T. Mague^c and Youssef Ramli^d*

^aDepartment of Chemistry, Shree Devi Institute of Technology, Kenjar, Mangalore, Karnataka 574 142, India, ^bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara Institute of, Technology, Ujire, Karnataka 574 240, India, ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^dLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Research Center for Medicinal Sciences Mohammed V University, Rabat, Morocco. *Correspondence e-mail: y.ramli@um5s.net.ma

In the title compound, $C_{12}H_{15}N_2O^+ \cdot C_2H_3O_2^-$, the phenoxy group is nearly perpendicular [80.73 (11)°] to the dihydropyrimidinium ring. In the crystal, $O - H \cdots O$, $N - H \cdots O$ and $C - H \cdots O$ hydrogen bonds form corrugated layers parallel to the *ac* plane.

Structure description

Pyrimidine and its derivatives are bioactive molecules and play an important role in several biological processes (Selvam *et al.*, 2012). These derivatives have also been used in coordination chemistry and in corrosion inhibitors (Ansari *et al.*, 2015). Several methods have been proposed for the synthesis of pyrimidine derivatives (Gore & Rajput, 2013). The crystal structures of several pyrimidine derivatives have been reported (Fun *et al.*, 2012). In view of the importance of pyrimidine derivatives, a new pyrimidine derivative is synthesized and the crystal structure has been determined (Fig. 1).

The dihydropyrimidinium ring adopts an envelope conformation with puckering parameters Q = 0.419 (2) Å, $\theta = 108.3$ (3)° and $\varphi = 237.7$ (3)°. The phenoxy ring is nearly perpendicular to the dihydropyrimidinium ring, as indicated by the dihedral angle of 80.73 (11)° between the mean planes of the two rings. In the crystal, O1-H1B···O3, N1-H1···O2, N2-H2···O3 and C1-H1A···O1 hydrogen bonds (Table 1) link the molecules into corrugated layers parallel to the *ac* plane with one of the methyl groups on the dihydropyrimidinium ring from each surface of the layer (Figs. 2 and 3).

Figure 1

Synthesis and crystallization

A mixture of 4-hydroxy benzaldehyde (0.01 mol), acetyl acetone (0.01 mol) and ammonium acetate (5 g) was refluxed for 8 h in 30 ml of acetic acid. The reaction mixture was cooled to room temperature and the solid product obtained was filtered and recrystallized from ethanol. Single crystals were grown from ethanol by the slow evaporation method (yield 67%, m.p. 529 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A portion of one corrugated layer viewed along the *b*-axis direction. $O - H \cdots O$ and $N - H \cdots O$ hydrogen bonds are shown, respectively, by red and blue dashed lines. The $C - H \cdots O$ hydrogen bonds are omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1B\cdots O3^{i}$	0.87	1.76	2.609 (3)	165
$N1-H1\cdots O2^{ii}$	0.91	1.83	2.731 (3)	172
$N2-H2 \cdot \cdot \cdot O3^{iii}$	0.91	1.87	2.771(2)	170
$C1-H1A\cdots O1^{iv}$	0.98	2.31	3.214 (3)	154

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2};$ (iii) $-x + 1, -y + 1, z - \frac{1}{2};$ (iv) x, y, z - 1.

 $C_{12}H_{15}N_2O^+ \cdot C_2H_3O_2^-$

Orthorhombic, Pna21

 $0.35 \times 0.24 \times 0.06$

100 CMOS

al., 2015)

9762, 2702, 2611

0.035, 0.093, 1.08

0.79, 0.95

0.042

0.618

2702

0.16, -0.15

0.03(8)

176

1

12.2836 (4), 14.5343 (5), 7.8596 (3)

Bruker D8 VENTURE PHOTON

Multi-scan (SADABS; Krause et

H-atom parameters constrained

Flack x determined using 1136 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$

(Parsons et al., 2013)

262.30

1403.20 (9)

Cu Ka

0.72

296

4

Table 2Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer

Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 $\begin{array}{c} R_{\rm int} \\ (\sin \,\theta / \lambda)_{\rm max} \,({\rm \AA}^{-1}) \end{array}$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, SNo. of reflections No. of parameters No. of restraints H-atom treatment $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³) Absolute structure

Absolute structure parameter

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2008) and *SHELXTL* (Sheldrick, 2008).

