IUCrData

ISSN 2414-3146

Received 6 August 2018 Accepted 16 August 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; pyrrole; carbohydrazide.

CCDC reference: 1862395

Structural data: full structural data are available from iucrdata.iucr.org

5-Methyl-1-(4-methylphenyl)-*N*'-[1-(1*H*-pyrrol-2-yl)ethylidene]-1*H*-1,2,3-triazole-4-carbohydrazide monohydrate

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Emad Yousif,^e Amany S. Hegazy^f and Benson M. Kariuki^f‡

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, ^eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and ^fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

In the title hydrate, $C_{17}H_{18}N_6O \cdot H_2O$, the twist angles between the least-squares planes of the pyrolyl/methyltriazolyl/tolyl groups are 11.4 (2) and 7.9 (1)°, respectively. In the crystal, centrosymmetric tetramers (two organic molecules and two water molecules) are linked by N-H···O and O-H···O hydrogen bonds. Weak aromatic π - π stacking interactions between the triazolyl rings [centroid–centroid separation = 3.6422 (10) Å] link the tetramers.

Structure description

Arylidene carbohydrazides have various biological activities (Almasirad *et al.*, 2005; Bonacorso *et al.*, 2012; Hernández-Vázquez *et al.*, 2016; Leite *et al.*, 1999; Lima *et al.*, 2000). As part of our studies in this area, we now describe the synthesis and structure of the title hydrate.

The asymmetric unit consists of a 1,2,3-triazole-4-carbohydrazide molecule and a water molecule (Fig. 1). The twist angles between the least-squares planes of the pyrolyl/ methyltriazolyl/tolyl groups are 11.4 (2) and 7.9 (1)°, respectively. In the crystal, the pyrolyl group donates an $N-H\cdots O$ hydrogen bond to the water molecule, which in turn donates O-H hydrogen bonds to two neighbouring molecules, thereby linking them (Table 1, Fig. 2) into a centrosymmetric tetramer. Organic molecules related by inversion symmetry are arranged in pairs with the centroids of their triazolyl rings 3.6422 (10) Å

Figure 1

The molecular structure, showing 50% probability displacement ellipsoids.

apart. The pairs are stacked such that the closest distance between the centroids of triazolyl groups of neighbouring pairs is 3.967 (2) Å.

Synthesis and crystallization

The title compound (yield 85%) was synthesized from reaction of a mixture of 5-methyl-1-(4-methylphenyl)-1H-1,2,3triazole-4-carbohydrazide and 1-(1H-pyrrol-2-yl)ethanone in boiling ethanol containing a few drops of acetic acid for 4 h. The crude product obtained was recrystallized from dimethylformamide solution to give colourless crystals. The water molecule of crystallization was presumably absorbed from the atmosphere.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020-0180).

Figure 2

A segment of the crystal structure, showing $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds and centroid–centroid contacts as dashed lines. Some H atoms have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$ \begin{array}{c} \hline N1 - H1A \cdots O2^{i} \\ O2 - H1O \cdots O1^{ii} \\ O2 - H2O \cdots N2^{i} \\ O2 - H2O \cdots O1^{i} \end{array} $	0.86 0.87 (4) 0.79 (4) 0.79 (4)	1.98 1.96 (4) 2.43 (4) 2.20 (4)	2.838 (2) 2.822 (2) 2.966 (3) 2.961 (2)	176 174 (3) 126 (3) 162 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_{17}H_{18}N_6O\cdot H_2O$
M _r	340.39
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	7.3968 (8), 10.6475 (9),
	12.7769 (13)
$lpha,eta,\gamma(^\circ)$	106.577 (9), 100.809 (9), 108.208 (9)
$V(Å^3)$	872.83 (16)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.26 \times 0.18 \times 0.15$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.497, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7305, 4129, 2871
R _{int}	0.022
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.699
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.155, 1.05
No. of reflections	4129
No. of parameters	237
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.21, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

References

- Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J., Khorasani, R. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419–425.
- Bonacorso, H. G., Cavinatto, S., Campos, P. T., Porte, L. M. F., Navarini, J., Paim, G. R., Martins, M. A. P., Zanatta, N. & Stuker, C. Z. (2012). J. Fluor. Chem. 135, 303–314.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hernández-Vázquez, E., Salgado-Barrera, S., Ramírez-Espinosa, J. J., Estrada-Soto, S. & Hernández-Luis, F. (2016). *Bioorg. Med. Chem.* 24, 2298–2306.
- Leite, L. F., Ramos, M. N., da Silva, J. B., Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (1999). *Farmaco*, **54**, 747–757.
- Lima, P. C., Lima, L. M., da Silva, K. C., Léda, P. H., de Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187–203.

Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

full crystallographic data

IUCrData (2018). **3**, x181162 [https://doi.org/10.1107/S2414314618011628]

5-Methyl-1-(4-methylphenyl)-*N*'-[1-(1*H*-pyrrol-2-yl)ethylidene]-1*H*-1,2,3triazole-4-carbohydrazide monohydrate

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Emad Yousif, Amany S. Hegazy and Benson M. Kariuki

5-Methyl-1-(4-methylphenyl)-*N'*-[1-(1*H*-pyrrol-2-yl)ethylidene]-1*H*-1,2,3-triazole-4-carbohydrazide monohydrate

Crystal data

 $C_{17}H_{18}N_6O \cdot H_2O$ $M_r = 340.39$ Triclinic, $P\overline{1}$ a = 7.3968 (8) Å b = 10.6475 (9) Å c = 12.7769 (13) Å a = 106.577 (9)° $\beta = 100.809$ (9)° $\gamma = 108.208$ (9)° V = 872.83 (16) Å³

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.497, T_{\max} = 1.000$ 7305 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.155$ S = 1.054129 reflections 237 parameters 0 restraints Z = 2 F(000) = 360 $D_x = 1.295 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2273 reflections $\theta = 3.4-28.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.26 \times 0.18 \times 0.15 \text{ mm}$

