IUCrData

ISSN 2414-3146

Received 6 August 2018 Accepted 7 August 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 1,2,3-triazole; carboxylate.

CCDC reference: 1860692

Structural data: full structural data are available from iucrdata.iucr.org

Sodium 1-(4-chlorophenyl)-5-methyl-1*H*-1,2,3-triazole-4-carboxylate

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Emad Yousif,^e Amany S. Hegazy^f and Benson M. Kariuki^f*

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, ^eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and ^fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

In the title molecular salt, $Na^+ \cdot C_{10}H_7CIN_3O_2^-$, the dihedral angles between the planes of adjacent chlorophenyl, methyltriazole and carboxylate groups of the anion are 50.2 (1) and 9.0 (3)°, respectively. The shortest distance between sodium cations is 4.0595 (9) Å. The sodium cation is coordinated by two N atoms and three O atoms, generating layers of ions lying parallel to the *bc* plane.

Structure description

1,2,3-Triazole-4-carboxylic acids are important precursors for various biologically active compounds that act as xanthine oxidase inhibitors (Zhang *et al.*, 2017; Ojha *et al.*, 2017) and antibacterial (Maji & Haldar, 2017) and antitubercular (Kamal *et al.*, 2013) agents. As part of our studies in this area, we now describe the synthesis and structure of the title salt.

The asymmetric unit comprises a Na⁺ cation and a $C_{10}H_7ClN_3O_2^{-}$ anion (Fig. 1). The anion consists of chlorophenyl, methyltriazolyl and carboxylate groups, and the twist angles between the planes through adjacent groups are 50.2 (1) and 9.0 (3)°, respectively. The shortest distance between sodium cations is 4.0595 (9) Å and each cation is coordinated by two N atoms, with an average Na–N distance of 2.5654 (6) Å, and by three O atoms, with an average Na···O distance of 2.37 (4) Å. The resulting coordination polyhedron is a very distorted trigonal bipyramid with one N atom and one O atom in the axial sites. The extended structure generates layers of ions parallel to the *bc* plane (Fig. 2). A short C–H···N contact is also observed (Table 1).

data reports

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{C4-H4A\cdots N2^{i}}$	0.96	2.52	3.432 (3)	159

Symmetry code: (i) x, y - 1, z.

Figure 1

The asymmetric unit of the title salt, showing 50% probability displacement ellisoids.

Figure 2 The crystal packing of the title salt, viewed down the *b* axis.

Synthesis and crystallization

The title compound was synthesized from the reaction of 1-(4chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid and sodium hydroxide (10%) in ethanol under reflux for 4 h. The crude product obtained after work-up was recrystallized from dimethylformamide solution to give colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$Na^+ \cdot C_{10}H_7ClN_3O_2^-$
M _r	259.63
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	11.6462 (8), 6.3754 (4), 14.7003 (9)
β (°)	92.711 (7)
$V(\text{\AA}^3)$	1090.26 (12)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1}\text{)}$	0.38
Crystal size (mm)	$0.42 \times 0.16 \times 0.07$
Data collection	
Diffractometer	Rigaku OD SuperNova Dual source diffractometer with an Atlas detector
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.467, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8333, 2665, 1875
R _{int}	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.696
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.115, 1.05
No. of reflections	2665
No. of parameters	155
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.40

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Funding information

Funding for this research was provided by: King Abdulaziz City for Science and Technology (award No. 20-0180, to MHA).