Figure 3

Elevation view of two layers seen along the a-axis direction. Hydrogen bonds are depicted as in Fig. 2.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. KR is grateful to the Directorate of Minorities, Government of Karnataka, for providing a research fellowship.

References

- Ansari, K. R., Sudheer, Singh, A. & Quraishi, M. A. (2015). J. Dispersion Sci. Technol. 36, 908–917.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 0807–0808.
- Gore, R. P. & Rajput, A. P. (2013). Drug Invention Today, 5, 148– 152.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Selvam, T. P., James, C. R., Dniandev, P. V. & Valzita, S. K. (2012). *Res. Pharm.* **2**, 1–9.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). 3, x181046 [https://doi.org/10.1107/S2414314618010465]

2-(4-Hydroxyphenyl)-4,6-dimethyl-2,3-dihydropyrimidin-1-ium acetate

Kedila Rasheeda, Seranthimata Samshuddin, Phadke N. Swathi, Vijaya D. P. Alva, Joel T. Mague and Youssef Ramli

2-(4-Hydroxyphenyl)-4,6-dimethyl-2,3-dihydropyrimidin-1-ium acetate

Crystal data

 $C_{12}H_{15}N_2O^+ \cdot C_2H_3O_2^- M_r = 262.30$ Orthorhombic, *Pna2*₁ a = 12.2836 (4) Å b = 14.5343 (5) Å c = 7.8596 (3) Å V = 1403.20 (9) Å³ Z = 4F(000) = 560

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Radiation source: INCOATEC I μ S micro-focus source Mirror monochromator ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{min} = 0.79, T_{max} = 0.95$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.093$ S = 1.082702 reflections 176 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

 $D_x = 1.242 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9919 reflections $\theta = 3.0-72.5^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 296 KPlate, amber $0.35 \times 0.24 \times 0.06 \text{ mm}$

9762 measured reflections 2702 independent reflections 2611 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 72.4^{\circ}, \theta_{min} = 4.7^{\circ}$ $h = -14 \rightarrow 15$ $k = -17 \rightarrow 14$ $l = -9 \rightarrow 9$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0477P)^{2} + 0.1696P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2018* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.044 (3) Absolute structure: Flack *x* determined using 1136 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.03 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 and O —H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