4129 independent reflections 2871 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 29.8^\circ, \ \theta_{min} = 3.0^\circ$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 13$ $l = -16 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.2675P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Water H atoms were located on the difference Fourier map and refined freely. The rest of the H atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times $U_{eq}(C)$, and were allowed to spin about the C—C bond. N—H bonds were fixed at 0.86 Å and aromatic C—H distances were set at 0.93 Å and their U_{iso} values set at 1.2 times the U_{eq} for the atoms to which they are bonded.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4498 (4)	0.5591 (2)	-0.34752 (19)	0.0624 (6)	
H1	0.552068	0.614290	-0.367621	0.075*	
C2	0.2509 (4)	0.5212 (3)	-0.3952 (2)	0.0674 (7)	
H2	0.192987	0.545682	-0.453369	0.081*	
C3	0.1493 (3)	0.4384 (2)	-0.34062 (18)	0.0582 (6)	
H3	0.011555	0.397898	-0.355871	0.070*	
C4	0.2908 (3)	0.4282 (2)	-0.26023 (15)	0.0449 (4)	
C5	0.2718 (3)	0.3527 (2)	-0.18161 (15)	0.0435 (4)	
C6	0.0678 (3)	0.2643 (3)	-0.1852 (2)	0.0661 (6)	
H6A	0.050998	0.166304	-0.208278	0.099*	
H6B	-0.030420	0.274780	-0.239134	0.099*	
H6C	0.051649	0.295101	-0.110493	0.099*	
C7	0.5842 (3)	0.28246 (19)	0.01528 (15)	0.0427 (4)	
C8	0.5431 (3)	0.19870 (19)	0.08797 (15)	0.0437 (4)	
C9	0.6700 (3)	0.1633 (2)	0.15650 (15)	0.0447 (4)	
C10	0.8839 (3)	0.1866 (3)	0.1746 (2)	0.0644 (6)	
H10A	0.965436	0.277622	0.233966	0.097*	
H10B	0.915867	0.184061	0.104786	0.097*	
H10C	0.908864	0.113237	0.196794	0.097*	
C11	0.5936 (3)	0.02833 (19)	0.28757 (15)	0.0423 (4)	
C12	0.4664 (3)	-0.1064 (2)	0.27027 (16)	0.0473 (5)	
H12	0.357886	-0.158025	0.204142	0.057*	
C13	0.5012 (3)	-0.1642 (2)	0.35192 (17)	0.0510 (5)	
H13	0.414885	-0.255287	0.340156	0.061*	
C14	0.6612 (3)	-0.0901 (2)	0.45079 (17)	0.0493 (5)	
C15	0.7877 (3)	0.0454 (2)	0.46619 (17)	0.0537 (5)	
H15	0.897338	0.096469	0.531771	0.064*	
C16	0.7543 (3)	0.1060 (2)	0.38601 (17)	0.0514 (5)	
H16	0.838664	0.197805	0.398139	0.062*	
C17	0.6964 (4)	-0.1568 (3)	0.5383 (2)	0.0680 (6)	
H17A	0.574689	-0.194456	0.555808	0.102*	
H17B	0.797874	-0.086174	0.606917	0.102*	
H17C	0.738952	-0.232303	0.507897	0.102*	
N1	0.4733 (3)	0.50299 (17)	-0.26600 (14)	0.0512 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1A	0.586128	0.512927	-0.224096	0.061*	
N2	0.4359 (2)	0.36382 (16)	-0.11682 (13)	0.0447 (4)	
N3	0.4194 (2)	0.28847 (17)	-0.04530 (13)	0.0463 (4)	
H3A	0.304451	0.245452	-0.039329	0.056*	
N4	0.3558 (2)	0.14459 (19)	0.09563 (14)	0.0528 (4)	
N5	0.3573 (2)	0.07814 (19)	0.16659 (15)	0.0539 (4)	
N6	0.5496 (2)	0.08967 (17)	0.20462 (13)	0.0455 (4)	
01	0.75210 (19)	0.33899 (15)	0.00833 (11)	0.0534 (4)	
O2	0.1638 (3)	0.4799 (3)	0.1289 (2)	0.1062 (9)	
H1O	0.036 (6)	0.435 (4)	0.097 (3)	0.130 (13)*	
H2O	0.211 (5)	0.529 (4)	0.097 (3)	0.109 (11)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0743 (16)	0.0615 (13)	0.0618 (13)	0.0252 (12)	0.0203 (11)	0.0391 (11)
C2	0.0841 (18)	0.0699 (15)	0.0594 (13)	0.0369 (13)	0.0114 (12)	0.0388 (12)
C3	0.0546 (13)	0.0656 (14)	0.0585 (12)	0.0275 (11)	0.0077 (10)	0.0301 (11)
C4	0.0470 (11)	0.0474 (11)	0.0436 (10)	0.0207 (9)	0.0111 (8)	0.0205 (8)
C5	0.0409 (10)	0.0469 (10)	0.0433 (9)	0.0165 (8)	0.0106 (8)	0.0196 (8)
C6	0.0405 (12)	0.0849 (16)	0.0720 (14)	0.0128 (11)	0.0108 (10)	0.0445 (13)
C7	0.0401 (10)	0.0453 (10)	0.0398 (9)	0.0114 (8)	0.0089 (7)	0.0192 (8)
C8	0.0391 (10)	0.0479 (11)	0.0435 (9)	0.0120 (8)	0.0099 (7)	0.0233 (8)
C9	0.0410 (10)	0.0489 (11)	0.0462 (10)	0.0129 (8)	0.0121 (8)	0.0262 (8)
C10	0.0452 (12)	0.0883 (17)	0.0806 (15)	0.0278 (11)	0.0224 (11)	0.0565 (14)
C11	0.0425 (10)	0.0481 (10)	0.0459 (10)	0.0197 (8)	0.0165 (8)	0.0268 (8)
C12	0.0466 (11)	0.0469 (11)	0.0493 (10)	0.0147 (9)	0.0176 (8)	0.0212 (9)
C13	0.0554 (12)	0.0463 (11)	0.0635 (12)	0.0203 (9)	0.0286 (10)	0.0302 (10)
C14	0.0599 (12)	0.0588 (12)	0.0545 (11)	0.0358 (10)	0.0305 (10)	0.0342 (10)
C15	0.0567 (12)	0.0567 (12)	0.0508 (11)	0.0242 (10)	0.0111 (9)	0.0252 (10)
C16	0.0511 (12)	0.0452 (11)	0.0563 (11)	0.0137 (9)	0.0104 (9)	0.0256 (9)
C17	0.0860 (17)	0.0842 (17)	0.0734 (15)	0.0506 (14)	0.0406 (13)	0.0550 (13)
N1	0.0508 (10)	0.0571 (10)	0.0542 (9)	0.0212 (8)	0.0144 (7)	0.0332 (8)
N2	0.0423 (9)	0.0525 (9)	0.0456 (8)	0.0172 (7)	0.0126 (7)	0.0287 (7)
N3	0.0361 (8)	0.0582 (10)	0.0503 (9)	0.0141 (7)	0.0125 (7)	0.0333 (8)
N4	0.0420 (9)	0.0660 (11)	0.0572 (10)	0.0171 (8)	0.0131 (7)	0.0382 (9)
N5	0.0401 (9)	0.0675 (11)	0.0618 (10)	0.0165 (8)	0.0142 (7)	0.0405 (9)
N6	0.0388 (9)	0.0521 (9)	0.0504 (9)	0.0147 (7)	0.0123 (7)	0.0298 (7)
01	0.0375 (7)	0.0699 (9)	0.0561 (8)	0.0135 (7)	0.0118 (6)	0.0375 (7)
O2	0.0396 (10)	0.147 (2)	0.1405 (19)	0.0047 (11)	0.0041 (11)	0.1141 (18)

