

IUCrData

ISSN 2414-3146

Received 2 August 2018 Accepted 2 August 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional coressponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; 1,2,3-triazole; thiophene.

CCDC reference: 1859955

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 2-anilino-4-methyl-5-[5-methyl-1-(4-methyl-phenyl)-1*H*-1,2,3-triazole-4-carbonyl]thiophene-3-carboxylate

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Emad Yousif,^e Amany S. Hegazy^f and Benson M. Kariuki^f‡

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dCenter of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, ^eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and ^fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

The conformation of the title compound, $C_{25}H_{24}N_4O_3S$, is influenced by an intramolecular N-H···O hydrogen bond, which generates an *S*(6) ring. The twist angles between the planes through the toluyl, methyltriazole, thiophene and phenyl rings are 60.1 (1), 33.5 (1) and 39.9 (1)°, respectively. In the crystal, molecules are stacked along the *a*-axis direction with weak aromatic π - π stacking interactions occurring between the thiophene rings [centroid-to-centroid distance = 3.7285 (15) Å].

Structure description

Substituted 2-aminothiophenes are found in numerous biologically active compounds including olanzapine as an antipsychotic drug and tinoridine as a potent nonsteroidal anti-inflammatory drug (Al-Taisan *et al.*, 2010; Huang & Dömling, 2011; Wardakhan *et al.*, 2016). As part of our studies of similar systems, we now describe the structure of the title compound.

The asymmetric unit comprises one molecule of $C_{25}H_{24}N_4O_3S$ (Fig. 1). An intramolecular N-H···O hydrogen bond occurs in the molecule (Table 1) and the twist angles between the planes through the toluyl, methyltriazole, thiophene and phenyl rings are 60.1 (1)°, 33.5 (1)° and 39.9 (1)° respectively. In the crystal, molecules are stacked along the *a*-axis and π - π type interactions involving thiophene groups of neighbouring

Figure 1

The molecular structure of the title compound, showing 50% displacement ellipsoids.

molecules with centroid-to-centroid distances of 3.7285 (15) Å are observed (Fig. 2); the pairs are related by a twofold rotation axis.

Synthesis and crystallization

The title compound was synthesized by a literature procedure (Mohamed *et al.*, 2017) in 78% yield and recrystallized from dimethylformamide solution as yellow plates, m.p. 472–473 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A segment of the crystal structure showing thiophene π - π contacts as dotted lines.

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N5−H5···O2	0.86	2.08	2.704 (3)	129		

Table 🛛	2	
- ·		• •

Experimental details.

Crystal data	
Chemical formula	$C_{25}H_{24}N_4O_3S$
$M_{\rm r}$	460.54
Crystal system, space group	Monoclinic, P2/c
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.3287 (7), 13.8956 (9), 20.3124 (15)
β (°)	90.635 (8)
$V(\dot{A}^3)$	2350.7 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.17
Crystal size (mm)	$0.23 \times 0.15 \times 0.04$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.995, 0.999
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22546, 5978, 2688
R _{int}	0.075
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.700
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.182, 1.01
No. of reflections	5978
No. of parameters	302
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.22, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (grant No. 20-0180).

References

- Al-Taisan, K. M., Al-Hazimi, H. M. A. & Al-Shihry, S. S. (2010). *Molecules*, 15, 3932–3957.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Huang, Y. & Dömling, A. (2011). Mol. Divers. 15, 3-33.
- Mohamed, H. A., Abdel-Wahab, B. F. & El-Hiti, G. A. (2017). *Heterocycles*, 94, 716–726.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wardakhan, W. W., Hamed, F. I. & Samir, E. M. (2016). *Eur. Chem. Bull.* **5**, 82–87.

full crystallographic data

IUCrData (2018). **3**, x181106 [https://doi.org/10.1107/S2414314618011069]

Ethyl 2-anilino-4-methyl-5-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazole-4-carbonyl]thiophene-3-carboxylate

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Emad Yousif, Amany S. Hegazy and Benson M. Kariuki

Ethyl 2-anilino-4-methyl-5-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbonyl]thiophene-3-carboxylate