H-atoms attached to carbon were placed in calculated positions while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N-H = 0.91 and O-H = 0.87 Å. All were included as riding contributions.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.27724 (14)	0.75133 (12)	0.7694 (2)	0.0546 (4)
H1B	0.217782	0.722953	0.798867	0.082*
N1	0.36392 (14)	0.57083 (11)	0.0439 (2)	0.0420 (4)
H1	0.298478	0.563493	-0.008622	0.050*
N2	0.51651 (14)	0.66729 (12)	0.0645 (2)	0.0420 (4)
H2	0.545084	0.721104	0.025708	0.050*
C1	0.39948 (16)	0.66268 (13)	0.0918 (3)	0.0390 (4)
H1A	0.364086	0.707373	0.016533	0.047*
C2	0.42312 (18)	0.49979 (14)	0.0923 (3)	0.0433 (5)
C3	0.52904 (18)	0.51327 (15)	0.1474 (3)	0.0462 (5)
Н3	0.565920	0.467961	0.207922	0.055*
C4	0.57816 (17)	0.59665 (16)	0.1094 (3)	0.0434 (5)
C5	0.3741 (2)	0.40638 (17)	0.0759 (4)	0.0654 (7)
H5A	0.300785	0.411806	0.034710	0.098*
H5B	0.373633	0.376778	0.185129	0.098*
H5C	0.416204	0.370418	-0.002539	0.098*
C6	0.69929 (19)	0.6085 (2)	0.1048 (4)	0.0627 (7)
H6A	0.723330	0.611386	-0.011310	0.094*
H6B	0.733401	0.557281	0.160521	0.094*
H6C	0.718748	0.664425	0.162220	0.094*
C7	0.36783 (16)	0.68454 (13)	0.2754 (3)	0.0378 (4)
C8	0.42471 (19)	0.74749 (17)	0.3707 (3)	0.0520 (5)
H8	0.485363	0.776132	0.323659	0.062*
C9	0.3937 (2)	0.76929 (18)	0.5356 (3)	0.0594 (7)
Н9	0.433786	0.811862	0.597828	0.071*
C10	0.30388 (18)	0.72830 (14)	0.6075 (3)	0.0428 (5)
C11	0.2443 (2)	0.66604 (16)	0.5124 (3)	0.0523 (6)
H11	0.182600	0.638735	0.558644	0.063*
C12	0.2766 (2)	0.64423 (17)	0.3479 (3)	0.0519 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	0.236315	0.601912	0.285269	0.062*	
O2	0.33630 (14)	0.03653 (13)	0.4068 (4)	0.0796 (7)	
O3	0.39509 (17)	0.17870 (13)	0.4094 (3)	0.0729 (6)	
C13	0.4095 (2)	0.09335 (17)	0.4226 (3)	0.0529 (5)	
C14	0.5234 (3)	0.0608 (3)	0.4529 (7)	0.0972 (13)	
H14A	0.573848	0.106519	0.413293	0.146*	
H14B	0.535285	0.004326	0.392359	0.146*	
H14C	0.534262	0.050737	0.572402	0.146*	

Alomic displacement parameters (A)	c displacement para	meters (Ų)
------------------------------------	---------------------	------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0600 (10)	0.0655 (10)	0.0384 (8)	0.0097 (8)	0.0013 (7)	-0.0062 (7)
N1	0.0390 (9)	0.0462 (9)	0.0406 (9)	0.0000 (7)	0.0013 (7)	-0.0045 (7)
N2	0.0417 (9)	0.0411 (8)	0.0432 (9)	-0.0018 (7)	0.0082 (8)	0.0061 (7)
C1	0.0404 (10)	0.0396 (9)	0.0370 (9)	0.0037 (8)	0.0009 (8)	0.0027 (8)
C2	0.0484 (11)	0.0427 (10)	0.0387 (10)	-0.0018 (9)	0.0100 (9)	-0.0010 (8)
C3	0.0478 (12)	0.0442 (11)	0.0467 (11)	0.0080 (9)	0.0029 (9)	0.0104 (9)
C4	0.0389 (10)	0.0543 (11)	0.0371 (9)	0.0017 (9)	0.0046 (9)	0.0048 (8)
C5	0.0803 (18)	0.0455 (12)	0.0705 (17)	-0.0120 (12)	0.0148 (15)	-0.0064 (12)
C6	0.0378 (11)	0.0830 (17)	0.0674 (15)	0.0003 (11)	0.0060 (11)	0.0124 (14)
C7	0.0367 (9)	0.0366 (8)	0.0401 (10)	0.0066 (7)	0.0015 (8)	0.0008 (8)
C8	0.0480 (12)	0.0565 (12)	0.0514 (12)	-0.0106 (10)	0.0064 (10)	-0.0084 (11)
C9	0.0567 (14)	0.0671 (15)	0.0545 (14)	-0.0102 (12)	0.0038 (11)	-0.0207 (12)
C10	0.0481 (11)	0.0443 (10)	0.0362 (10)	0.0132 (9)	-0.0017 (9)	-0.0005 (8)
C11	0.0503 (12)	0.0588 (12)	0.0478 (13)	-0.0075 (10)	0.0104 (10)	-0.0066 (10)
C12	0.0515 (13)	0.0561 (13)	0.0480 (12)	-0.0117 (11)	0.0078 (10)	-0.0114 (10)
O2	0.0478 (10)	0.0576 (11)	0.133 (2)	-0.0061 (8)	0.0135 (12)	-0.0193 (12)
O3	0.0754 (12)	0.0562 (10)	0.0873 (15)	-0.0097 (9)	-0.0357 (11)	-0.0046 (9)
C13	0.0454 (12)	0.0571 (13)	0.0562 (13)	-0.0040 (10)	-0.0018 (11)	-0.0058 (11)
C14	0.0515 (16)	0.111 (3)	0.129 (4)	0.0017 (16)	-0.0141 (19)	0.022 (3)

