

ISSN 2414-3146

Received 31 July 2018 Accepted 24 August 2018

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; cobalt sufanilate; polymeric layers; hydrogen bonds; threedimensional framework.

CCDC reference: 1863810

Structural data: full structural data are available from iucrdata.iucr.org

Poly[bis(μ -4-aminobenzenesulfonato- $\kappa^2 N$:O)diaquacobalt(II)]

Antoine Blaise Kama,^a* Mamadou Sidibe,^a Cheikh Abdoul Khadre Diop^a and Florent Blanchard^b

^aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bService de Cristallochimie – ICSN, Bat. 27, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France. *Correspondence e-mail: kama.antoineblaise@yahoo.fr

The title compound, $[Co(C_6H_6NO_3S)_2(H_2O)_2]_n$, was obtained from a mixture of $Co(NO_3)_2 \cdot 6H_2O$ and a previously synthesized salt, namely $CyNH_3 \cdot NH_2PhSO_3$, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected *via* N-H···O and O-H···O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations *via* NH₂PhSO₃⁻ bridges. Each cobalt(II) cation is surrounded by four NH₂PhSO₃⁻ moieties and two water molecules, leading to a distorted octahedral environment.

Structure description

Mononuclear or polynuclear cobalt complexes formed by electron-donating groups have been widely studied (Liu *et al.*, 2017; Leung *et al.*, 2012; McCool *et al.*, 2011; Nakazono *et al.*, 2013; Pizzolato *et al.*, 2013; Wang *et al.*, 2014; Xu *et al.*, 2017) owing to their capacities for water oxidation. Indeed, it has been frequently observed that ligand dissociation of cobalt complexes occurs, generating CoO_x nanoparticles that act as water oxidation catalysts (Wasylenko *et al.*, 2011; Hong *et al.*, 2012). For the design of new cobalt complexes, we target the synthesis of a new material from Co(NO₃)₂·6H₂O and a previously synthesized ligand. In this case, CyNH₃·NH₂PhSO₃ (Cy = cyclohexyl; Ph = phenyl) yielded the title compound [Co(NH₂PhSO₃)₂(H₂O)₂]_n *via* the elimination of the NO₃⁻ group and the substitution of four water molecules by NH₂PhSO₃⁻. If we consider the reagents and the resulting material, a notable fact is the elimination of some water molecules and the nitrate, probably in the form of CyNH₃·NO₃, leading to the substitution complex [Co(NH₂PhSO₃)₂(H₂O)₂]_n. The crystal structure is reported herein. A

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at 50% probability level.

similar tetrahydrate cobalt complex has been previously reported (Shakeri & Haussühl, 1992).

The asymmetric unit comprises of a cobalt(II) cation (situated at an inversion centre), one NH₂PhSO₃⁻ anion and one water molecule (Fig. 1). The *trans* coordination of the ligands around the Co^{II} ion leads to a distorted octahedral coordination sphere with O-Co-N and O-Co-O angles in the range 88.42 (5)–91.58 (5)°. The Co-N [2.2424 (14) Å] and Co-O [in the range 2.0800 (12)–2.1049 (10) Å] bond length are similar to those found in the literature (Co-N = 2.256 and Co-O = 2.118 Å; Li *et al.*, 2007]. The three S-O bond lengths are different [S1-O2 = 1.4652 (12), S1-O3 = 1.4512 (13) and S1-O4 = 1.4463 (15) Å] because O2 is involved in covalent bonding while O3 and O4 are involved in hydrogen bonding (Table 1, Fig. 2).

Hydrogen bonds (shown as light-blue dashed lines) between water molecules and SO_3^- groups in the title compound.

Polymeric layers formed by interconection of neighbouring cobalt(II) cations.

Table 1	
Hydrogen-bond g	eometry (Å, °).