References

- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kamal, A., Hussaini, S. M. A., Faazil, S., Poornachandra, Y., Narender Reddy, G., Kumar, C. G., Rajput, V. S., Rani, C., Sharma, R., Khan, I. A. & Jagadeesh Babu, N. (2013). *Bioorg. Med. Chem. Lett.* 23, 6842–6846.
- Maji, K. & Haldar, D. R. (2017). R. Soc. Open Sci. 4, 170684.
- Ojha, R., Singh, J., Ojha, A., Singh, H., Sharma, S. & Nepali, K. (2017). *Expert Opin. Ther. Pat.* **27**, 311–345.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zhang, T. J., Wu, Q. X., Li, S. Y., Wang, L., Sun, Q., Zhang, Y., Meng, F. H. & Gao, H. (2017). Bioorg. Med. Chem. Lett. 27, 3812–3816

full crystallographic data

IUCrData (2018). **3**, x181127 [https://doi.org/10.1107/S2414314618011276]

Sodium 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Emad Yousif, Amany S. Hegazy and Benson M. Kariuki

F(000) = 528

 $\theta = 3.5 - 29.2^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$

Block, colourless

 $0.42 \times 0.16 \times 0.07 \text{ mm}$

 $\theta_{\rm max} = 29.7^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$

2665 independent reflections

1875 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.030$

 $h = -14 \rightarrow 15$

 $l = -20 \rightarrow 20$

 $k = -8 \rightarrow 8$

 $D_{\rm x} = 1.582 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2649 reflections

Sodium 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate

Crystal data

Na⁺·C₁₀H₇ClN₃O₂⁻ $M_r = 259.63$ Monoclinic, $P2_1/c$ a = 11.6462 (8) Å b = 6.3754 (4) Å c = 14.7003 (9) Å $\beta = 92.711$ (7)° V = 1090.26 (12) Å³ Z = 4

Data collection

Rigaku OD SuperNova Dual source diffractometer with an Atlas detector ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.467, T_{\max} = 1.000$ 8333 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.045$ Hydrogen site location: inferred from $wR(F^2) = 0.115$ neighbouring sites S = 1.05H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0446P)^2 + 0.2829P]$ 2665 reflections 155 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.08988 (16)	0.5137 (3)	0.64261 (13)	0.0306 (4)	
C2	0.12619 (15)	0.6087 (3)	0.55520 (12)	0.0277 (4)	
C3	0.19398 (17)	0.5260 (3)	0.48997 (13)	0.0304 (4)	
C4	0.2601 (2)	0.3285 (3)	0.48670 (17)	0.0597 (8)	