Geometric parameters (Å, °)

01—C10	1.356 (3)	С6—Н6В	0.9600
O1—H1B	0.8700	C6—H6C	0.9600
N1-C2	1.319 (3)	C7—C8	1.373 (3)
N1-C1	1.454 (3)	C7—C12	1.387 (3)
N1—H1	0.9099	C8—C9	1.388 (3)
N2-C4	1.324 (3)	C8—H8	0.9300
N2-C1	1.455 (3)	C9—C10	1.375 (3)
N2—H2	0.9100	С9—Н9	0.9300
C1—C7	1.528 (3)	C10—C11	1.383 (3)
C1—H1A	0.9800	C11—C12	1.389 (3)
C2—C3	1.385 (3)	C11—H11	0.9300
C2—C5	1.491 (3)	C12—H12	0.9300
C3—C4	1.386 (3)	O2—C13	1.227 (3)
С3—Н3	0.9300	O3—C13	1.257 (3)

data reports

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C6	1.498 (3)	C13—C14	1.497 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5А	0.9600	C14—H14A	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5В	0.9600	C14—H14B	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5С	0.9600	C14—H14C	0.9600
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	С6—Н6А	0.9600		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-01-H1B	109.6	C4—C6—H6C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—C1	118.59 (18)	Н6А—С6—Н6С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—H1	121.8	H6B—C6—H6C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—H1	119.4	C8—C7—C12	118.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N2—C1	119.38 (17)	C8—C7—C1	121.60 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N2—H2	122.4	C12—C7—C1	120.37 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—H2	118.0	C7—C8—C9	121.4 (2)
$\begin{array}{ccccccc} \mathrm{N1-C1-C7} & 111.02(16) & \mathrm{C9-C8-H8} & 119.3 \\ \mathrm{N2-C1-C7} & 112.37(17) & \mathrm{C10-C9-C8} & 120.4(2) \\ \mathrm{N1-C1-H1A} & 108.6 & \mathrm{C10-C9-H9} & 119.8 \\ \mathrm{N2-C1-H1A} & 108.6 & \mathrm{C10-C9-H9} & 119.8 \\ \mathrm{C7-C1-H1A} & 108.6 & \mathrm{O1-C10-C9} & 118.2(2) \\ \mathrm{N1-C2-C3} & 119.82(19) & \mathrm{O1-C10-C11} & 122.8(2) \\ \mathrm{N1-C2-C5} & 122.4(2) & \mathrm{C10-C11-C12} & 120.1(2) \\ \mathrm{C2-C3-C4} & 117.7(19) & \mathrm{C10-C11-H11} & 119.9 \\ \mathrm{C2-C3-H3} & 121.1 & \mathrm{C12-C11-H11} & 119.9 \\ \mathrm{C2-C3-H3} & 121.1 & \mathrm{C12-C1-H12} & 119.5 \\ \mathrm{C3-C4-C6} & 118.2(2) & \mathrm{C11-C12-H12} & 119.5 \\ \mathrm{C3-C4-C6} & 118.2(2) & \mathrm{C11-C12-H12} & 119.5 \\ \mathrm{C2-C5-H5A} & 109.5 & \mathrm{O2-C13-O3} & 123.6(2) \\ \mathrm{C2-C5-H5B} & 109.5 & \mathrm{O2-C13-C14} & 119.3(3) \\ \mathrm{C2-C5-H5B} & 