,				
$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-HO1A\cdots O4^{i}$	0.84 (3)	1.85 (3)	2.660 (2)	161 (3)
$O1 - HO1B \cdot \cdot \cdot O3^{ii}$	0.80 (3)	1.97 (3)	2.7647 (18)	176 (3)
$N1 - HN1A \cdots O3^{iii}$	0.85 (2)	2.21 (2)	3.008 (2)	156 (2)
$N1 - HN1B \cdots O1^{iv}$	0.84 (2)	2.48 (2)	3.309 (2)	171 (2)
C3−H3···O3 ⁱⁱⁱ	0.93	2.59	3.2123 (19)	124
$C5-H5\cdots O2^{v}$	0.93	2.60	3.501 (2)	163

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

In the crystal structure, the cobalt(II) cation is surrounded by four $NH_2PhSO_3^-$ moieties. Each $NH_2PhSO_3^-$ unit is a bridge connecting two neighboring cobalt(II) cations through the NH_2 groups on the one hand and the SO_3^- group on the other, leading to polymeric layers (Fig. 3). The layers are connected *via* $N-H\cdots O$ (sulfanilate-sulfanilate interaction through SO_3^- and NH_2 groups) and $O-H\cdots O$ (sulfanilatewater interaction) hydrogen bonding. The resulting structure can be described as a three-dimensional supramolecular framework built from layers (Fig. 4).

Synthesis and crystallization

The title compound was obtained by mixing cyclohexylammonium sulfanilate (0.78 g, 3 mmol) and cobalt nitrate hexahydrate, $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ (0.6 g, 3 mmol) in ethanol as solvent. The solution was stirred for about two h and filtered. Slow evaporation of the filtrate at room temperature afforded red crystals suitable for single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the ICSN cristallochimie service (France) for instrumentation use.

Figure 4

Three-dimensional supramolecular framework built from polymeric layers connected *via* hydrogen bonds.

Table 2Experimental details.

Crystal data	
Chemical formula	$[Co(C_6H_6NO_3S)_2(H_2O)_2]$
M _r	439.32
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	7.0768 (3), 5.9601 (3), 18.6738 (8)
β (°)	100.494 (4)
$V(Å^3)$	774.46 (6)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.43
Crystal size (mm)	$0.7 \times 0.5 \times 0.1$
Data collection	
Diffractometer	Rigaku Pilatus 200K
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.837, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7932, 1931, 1780
R _{int}	0.024
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.696
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.065, 1.07
No. of reflections	1931
No. of parameters	131
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.30, -0.48

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Hong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y. M., Nam,
 W. & Fukuzumi, S. (2012). *Energy Environ. Sci.* 5, 7606–7616.
- Leung, C. F., Ng, S. M., Ko, C. C., Man, W. L., Wu, J., Chen, L. & Lau, T. C. (2012). *Energy Environ. Sci.* **5**, 7903–907.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, m2373.
- Liu, S., Lei, Y. J., Xin, Z. J., Xiang, R. J., Styring, S., Thapper, A. & Wang, H. Y. (2017). *Int. J. Hydrogen Energy*, **42**, 29716–29724.
- McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446–11449.
- Nakazono, T., Parent, A. R. & Sakai, K. (2013). Chem. Commun. 49, 6325–6327.
- Pizzolato, E., Natali, M., Posocco, B., Montellano López, A., Bazzan, I., Di Valentin, M., Galloni, P., Conte, V., Bonchio, M., Scandola, F. & Sartorel, A. (2013). *Chem. Commun.* **49**, 9941–9943.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Shakeri, V. & Haussühl, S. (1992). Z. Kristallogr. 198, 165-166.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, H., Lu, Y., Mijangos, E. & Thapper, A. (2014). *Chin. J. Chem.* **32**, 467–473.
- Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. (2011). Chem. Commun. 47, 4249–4251.
- Xu, J. H., Guo, L. Y., Su, H. F., Gao, X., Wu, X. F., Wang, W. G., Tung, C. H. & Sun, D. (2017). *Inorg. Chem.* 56, 1591–1598.

full crystallographic data

IUCrData (2018). **3**, x181204 [https://doi.org/10.1107/S241431461801204X]

Poly[bis(μ -4-aminobenzenesulfonato- $\kappa^2 N$:O)diaquacobalt(II)]

Antoine Blaise Kama, Mamadou Sidibe, Cheikh Abdoul Khadre Diop and Florent Blanchard

Poly[bis(μ -4-aminobenzenesulfonato- $\kappa^2 N$:O)diaquacobalt(II)]