F(000) = 968

 $\theta = 3.9 - 24.4^{\circ}$

 $\mu = 0.17 \text{ mm}^{-1}$

Plate, yellow

 $R_{\rm int} = 0.075$

 $h = -8 \rightarrow 11$

 $k = -19 \rightarrow 18$

 $l = -27 \rightarrow 25$

 $0.23 \times 0.15 \times 0.04 \text{ mm}$

 $\theta_{\rm max} = 29.8^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$

5978 independent reflections

2688 reflections with $I > 2\sigma(I)$

T = 293 K

 $D_{\rm x} = 1.301 {\rm Mg m^{-3}}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3069 reflections

Crystal data

 $C_{25}H_{24}N_4O_3S$ $M_r = 460.54$ Monoclinic, P2/c a = 8.3287 (7) Å b = 13.8956 (9) Å c = 20.3124 (15) Å $\beta = 90.635 (8)^{\circ}$ $V = 2350.7 (3) \text{ Å}^3$ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.995, T_{\max} = 0.999$ 22546 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.182$	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.1629P]$
S = 1.01	where $P = (F_0^2 + 2F_c^2)/3$
5978 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
302 parameters	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times $U_{eq}(C)$, and were allowed to spin about the C—C bond. Methylene C—H bonds were fixed at 0.97 Å with displacement parameters 1.2 times $U_{eq}(C)$. The N—H bond was fixed at 0.86 Å and aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the U_{eq} for the atoms to which they are bonded.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2351 (6)	0.5726 (3)	-0.2019 (2)	0.1272 (19)
H1A	0.258516	0.607548	-0.241464	0.191*
H1B	0.121086	0.571410	-0.195501	0.191*
H1C	0.274461	0.507974	-0.205703	0.191*
C2	0.3162 (4)	0.6218 (3)	-0.14350 (19)	0.0806 (11)
C3	0.3240 (4)	0.5779 (3)	-0.08255 (19)	0.0773 (10)
Н3	0.280124	0.516873	-0.077300	0.093*
C4	0.3951 (4)	0.6227 (2)	-0.02960 (16)	0.0682 (9)
H4	0.398191	0.592515	0.011252	0.082*
C5	0.4618 (4)	0.7124 (2)	-0.03719 (15)	0.0573 (8)
C6	0.4602 (5)	0.7578 (2)	-0.09710 (16)	0.0738 (10)
H6	0.507335	0.817946	-0.102273	0.089*
C7	0.3861 (5)	0.7112 (3)	-0.15004 (17)	0.0856 (12)
H7	0.383682	0.741238	-0.190945	0.103*
C8	0.3672 (3)	0.9046 (2)	0.02623 (15)	0.0606 (8)
H8A	0.390832	0.931514	-0.016115	0.091*
H8B	0.353249	0.955629	0.057517	0.091*
H8C	0.270483	0.867268	0.023214	0.091*
C9	0.5025 (3)	0.8417 (2)	0.04803 (14)	0.0499 (7)
C10	0.6094 (3)	0.8475 (2)	0.09995 (14)	0.0499 (7)
C11	0.6279 (3)	0.9260 (2)	0.14862 (14)	0.0523 (7)
C12	0.7123 (3)	0.90717 (19)	0.21113 (13)	0.0478 (7)
C13	0.7711 (3)	0.97434 (18)	0.25536 (13)	0.0462 (7)
C14	0.7598 (4)	1.0808 (2)	0.24459 (15)	0.0652 (9)
H14A	0.748681	1.093725	0.198343	0.098*
H14B	0.855405	1.111218	0.261266	0.098*
H14C	0.668146	1.105577	0.267262	0.098*
C15	0.8426 (3)	0.92958 (18)	0.31215 (13)	0.0452 (6)
C16	0.8296 (3)	0.8298 (2)	0.31015 (13)	0.0492 (7)
C17	0.8438 (4)	0.6707 (2)	0.36650 (14)	0.0543 (7)
C18	0.9483 (4)	0.6112 (2)	0.39992 (19)	0.0785 (10)
H18	1.046890	0.634573	0.414740	0.094*
C19	0.9063 (5)	0.5164 (3)	0.4114 (2)	0.1003 (14)
H19	0.976830	0.476175	0.434132	0.120*
C20	0.7604 (6)	0.4812 (3)	0.3894 (2)	0.0944 (12)