109.5 & \mathrm{C13-C14-H14A} & 109.5 \\ \mathrm{H5A-C5-H5B} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{C13-C14-H14B} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{C13-C14-H14C} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14B} & 109.5 \\ \mathrm{H5A-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14B} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{H14A-C14-H14C} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{H14B-C14-H14C} & 109.5 \\ \mathrm{H5B-C5-H5C} & 109.5 & \mathrm{H5B-C1-C7-C12} & -149.3(2) \\ \mathrm{C1-N2-C4-C5} & 166.9(2) & \mathrm{C1-C7-C8-C9} & 12.4(4) \\$	N1—C1—N2	107.52 (16)	С7—С8—Н8	119.3
$\begin{split} & \text{N2}-\text{C1}-\text{C7} & \text{I12.37} (17) & \text{C10}-\text{C9}-\text{C8} & \text{I20.4} (2) \\ & \text{N1}-\text{C1}-\text{H1A} & \text{108.6} & \text{C10}-\text{C9}-\text{H9} & \text{119.8} \\ & \text{N2}-\text{C1}-\text{H1A} & \text{108.6} & \text{C8}-\text{C9}-\text{H9} & \text{119.8} \\ & \text{N2}-\text{C1}-\text{H1A} & \text{108.6} & \text{OI}-\text{C10}-\text{C9} & \text{118.2} (2) \\ & \text{N1}-\text{C2}-\text{C3} & \text{119.82} (19) & \text{OI}-\text{C10}-\text{C11} & \text{122.8} (2) \\ & \text{N1}-\text{C2}-\text{C3} & \text{117.7} (2) & \text{C9}-\text{C10}-\text{C11} & \text{129.0} (2) \\ & \text{C3}-\text{C2}-\text{C5} & \text{122.4} (2) & \text{C10}-\text{C11}-\text{C12} & \text{120.1} (2) \\ & \text{C2}-\text{C3}-\text{C4} & \text{117.71} (19) & \text{C10}-\text{C11}-\text{H11} & \text{119.9} \\ & \text{C4}-\text{C3}-\text{H3} & \text{121.1} & \text{C12}-\text{C11}-\text{H11} & \text{119.9} \\ & \text{C4}-\text{C3}-\text{H3} & \text{121.1} & \text{C7}-\text{C12}-\text{C11} & \text{121.1} (2) \\ & \text{N2}-\text{C4}-\text{C3} & \text{119.11} (19) & \text{C7}-\text{C12}-\text{H12} & \text{119.5} \\ & \text{N2}-\text{C4}-\text{C6} & \text{118.2} (2) & \text{C11}-\text{C12}-\text{H12} & \text{119.5} \\ & \text{C3}-\text{C4}-\text{C6} & \text{122.5} (2) & \text{O2}-\text{C13}-\text{O3} & \text{123.6} (2) \\ & \text{C2}-\text{C3}-\text{H5} & \text{109.5} & \text{O3}-\text{C13}-\text{C14} & \text{117.1} (2) \\ & \text{H5A}-\text{C5}-\text{H5B} & \text{109.5} & \text{C13}-\text{C14} & \text{H17.1} (2) \\ & \text{H5A}-\text{C5}-\text{H5C} & \text{109.5} & \text{C13}-\text{C14}-\text{H14B} & \text{109.5} \\ & \text{C2}-\text{C5}-\text{H5C} & \text{109.5} & \text{C13}-\text{C14}-\text{H14B} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{H14A}-\text{C14}-\text{H14B} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{H14A}-\text{C14}-\text{H14B} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{H14A}-\text{C14}-\text{H14C} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{H14A}-\text{C14}-\text{H14C} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{H14A}-\text{C14}-\text{H14C} & \text{109.5} \\ & \text{C4}-\text{C6}-\text{H6B} & \text{109.5} & \text{C13}-\text{C1}-\text{C7}-\text{C8} & \text{34.0} (3) \\ & \text{C2}-\text{N1}-\text{C1}-\text{N2} & \text{43.2} (2) & \text{N2}-\text{C1}-\text{C7}-\text{C8} & \text{34.0} (3) \\ & \text{C2}-\text{N1}-\text{C1}-\text{C7} & -\text{80.6} (2) & \text{C1}-\text{C7}-\text{C8} & -\text{9} & \text{12.2} \\ & \text{109.5} \\ & \text{C1}-\text{N1}-\text{C1}-\text{C7} & \text{80.6} (2) & \text{C1}-\text{C7}-\text{C8} & -\text{9} & \text{12.2} \\ & \text{C1}-\text{N1}-\text{C2}-\text{C5} & \text{166.9} (2) & \text{C1}-\text{C7}-\text{C8} & -\text{9} & \text{12.2} \\ & \text{119.3} (2) \\ & \text{C1}-\text{N1}-\text{C2}-\text{C5} & \text{166.9} (2) & \text{C1}-\text{C7}-\text{C8} $	N1—C1—C7	111.02 (16)	С9—С8—Н8	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C1—C7	112.37 (17)	C10—C9—C8	120.4 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—C1—H1A	108.6	С10—С9—Н9	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	108.6	С8—С9—Н9	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—H1A	108.6	O1—C10—C9	118.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3	119.82 (19)	O1-C10-C11	122.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C2-C5	117.7 (2)	C9—C10—C11	119.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C5	122.4 (2)	C10-C11-C12	120.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	117.71 (19)	C10-C11-H11	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	121.1	C12—C11—H11	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	121.1	C7—C12—C11	121.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C4-C3	119.11 (19)	C7—C12—H12	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2C4C6	118.2 (2)	C11—C12—H12	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C6	122.5 (2)	O2—C13—O3	123.