Geometric parameters (Å, °)

C1—N1	1.351 (2)	C10—H10C	0.9600	
C1—C2	1.360 (3)	C11—C12	1.375 (3)	
C1—H1	0.9300	C11—C16	1.382 (3)	
C2—C3	1.400 (3)	C11—N6	1.433 (2)	
С2—Н2	0.9300	C12—C13	1.377 (3)	

C3—C4	1.377 (3)	C12—H12	0.9300
С3—Н3	0.9300	C13—C14	1.380 (3)
C4—N1	1.364 (3)	С13—Н13	0.9300
C4—C5	1.455 (2)	C14—C15	1.386 (3)
C5—N2	1.285 (2)	C14—C17	1.511 (3)
C5—C6	1.492 (3)	C15—C16	1.382 (3)
С6—Н6А	0.9600	С15—Н15	0.9300
С6—Н6В	0.9600	C16—H16	0.9300
С6—Н6С	0.9600	С17—Н17А	0.9600
C7—O1	1.232 (2)	С17—Н17В	0.9600
C7—N3	1.346 (2)	С17—Н17С	0.9600
C7—C8	1.470 (2)	N1—H1A	0.8600
C8—N4	1.359 (2)	N2—N3	1.376 (2)
C8—C9	1.375 (2)	N3—H3A	0.8600
C9—N6	1.353 (2)	N4—N5	1.300 (2)
C9—C10	1.484 (3)	N5—N6	1.368 (2)
С10—Н10А	0.9600	O2—H1O	0.87 (4)
С10—Н10В	0.9600	02—H2O	0.79 (4)
N1-C1-C2	108.3 (2)	C12—C11—N6	118.61 (16)
N1-C1-H1	125.8	C16—C11—N6	120.64 (16)
C2—C1—H1	125.8	C11—C12—C13	119.31 (18)
C1—C2—C3	107.43 (18)	C11—C12—H12	120.3
C1—C2—H2	126.3	C13—C12—H12	120.3
С3—С2—Н2	126.3	C12—C13—C14	121.59 (18)
C4—C3—C2	107.4 (2)	С12—С13—Н13	119.2
С4—С3—Н3	126.3	C14—C13—H13	119.2
С2—С3—Н3	126.3	C13—C14—C15	118.07 (17)
N1—C4—C3	107.16 (17)	C13—C14—C17	120.34 (19)
N1—C4—C5	121.31 (16)	C15—C14—C17	121.6 (2)
C3—C4—C5	131.50 (19)	C16—C15—C14	121.31 (19)
N2—C5—C4	116.18 (17)	С16—С15—Н15	119.3
N2—C5—C6	125.02 (17)	C14—C15—H15	119.3
C4—C5—C6	118.75 (16)	C11—C16—C15	119.06 (18)
С5—С6—Н6А	109.5	C11—C16—H16	120.5
С5—С6—Н6В	109.5	C15—C16—H16	120.5
H6A—C6—H6B	109.5	С14—С17—Н17А	109.5
С5—С6—Н6С	109.5	C14—C17—H17B	109.5
H6A—C6—H6C	109.5	H17A—C17—H17B	109.5
H6B—C6—H6C	109.5	С14—С17—Н17С	109.5
01—C7—N3	123.18 (16)	H17A—C17—H17C	109.5
01	123.42 (16)	H17B—C17—H17C	109.5
N3-C7-C8	113.38 (16)	C1—N1—C4	109.67 (17)
N4—C8—C9	109.63 (15)	C1—N1—H1A	125.2
N4—C8—C7	120.37 (16)	C4—N1—H1A	125.2
C9—C8—C7	129.99 (17)	C5—N2—N3	116.60 (16)
N6-C9-C8	103.14 (16)	C7—N3—N2	119.63 (15)
N6-C9-C10	124 59 (16)	C7—N3—H3A	120.2
1.0 07 010		C, 110 11011	