Crystal data F(000) = 450 $[Co(C_6H_6NO_3S)_2(H_2O)_2]$ $M_r = 439.32$ $D_{\rm x} = 1.884 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/n$ Cell parameters from 5404 reflections a = 7.0768 (3) Å*b* = 5.9601 (3) Å $\theta = 4.5 - 29.6^{\circ}$ $\mu = 1.43 \text{ mm}^{-1}$ c = 18.6738 (8) Å $\beta = 100.494 (4)^{\circ}$ T = 293 KV = 774.46 (6) Å³ Block, red Z = 2 $0.7 \times 0.5 \times 0.1 \text{ mm}$ Data collection Rigaku Pilatus 200K 1931 independent reflections diffractometer 1780 reflections with $I > 2\sigma(I)$ Detector resolution: 5.8140 pixels mm⁻¹ $R_{\rm int} = 0.024$ $\theta_{\rm max} = 29.7^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$ profile data from ω -scans Absorption correction: multi-scan $h = -9 \rightarrow 8$ (CrysAlis PRO; Rigaku OD, 2015) $k = -8 \rightarrow 7$ $T_{\rm min} = 0.837, T_{\rm max} = 1.000$ $l = -25 \rightarrow 22$ 7932 measured reflections Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.024$ and constrained refinement $wR(F^2) = 0.065$ $w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.403P]$ *S* = 1.07 where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 1931 reflections $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ 131 parameters 0 restraints $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	1.000000	0.500000	0.500000	0.01583 (9)	
S1	0.61895 (5)	0.27748 (7)	0.39481 (2)	0.01899 (10)	
01	0.81064 (18)	0.7558 (2)	0.51451 (7)	0.0250 (3)	
HO1A	0.761 (3)	0.833 (5)	0.4782 (14)	0.052 (7)*	
HO1B	0.727 (4)	0.711 (5)	0.5342 (16)	0.062 (9)*	
O2	0.81062 (15)	0.3792 (2)	0.40793 (6)	0.0285 (3)	
03	0.48036 (17)	0.4192 (3)	0.42166 (6)	0.0349 (3)	
N1	0.3584 (2)	0.2190 (3)	0.07238 (7)	0.0201 (3)	
HN1A	0.245 (3)	0.166 (4)	0.0662 (12)	0.036 (6)*	
HN1B	0.359 (3)	0.351 (4)	0.0570 (12)	0.034 (6)*	
O4	0.6175 (2)	0.0504 (3)	0.42203 (7)	0.0429 (4)	
C1	0.5497 (2)	0.2593 (2)	0.29930 (7)	0.0167 (3)	
C2	0.4574 (2)	0.0664 (3)	0.26903 (8)	0.0204 (3)	
H2	0.436669	-0.052910	0.298746	0.024*	
C3	0.3963 (2)	0.0531 (3)	0.19415 (8)	0.0212 (3)	
H3	0.336171	-0.076396	0.173539	0.025*	
C5	0.5176 (2)	0.4255 (3)	0.18059 (8)	0.0205 (3)	
C4	0.4249 (2)	0.2329 (2)	0.14997 (7)	0.0169 (3)	
H5	0.537318	0.545480	0.150979	0.025*	
C6	0.5808 (2)	0.4383 (3)	0.25555 (8)	0.0205 (3)	
H6	0.643504	0.566272	0.276156	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01436 (15)	0.02289 (16)	0.00953 (14)	0.00224 (10)	0.00027 (10)	-0.00099 (9)
S 1	0.01725 (19)	0.0298 (2)	0.00910 (16)	0.00209 (13)	0.00034 (12)	0.00003 (13)
O1	0.0220 (6)	0.0298 (6)	0.0232 (6)	0.0067 (5)	0.0040 (5)	0.0020 (5)
O2	0.0173 (5)	0.0521 (8)	0.0147 (5)	-0.0029 (5)	-0.0010 (4)	-0.0078 (5)
O3	0.0242 (6)	0.0608 (9)	0.0204 (6)	0.0104 (6)	0.0062 (5)	-0.0093 (6)
N1	0.0209 (7)	0.0273 (7)	0.0110 (6)	-0.0005(5)	-0.0001(5)	-0.0003(5)
O4	0.0648 (10)	0.0370 (7)	0.0220 (6)	-0.0013 (7)	-0.0051 (6)	0.0121 (5)
C4	0.0161 (7)	0.0243 (7)	0.0104 (6)	0.0012 (5)	0.0023 (5)	-0.0012 (5)
C1	0.0146 (6)	0.0245 (7)	0.0106 (6)	0.0009 (5)	0.0010 (5)	-0.0005 (5)
C6	0.0224 (7)	0.0213 (7)	0.0168 (7)	-0.0048 (6)	0.0012 (5)	-0.0023 (6)
C2	0.0226 (7)	0.0233 (7)	0.0151 (6)	-0.0039 (6)	0.0031 (5)	0.0028 (6)
C5	0.0238 (7)	0.0224 (7)	0.0151 (6)	-0.0035 (6)	0.0035 (5)	0.0026 (6)
C3	0.0226 (7)	0.0231 (7)	0.0165 (7)	-0.0060 (6)	-0.0002 (5)	-0.0021 (6)