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С5—Н5А	109.5	O2-C13-C14	119.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С5—Н5В	109.5	O3—C13—C14	117.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5A—C5—H5B	109.5	C13—C14—H14A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С5—Н5С	109.5	C13—C14—H14B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5A—C5—H5C	109.5	H14A—C14—H14B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5B—C5—H5C	109.5	C13—C14—H14C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С6—Н6А	109.5	H14A—C14—H14C	109.5
H6A—C6—H6B109.5 $C2$ —N1—C1—N2 $43.2 (2)$ N2—C1—C7—C8 $34.0 (3)$ $C2$ —N1—C1—C7 $-80.1 (2)$ N1—C1—C7—C12 $-28.8 (3)$ $C4$ —N2—C1—N1 $-41.8 (3)$ N2—C1—C7—C12 $-149.3 (2)$ $C4$ —N2—C1—C7 $80.6 (2)$ C12—C7—C8—C9 $1.2 (4)$ $C1$ —N1—C2—C3 $-16.4 (3)$ C1—C7—C8—C9 $177.9 (2)$ $C1$ —N1—C2—C5 $166.9 (2)$ C7—C8—C9—C10 $-0.4 (4)$ N1—C2—C3—C4 $-16.2 (3)$ C8—C9—C10—O1 $179.5 (2)$ $C5$ —C2—C3—C4 $160.4 (2)$ C8—C9—C10—C11 $-0.8 (4)$ $C1$ —N2—C4—C3 $13.4 (3)$ O1—C10—C11—C12 $-179.1 (2)$	C4—C6—H6B	109.5	H14B—C14—H14C	109.5
C2-N1-C1-N2 $43.2 (2)$ $N2-C1-C7-C8$ $34.0 (3)$ $C2-N1-C1-C7$ $-80.1 (2)$ $N1-C1-C7-C12$ $-28.8 (3)$ $C4-N2-C1-N1$ $-41.8 (3)$ $N2-C1-C7-C12$ $-149.3 (2)$ $C4-N2-C1-C7$ $80.6 (2)$ $C12-C7-C8-C9$ $1.2 (4)$ $C1-N1-C2-C3$ $-16.4 (3)$ $C1-C7-C8-C9$ $177.9 (2)$ $C1-N1-C2-C5$ $166.9 (2)$ $C7-C8-C9-C10$ $-0.4 (4)$ $N1-C2-C3-C4$ $-16.2 (3)$ $C8-C9-C10-O1$ $179.5 (2)$ $C5-C2-C3-C4$ $160.4 (2)$ $C8-C9-C10-C11$ $-0.8 (4)$ $C1-N2-C4-C3$ $13.4 (3)$ $O1-C10-C11-C12$ $-179.1 (2)$	H6A—C6—H6B	109.5		
C2-N1-C1-N243.2 (2)N2-C1-C7-C834.0 (3)C2-N1-C1-C7-80.1 (2)N1-C1-C7-C12-28.8 (3)C4-N2-C1-N1-41.8 (3)N2-C1-C7-C12-149.3 (2)C4-N2-C1-C780.6 (2)C12-C7-C8-C91.2 (4)C1-N1-C2-C3-16.4 (3)C1-C7-C8-C9177.9 (2)C1-N1-C2-C5166.9 (2)C7-C8-C9-C10-0.4 (4)N1-C2-C3-C4-16.2 (3)C8-C9-C10-O1179.5 (2)C5-C2-C3-C4160.4 (2)C8-C9-C10-C11-0.8 (4)C1-N2-C4-C313.4 (3)O1-C10-C11-C12-179.1 (2)				
C2-N1-C1-C7-80.1 (2)N1-C1-C7-C12-28.8 (3)C4-N2-C1-N1-41.8 (3)N2-C1-C7-C12-149.3 (2)C4-N2-C1-C780.6 (2)C12-C7-C8-C91.2 (4)C1-N1-C2-C3-16.4 (3)C1-C7-C8-C9177.9 (2)C1-N1-C2-C5166.9 (2)C7-C8-C9-C10-0.4 (4)N1-C2-C3-C4-16.2 (3)C8-C9-C10-O1179.5 (2)C5-C2-C3-C4160.4 (2)C8-C9-C10-C11-0.8 (4)C1-N2-C4-C313.4 (3)O1-C10-C11-C12-179.1 (2)	C2-N1-C1-N2	43.2 (2)	N2-C1-C7-C8	34.0 (3)