H4A	0.209664	0.215967	0.467891	0.090*	
H4B	0.294116	0.298547	0.546045	0.090*	
H4C	0.319562	0.342836	0.444051	0.090*	
C5	0.25655 (16)	0.6837 (3)	0.34347 (13)	0.0302 (4)	
C6	0.24624 (18)	0.5191 (3)	0.28293 (14)	0.0378 (5)	
H6	0.201366	0.403343	0.296042	0.045*	
C7	0.30294 (19)	0.5273 (4)	0.20265 (14)	0.0448 (6)	
H7	0.297119	0.416527	0.161513	0.054*	
C8	0.36800 (18)	0.7002 (4)	0.18405 (14)	0.0421 (5)	
С9	0.3785 (2)	0.8660 (4)	0.24377 (15)	0.0481 (6)	
H9	0.422407	0.982653	0.230039	0.058*	
C10	0.32262 (19)	0.8562 (3)	0.32453 (15)	0.0429 (5)	
H10	0.329600	0.965933	0.366091	0.052*	
N1	0.09199 (14)	0.8041 (2)	0.52889 (11)	0.0337 (4)	
N2	0.13405 (15)	0.8474 (2)	0.45008 (11)	0.0355 (4)	
N3	0.19683 (13)	0.6783 (2)	0.42611 (10)	0.0292 (4)	
01	0.11449 (14)	0.3261 (2)	0.65583 (10)	0.0469 (4)	
O2	0.03699 (12)	0.6316 (2)	0.69418 (9)	0.0406 (4)	
C11	0.43802 (6)	0.70889 (13)	0.08201 (4)	0.0687 (3)	
Na1	-0.01461 (7)	0.49886 (11)	0.83416 (5)	0.0360 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0339 (11)	0.0277 (10)	0.0310 (10)	-0.0038 (8)	0.0085 (9)	0.0010 (8)
C2	0.0327 (10)	0.0239 (9)	0.0269 (9)	-0.0009 (7)	0.0067 (8)	-0.0022 (7)
C3	0.0376 (11)	0.0241 (9)	0.0303 (10)	-0.0014 (7)	0.0100 (9)	0.0016 (8)
C4	0.0875 (19)	0.0378 (12)	0.0569 (15)	0.0222 (12)	0.0378 (14)	0.0114 (11)
C5	0.0345 (10)	0.0332 (9)	0.0234 (9)	0.0004 (8)	0.0067 (8)	-0.0006 (8)
C6	0.0419 (12)	0.0384 (11)	0.0336 (11)	-0.0062 (9)	0.0081 (9)	-0.0057 (9)
C7	0.0498 (14)	0.0542 (13)	0.0310 (11)	0.0016 (10)	0.0075 (10)	-0.0134 (10)
C8	0.0330 (11)	0.0646 (14)	0.0293 (11)	0.0056 (10)	0.0081 (9)	0.0040 (10)
C9	0.0502 (14)	0.0527 (13)	0.0425 (13)	-0.0119 (11)	0.0142 (11)	0.0075 (11)
C10	0.0533 (14)	0.0382 (11)	0.0381 (12)	-0.0091 (10)	0.0119 (10)	-0.0050 (9)
N1	0.0462 (10)	0.0287 (8)	0.0271 (8)	0.0056 (7)	0.0107 (7)	0.0023 (7)
N2	0.0487 (10)	0.0299 (8)	0.0287 (9)	0.0090 (7)	0.0103 (8)	0.0025 (7)
N3	0.0363 (9)	0.0265 (8)	0.0253 (8)	0.0013 (6)	0.0079 (7)	-0.0016 (6)
01	0.0652 (10)	0.0282 (7)	0.0494 (9)	0.0057 (7)	0.0242 (8)	0.0101 (7)
O2	0.0584 (9)	0.0334 (7)	0.0318 (7)	0.0055 (7)	0.0205 (7)	0.0019 (6)
Cl1	0.0569 (4)	0.1123 (6)	0.0390 (3)	0.0133 (4)	0.0240 (3)	0.0101 (3)
Na1	0.0500 (5)	0.0288 (4)	0.0300 (4)	-0.0048 (3)	0.0083 (4)	0.0008 (3)