H20	0.733104	0.417163	0.396539	0.113*
C21	0.6571 (5)	0.5408 (3)	0.35733 (18)	0.0844 (11)
H21	0.558510	0.517401	0.342538	0.101*
C22	0.6966 (4)	0.6350 (2)	0.34652 (15)	0.0690 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H22	0.623431	0.675404	0.325436	0.083*
C23	0.9240 (3)	0.9763 (2)	0.36794 (14)	0.0500 (7)
C24	0.9832 (5)	1.1200 (3)	0.42540 (19)	0.0979 (14)
H24A	0.942386	1.098416	0.467452	0.117*
H24B	1.096991	1.105427	0.423970	0.117*
C25	0.9584 (6)	1.2224 (3)	0.4184 (2)	0.1055 (15)
H25A	0.993383	1.242598	0.375645	0.158*
H25B	1.019087	1.255818	0.451680	0.158*
H25C	0.846424	1.236812	0.423043	0.158*
N1	0.5376 (3)	0.75785 (17)	0.01888 (11)	0.0533 (6)
N2	0.6622 (3)	0.71189 (17)	0.05061 (13)	0.0659 (7)
N3	0.7040 (3)	0.76756 (18)	0.09930 (13)	0.0638 (7)
N5	0.8863 (3)	0.76760 (15)	0.35745 (11)	0.0556 (6)
H5	0.956005	0.790616	0.384744	0.067*
O1	0.5702 (3)	1.00550 (14)	0.13552 (10)	0.0701 (6)
O2	1.0056 (2)	0.93309 (14)	0.40814 (10)	0.0633 (6)
03	0.8992 (3)	1.07044 (14)	0.37197 (10)	0.0687 (6)
S1	0.74326 (9)	0.78984 (5)	0.23839 (4)	0.0566 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.128 (4)	0.167 (4)	0.085 (3)	0.025 (3)	-0.044 (3)	-0.059 (3)
C2	0.078 (2)	0.101 (3)	0.062 (2)	0.022 (2)	-0.022 (2)	-0.030 (2)
C3	0.075 (2)	0.089 (2)	0.068 (3)	-0.0077 (18)	-0.005 (2)	-0.024 (2)
C4	0.072 (2)	0.084 (2)	0.049 (2)	-0.0071 (17)	-0.0067 (17)	-0.0090 (17)
C5	0.0613 (18)	0.0681 (19)	0.0421 (18)	0.0094 (15)	-0.0116 (15)	-0.0086 (15)
C6	0.104 (3)	0.069 (2)	0.048 (2)	0.0157 (18)	-0.013 (2)	-0.0028 (16)
C7	0.119 (3)	0.094 (3)	0.043 (2)	0.038 (2)	-0.020 (2)	-0.0071 (19)
C8	0.0534 (17)	0.080 (2)	0.0483 (18)	0.0117 (15)	-0.0090 (15)	-0.0020 (15)
C9	0.0532 (16)	0.0578 (17)	0.0387 (16)	0.0019 (13)	-0.0038 (14)	0.0015 (13)
C10	0.0501 (15)	0.0605 (17)	0.0389 (16)	0.0035 (13)	-0.0093 (14)	-0.0008 (13)
C11	0.0504 (16)	0.0618 (18)	0.0446 (17)	-0.0007 (13)	-0.0066 (14)	0.0028 (14)
C12	0.0482 (15)	0.0560 (16)	0.0389 (16)	0.0013 (12)	-0.0061 (13)	0.0013 (12)
C13	0.0480 (15)	0.0530 (16)	0.0376 (16)	-0.0030 (12)	-0.0030 (13)	0.0003 (12)
C14	0.082 (2)	0.0602 (18)	0.053 (2)	0.0001 (15)	-0.0175 (18)	0.0064 (14)
C15	0.0477 (15)	0.0510 (15)	0.0368 (15)	-0.0009 (12)	-0.0062 (13)	0.0003 (12)
C16	0.0487 (15)	0.0592 (17)	0.0395 (16)	-0.0015 (13)	-0.0062 (13)	0.0043 (13)
C17	0.0642 (18)	0.0537 (16)	0.0450 (18)	-0.0015 (14)	-0.0017 (15)	0.0010 (14)
C18	0.068 (2)	0.067 (2)	0.100 (3)	0.0027 (17)	-0.006(2)	0.018 (2)
C19	0.092 (3)	0.067 (2)	0.142 (4)	0.015 (2)	0.018 (3)	0.032 (2)
C20	0.114 (3)	0.061 (2)	0.109 (3)	-0.016 (2)	0.035 (3)	-0.006 (2)
C21	0.104 (3)	0.088 (3)	0.061 (2)	-0.035 (2)	0.004 (2)	0.0007 (19)
C22	0.076 (2)	0.082 (2)	0.049 (2)	-0.0230 (18)	-0.0065 (17)	0.0126 (16)
C23	0.0483 (15)	0.0568 (17)	0.0448 (17)	-0.0040 (13)	-0.0046 (14)	0.0015 (14)
C24	0.139 (4)	0.076 (2)	0.078 (3)	-0.012 (2)	-0.051 (3)	-0.016 (2)
C25	0.127 (4)	0.077 (3)	0.113 (4)	-0.010 (2)	-0.020 (3)	-0.027 (2)
N1	0.0560 (14)	0.0644 (15)	0.0391 (14)	0.0047 (11)	-0.0115 (12)	-0.0036 (11)