C4-N2-C1-N1 $-41.8 (3)$ $N2-C1-C7-C12$ $-149.3 (2)$ $C4-N2-C1-C7$ $80.6 (2)$ $C12-C7-C8-C9$ $1.2 (4)$ $C1-N1-C2-C3$ $-16.4 (3)$ $C1-C7-C8-C9$ $177.9 (2)$ $C1-N1-C2-C5$ $166.9 (2)$ $C7-C8-C9-C10$ $-0.4 (4)$ $N1-C2-C3-C4$ $-16.2 (3)$ $C8-C9-C10-O1$ $179.5 (2)$ $C5-C2-C3-C4$ $160.4 (2)$ $C8-C9-C10-C11$ $-0.8 (4)$ $C1-N2-C4-C3$ $13.4 (3)$ $O1-C10-C11-C12$ $-179.1 (2)$	C2—N1—C1—C7	-80.1 (2)	N1-C1-C7-C12	-28.8 (3)
C4—N2—C1—C7 80.6 (2) $C12$ —C7—C8—C9 1.2 (4)C1—N1—C2—C3 -16.4 (3) $C1$ —C7—C8—C9 177.9 (2)C1—N1—C2—C5 166.9 (2) $C7$ —C8—C9—C10 -0.4 (4)N1—C2—C3—C4 -16.2 (3) $C8$ —C9—C10—O1 179.5 (2)C5—C2—C3—C4 160.4 (2) $C8$ —C9—C10—C11 -0.8 (4)C1—N2—C4—C3 13.4 (3) $O1$ —C10—C11—C12 -179.1 (2)	C4—N2—C1—N1	-41.8 (3)	N2-C1-C7-C12	-149.3 (2)
C1-N1-C2-C3 -16.4 (3) $C1-C7-C8-C9$ 177.9 (2) $C1-N1-C2-C5$ 166.9 (2) $C7-C8-C9-C10$ -0.4 (4) $N1-C2-C3-C4$ -16.2 (3) $C8-C9-C10-O1$ 179.5 (2) $C5-C2-C3-C4$ 160.4 (2) $C8-C9-C10-C11$ -0.8 (4) $C1-N2-C4-C3$ 13.4 (3) $O1-C10-C11-C12$ -179.1 (2)	C4—N2—C1—C7	80.6 (2)	C12—C7—C8—C9	1.2 (4)
C1-N1-C2-C5166.9 (2) $C7-C8-C9-C10$ -0.4 (4) $N1-C2-C3-C4$ -16.2 (3) $C8-C9-C10-O1$ 179.5 (2) $C5-C2-C3-C4$ 160.4 (2) $C8-C9-C10-C11$ -0.8 (4) $C1-N2-C4-C3$ 13.4 (3) $O1-C10-C11-C12$ -179.1 (2)	C1—N1—C2—C3	-16.4 (3)	C1—C7—C8—C9	177.9 (2)
N1-C2-C3-C4 -16.2 (3)C8-C9-C10-O1179.5 (2)C5-C2-C3-C4160.4 (2)C8-C9-C10-C11 -0.8 (4)C1-N2-C4-C313.4 (3)O1-C10-C11-C12 -179.1 (2)	C1—N1—C2—C5	166.9 (2)	C7—C8—C9—C10	-0.4 (4)
C5-C2-C3-C4160.4 (2) $C8-C9-C10-C11$ -0.8 (4) $C1-N2-C4-C3$ 13.4 (3) $O1-C10-C11-C12$ -179.1 (2)	N1-C2-C3-C4	-16.2 (3)	C8—C9—C10—O1	179.5 (2)
C1—N2—C4—C3 13.4 (3) O1—C10—C11—C12 -179.1 (2)	C5—C2—C3—C4	160.4 (2)	C8—C9—C10—C11	-0.8 (4)
	C1—N2—C4—C3	13.4 (3)	O1-C10-C11-C12	-179.1 (2)
C1-N2-C4-C6 -170.9 (2) $C9-C10-C11-C12$ 1.3 (4)	C1—N2—C4—C6	-170.9 (2)	C9—C10—C11—C12	1.3 (4)

C2-C3-C4-N2	17.7 (3)	C8—C7—C12—C11	-0.7 (4)
C2—C3—C4—C6	-157.9 (2)	C1—C7—C12—C11	-177.5 (2)
N1—C1—C7—C8	154.5 (2)	C10-C11-C12-C7	-0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
O1—H1 <i>B</i> ···O3 ⁱ	0.87	1.76	2.609 (3)	165
N1—H1···O2 ⁱⁱ	0.91	1.83	2.731 (3)	172
N2—H2···O3 ⁱⁱⁱ	0.91	1.87	2.771 (2)	170
C1—H1A···O1 ^{iv}	0.98	2.31	3.214 (3)	154

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*+1/2; (ii) -*x*+1/2, *y*+1/2, *z*-1/2; (iii) -*x*+1, -*y*+1, *z*-1/2; (iv) *x*, *y*, *z*-1.