Geometric parameters (Å, °)

Na1—N1 ⁱ	2.5649 (16)	C4—H4C	0.9600
Na1—N2 ⁱⁱ	2.5658 (19)	C5—C6	1.377 (3)
Na1—O1 ⁱⁱⁱ	2.3964 (16)	C5—C10	1.378 (3)
Na1—O2	2.3299 (14)	C5—N3	1.429 (2)
Na1—O2 ⁱ	2.3902 (15)	C6—C7	1.380 (3)
Na1—Na1 ⁱ	4.0595 (9)	С6—Н6	0.9300
Na1—Na1 ⁱⁱⁱ	4.0595 (9)	C7—C8	1.373 (3)
C101	1.243 (2)	С7—Н7	0.9300
C1—02	1.250 (2)	C8—C9	1.376 (3)
C1—C2	1.499 (2)	C8—C11	1.742 (2)
C2—N1	1.359 (2)	C9—C10	1.382 (3)
C2—C3	1.375 (2)	С9—Н9	0.9300
C3—N3	1.352 (2)	C10—H10	0.9300
C3—C4	1.478 (3)	N1—N2	1.308 (2)
C4—H4A	0.9600	N2—N3	1.358 (2)
C4—H4B	0.9600		
01—C1—O2	126.89 (17)	N1—N2—N3	106.93 (14)
01—C1—C2	116.76 (16)	N1—N2—Na1 ^{iv}	113.55 (12)
O2—C1—C2	116.34 (16)	N3—N2—Na1 ^{iv}	119.04 (12)
O1-C1-Na1	85.80 (11)	C3—N3—N2	111.00 (14)
O2-C1-Na1	41.15 (9)	C3—N3—C5	129.55 (15)
C2-C1-Na1	157.39 (12)	N2—N3—C5	119.42 (14)
N1-C2-C3	108.84 (15)	C1—O1—Na1 ⁱ	137.58 (14)
N1-C2-C1	121.58 (15)	C1—O2—Na1	118.17 (12)
C3—C2—C1	129.59 (17)	C1—O2—Na1 ⁱⁱⁱ	122.42 (11)
N3—C3—C2	104.06 (15)	Na1—O2—Na1 ⁱⁱⁱ	118.64 (6)
N3—C3—C4	124.00 (16)	O2—Na1—O2 ⁱ	103.44 (4)
C2—C3—C4	131.76 (18)	O2—Na1—O1 ⁱⁱⁱ	83.35 (5)
С3—С4—Н4А	109.5	O2 ⁱ —Na1—O1 ⁱⁱⁱ	144.50 (7)
C3—C4—H4B	109.5	O2—Na1—N1 ⁱ	169.72 (6)
H4A—C4—H4B	109.5	O2 ⁱ —Na1—N1 ⁱ	67.86 (5)
С3—С4—Н4С	109.5	O1 ⁱⁱⁱ —Na1—N1 ⁱ	100.58 (5)
Н4А—С4—Н4С	109.5	O2—Na1—N2 ⁱⁱ	104.69 (6)
H4B—C4—H4C	109.5	O2 ⁱ —Na1—N2 ⁱⁱ	123.69 (6)
C6-C5-C10	120.64 (17)	O1 ⁱⁱⁱ —Na1—N2 ⁱⁱ	86.61 (6)
C6-C5-N3	120.01 (16)	N1 ⁱ —Na1—N2 ⁱⁱ	85.11 (5)
C10-C5-N3	119.33 (16)	O2—Na1—C1	20.68 (5)
C5—C6—C7	119.56 (18)	O2 ⁱ —Na1—C1	85.20 (5)
С5—С6—Н6	120.2	O1 ⁱⁱⁱ —Na1—C1	103.90 (5)
С7—С6—Н6	120.2	N1 ⁱ —Na1—C1	152.77 (5)
C8—C7—C6	119.43 (19)	N2 ⁱⁱ —Na1—C1	107.94 (5)
С8—С7—Н7	120.3	O2—Na1—Na1 ⁱ	73.40 (4)
С6—С7—Н7	120.3	O2 ⁱ —Na1—Na1 ⁱ	30.25 (3)
С7—С8—С9	121.55 (18)	O1 ⁱⁱⁱ —Na1—Na1 ⁱ	140.89 (6)
C7—C8—C11	118.84 (17)	N1 ⁱ —Na1—Na1 ⁱ	98.11 (4)

C9—C8—Cl1	119.61 (17)	N2 ⁱⁱ —Na1—Na1 ⁱ	129.16 (5)
C8—C9—C10	118.82 (19)	C1—Na1—Na1 ⁱ	55.00 (4)
С8—С9—Н9	120.6	O2—Na1—Na1 ⁱⁱⁱ	31.12 (4)
С10—С9—Н9	120.6	O2 ⁱ —Na1—Na1 ⁱⁱⁱ	132.42 (5)
С5—С10—С9	119.99 (19)	O1 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	53.76 (3)
C5-C10-H10	120.0	N1 ⁱ —Na1—Na1 ⁱⁱⁱ	154.32 (4)
С9—С10—Н10	120.0	N2 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	91.80 (4)
N2—N1—C2	109.17 (14)	C1—Na1—Na1 ⁱⁱⁱ	51.60 (4)
N2—N1—Na1 ⁱⁱⁱ	138.87 (11)	Na1 ⁱ —Na1—Na1 ⁱⁱⁱ	103.49 (3)
C2—N1—Na1 ⁱⁱⁱ	109.24 (11)		

Symmetry codes: (i) -x, y-1/2, -z+3/2; (ii) x, -y+3/2, z+1/2; (iii) -x, y+1/2, -z+3/2; (iv) x, -y+3/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4 A ···N2 ^v	0.96	2.52	3.432 (3)	159

Symmetry code: (v) x, y-1, z.