data reports

N2	0.0747 (17)	0.0699 (16)	0.0527 (16)	0.0169 (13)	-0.0218 (14)	-0.0058 (13)
N3	0.0719 (17)	0.0690 (16)	0.0500 (16)	0.0115 (13)	-0.0211 (14)	-0.0087 (13)
N5	0.0644 (15)	0.0574 (14)	0.0446 (14)	-0.0087 (11)	-0.0173 (13)	0.0073 (11)
O1	0.0911 (15)	0.0616 (13)	0.0569 (14)	0.0122 (11)	-0.0263 (12)	-0.0016 (10)
O2	0.0708 (13)	0.0723 (13)	0.0464 (12)	0.0054 (10)	-0.0191 (11)	-0.0015 (10)
O2 O3 S1	0.0708 (13) 0.0939 (16) 0.0691 (5)	0.0723 (13) 0.0550 (13) 0.0553 (4)	0.0464 (12) 0.0565 (14) 0.0451 (5)	$\begin{array}{c} 0.0054 (10) \\ -0.0055 (11) \\ -0.0026 (3) \end{array}$	$\begin{array}{c} -0.0191 (11) \\ -0.0290 (12) \\ -0.0158 (4) \end{array}$	-0.0015 (10) -0.0054 (10) 0.0004 (3)

Geometric parameters (Å, °)

С1—С2	1.521 (5)	C14—H14B	0.9600
C1—H1A	0.9600	C14—H14C	0.9600
C1—H1B	0.9600	C15—C16	1.391 (4)
C1—H1C	0.9600	C15—C23	1.465 (4)
C2—C7	1.379 (5)	C16—N5	1.373 (3)
C2—C3	1.381 (5)	C16—S1	1.711 (3)
C3—C4	1.372 (4)	C17—C18	1.374 (4)
С3—Н3	0.9300	C17—C22	1.379 (4)
C4—C5	1.373 (4)	C17—N5	1.405 (3)
C4—H4	0.9300	C18—C19	1.383 (5)
C5—C6	1.371 (4)	C18—H18	0.9300
C5—N1	1.442 (3)	C19—C20	1.380 (5)
C6—C7	1.394 (5)	С19—Н19	0.9300
С6—Н6	0.9300	C20—C21	1.355 (5)
С7—Н7	0.9300	С20—Н20	0.9300
С8—С9	1.489 (4)	C21—C22	1.368 (4)
C8—H8A	0.9600	C21—H21	0.9300
C8—H8B	0.9600	С22—Н22	0.9300
C8—H8C	0.9600	C23—O2	1.215 (3)
C9—N1	1.341 (3)	C23—O3	1.327 (3)
C9—C10	1.375 (3)	C24—C25	1.445 (5)
C10—N3	1.363 (3)	C24—O3	1.457 (3)
C10-C11	1.479 (4)	C24—H24A	0.9700
C11—O1	1.232 (3)	C24—H24B	0.9700
C11—C12	1.468 (4)	С25—Н25А	0.9600
C12—C13	1.381 (4)	С25—Н25В	0.9600
C12—S1	1.740 (3)	С25—Н25С	0.9600
C13—C15	1.434 (3)	N1—N2	1.373 (3)
C13—C14	1.498 (4)	N2—N3	1.300 (3)
C14—H14A	0.9600	N5—H5	0.8600
C2—C1—H1A	109.5	H14B—C14—H14C	109.5
C2—C1—H1B	109.5	C16—C15—C13	112.1 (2)
H1A—C1—H1B	109.5	C16—C15—C23	120.0 (2)
C2—C1—H1C	109.5	C13—C15—C23	127.9 (2)
H1A—C1—H1C	109.5	N5-C16-C15	125.5 (2)
H1B—C1—H1C	109.5	N5-C16-S1	122.0 (2)
C7—C2—C3	117.9 (3)	C15—C16—S1	112.37 (19)