C8—C9—C10	132.18 (17)	N2—N3—H3A	120.2
C9-C10-H10A	109.5	N5—N4—C8	109.18 (15)
C9-C10-H10B	109.5	N4—N5—N6	106.59 (15)
H10A—C10—H10B	109.5	C9—N6—N5	111.46 (14)
C9—C10—H10C	109.5	C9—N6—C11	130.64 (16)
H10A—C10—H10C	109.5	N5—N6—C11	117.88 (14)
H10B-C10-H10C	109.5	H1O—O2—H2O	111 (3)
C12—C11—C16	120.66 (16)		
N1—C1—C2—C3	-0.1 (3)	N6-C11-C16-C15	177.54 (18)
C1—C2—C3—C4	0.0 (3)	C14—C15—C16—C11	-1.4 (3)
C2-C3-C4-N1	0.1 (2)	C2—C1—N1—C4	0.2 (3)
C2—C3—C4—C5	-178.0 (2)	C3—C4—N1—C1	-0.2 (2)
N1-C4-C5-N2	1.6 (3)	C5—C4—N1—C1	178.16 (18)
C3—C4—C5—N2	179.5 (2)	C4—C5—N2—N3	-177.59 (16)
N1-C4-C5-C6	-175.7 (2)	C6—C5—N2—N3	-0.5 (3)
C3—C4—C5—C6	2.2 (3)	O1—C7—N3—N2	-1.8 (3)
O1—C7—C8—N4	177.01 (19)	C8—C7—N3—N2	179.80 (15)
N3—C7—C8—N4	-4.5 (3)	C5—N2—N3—C7	172.56 (17)
O1—C7—C8—C9	-2.0 (3)	C9—C8—N4—N5	0.8 (2)
N3—C7—C8—C9	176.40 (19)	C7—C8—N4—N5	-178.43 (17)
N4—C8—C9—N6	-1.0 (2)	C8—N4—N5—N6	-0.2 (2)
C7—C8—C9—N6	178.14 (19)	C8—C9—N6—N5	0.9 (2)
N4—C8—C9—C10	175.6 (2)	C10-C9-N6-N5	-176.1 (2)
C7—C8—C9—C10	-5.2 (4)	C8—C9—N6—C11	-177.44 (18)
C16—C11—C12—C13	-0.5 (3)	C10-C9-N6-C11	5.6 (3)
N6-C11-C12-C13	-176.89 (17)	N4—N5—N6—C9	-0.4 (2)
C11—C12—C13—C14	-0.1 (3)	N4—N5—N6—C11	178.13 (16)
C12—C13—C14—C15	-0.1 (3)	C12-C11-N6-C9	-136.0 (2)
C12—C13—C14—C17	-179.51 (19)	C16-C11-N6-C9	47.6 (3)
C13—C14—C15—C16	0.8 (3)	C12—C11—N6—N5	45.8 (2)
C17—C14—C15—C16	-179.7 (2)	C16—C11—N6—N5	-130.6 (2)
C12—C11—C16—C15	1.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···· A	D—H…A	
N1—H1A····O2 ⁱ	0.86	1.98	2.838 (2)	176	
O2—H1 <i>O</i> …O1 ⁱⁱ	0.87 (4)	1.96 (4)	2.822 (2)	174 (3)	
$O2$ — $H2O$ ··· $N2^{i}$	0.79 (4)	2.43 (4)	2.966 (3)	126 (3)	
O2—H2 <i>O</i> …O1 ⁱ	0.79 (4)	2.20 (4)	2.961 (2)	162 (3)	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*.