C7—C2—C1	120.9 (4)	C18—C17—C22	119.0 (3)
C3—C2—C1	121.2 (4)	C18—C17—N5	118.8 (3)
C4—C3—C2	121.2 (4)	C22—C17—N5	122.1 (3)
С4—С3—Н3	119.4	C17—C18—C19	119.7 (3)
С2—С3—Н3	119.4	C17—C18—H18	120.1
C3—C4—C5	119.7 (3)	C19—C18—H18	120.1
C3—C4—H4	120.1	C20—C19—C18	120.4 (3)
С5—С4—Н4	120.1	С20—С19—Н19	119.8
C6—C5—C4	121.2 (3)	C18—C19—H19	119.8
C6-C5-N1	119.9 (3)	C21—C20—C19	119.4 (4)
C4—C5—N1	118.9 (3)	C21—C20—H20	120.3
C5—C6—C7	118.1 (3)	С19—С20—Н20	120.3
С5—С6—Н6	121.0	C20—C21—C22	120.6 (3)
С7—С6—Н6	121.0	C20—C21—H21	119.7
C2—C7—C6	121.9 (3)	C22—C21—H21	119.7
С2—С7—Н7	119.1	C21—C22—C17	120.8 (3)
С6—С7—Н7	119.1	C21—C22—H22	119.6
С9—С8—Н8А	109.5	С17—С22—Н22	119.6
С9—С8—Н8В	109.5	O2—C23—O3	122.1 (2)
H8A—C8—H8B	109.5	O2—C23—C15	123.5 (3)
С9—С8—Н8С	109.5	O3—C23—C15	114.4 (2)
H8A—C8—H8C	109.5	C25—C24—O3	108.9 (3)
H8B—C8—H8C	109.5	C25—C24—H24A	109.9
N1—C9—C10	104.3 (2)	O3—C24—H24A	109.9
N1—C9—C8	123.1 (2)	C25—C24—H24B	109.9
С10—С9—С8	132.5 (3)	O3—C24—H24B	109.9
N3—C10—C9	108.3 (2)	H24A—C24—H24B	108.3
N3—C10—C11	123.5 (2)	C24—C25—H25A	109.5
C9—C10—C11	128.1 (2)	C24—C25—H25B	109.5
O1—C11—C12	121.9 (3)	H25A—C25—H25B	109.5
O1—C11—C10	118.6 (2)	C24—C25—H25C	109.5
C12—C11—C10	119.4 (2)	H25A—C25—H25C	109.5
C13—C12—C11	127.2 (2)	H25B—C25—H25C	109.5
C13—C12—S1	112.07 (19)	C9—N1—N2	111.4 (2)
C11—C12—S1	120.7 (2)	C9—N1—C5	129.3 (2)
C12—C13—C15	111.8 (2)	N2—N1—C5	119.3 (2)
C12—C13—C14	123.4 (2)	N3—N2—N1	106.0 (2)
C15—C13—C14	124.8 (2)	N2—N3—C10	110.0 (2)
C13—C14—H14A	109.5	C16—N5—C17	127.6 (2)
C13—C14—H14B	109.5	C16—N5—H5	116.2
H14A—C14—H14B	109.5	C17—N5—H5	116.2
C13—C14—H14C	109.5	C23—O3—C24	116.0 (2)
H14A—C14—H14C	109.5	C16—S1—C12	91.50 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N5—H5…O2	0.86	2.08	2.704 (3)	129