Geometric parameters (Å, °)

Co1–O1 ⁱ	2.0800 (12)	N1—C4	1.4420 (17)
Co1—O1	2.0800 (12)	N1—HN1A	0.85 (2)
Co1—O2 ⁱ	2.1048 (10)	N1—HN1B	0.84 (2)
Co1—O2	2.1049 (10)	C4—C5	1.392 (2)

Co1—N1 ⁱⁱ Co1—N1 ⁱⁱⁱ	2.2424 (14) 2.2424 (14)	C4—C3 C1—C6	1.390 (2) 1.385 (2)
SI02	1.4652 (12)		1.391 (2)
SI_03	1.4512 (13)	С6—Н6	0.9300
SI04	1.4463 (15)		1.392 (2)
SI-CI	1.7648 (14)	C2—H2	0.9300
OI—HOIA	0.84 (3)	C2—C3	1.389 (2)
OI—HOIB	0.80 (3)	С5—Н5	0.9300
N1—Co1 ^{iv}	2.2424 (13)	С3—Н3	0.9300
01 ⁱ Co1O1	180.0	Co1 ^{iv} —N1—HN1A	102.4 (15)
O1 ⁱ —Co1—O2	88.42 (5)	Co1 ^{iv} —N1—HN1B	108.0 (15)
O1 ⁱ —Co1—O2 ⁱ	91.58 (5)	C4-N1-Co1 ^{iv}	122.62 (10)
O1—Co1—O2	91.58 (5)	C4—N1—HN1A	106.6 (15)
O1-Co1-O2 ⁱ	88.42 (5)	C4—N1—HN1B	105.6 (15)
O1 ⁱ —Co1—N1 ⁱⁱ	91.20 (6)	HN1A—N1—HN1B	111 (2)
O1 ⁱ —Co1—N1 ⁱⁱⁱ	88.80 (6)	C5—C4—N1	120.19 (13)
O1—Co1—N1 ⁱⁱ	88.80 (6)	C3—C4—N1	119.75 (13)
O1—Co1—N1 ⁱⁱⁱ	91.20 (6)	C3—C4—C5	120.05 (13)
O2 ⁱ —Co1—O2	180.0	C6—C1—S1	120.28 (11)
O2—Co1—N1 ⁱⁱⁱ	89.70 (5)	C6—C1—C2	120.67 (13)
O2—Co1—N1 ⁱⁱ	90.30 (5)	C2—C1—S1	119.01 (11)
O2 ⁱ —Co1—N1 ⁱⁱ	89.70 (5)	С1—С6—Н6	120.2
O2 ⁱ —Co1—N1 ⁱⁱⁱ	90.30 (5)	C1—C6—C5	119.64 (14)
N1 ⁱⁱ —Co1—N1 ⁱⁱⁱ	180.0	С5—С6—Н6	120.2
O2—S1—C1	105.81 (7)	C1—C2—H2	120.2
O3—S1—O2	111.38 (8)	C3—C2—C1	119.59 (14)
O3—S1—C1	107.71 (7)	С3—С2—Н2	120.2
O4—S1—O2	113.22 (9)	C4—C5—H5	120.0
O4—S1—O3	112.01 (10)	C6—C5—C4	119.95 (14)
O4—S1—C1	106.22 (8)	С6—С5—Н5	120.0
Co1—O1—HO1A	118.7 (17)	С4—С3—Н3	120.0
Co1—O1—HO1B	111 (2)	C2—C3—C4	120.09 (14)
HO1A—O1—HO1B	108 (2)	С2—С3—Н3	120.0
S1	135.27 (7)		

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
01—H <i>O</i> 1 <i>A</i> ···O4 ^v	0.84 (3)	1.85 (3)	2.660 (2)	161 (3)	
O1—H <i>O</i> 1 <i>B</i> ···O3 ^{vi}	0.80(3)	1.97 (3)	2.7647 (18)	176 (3)	
N1—HN1A····O3 ^{vii}	0.85 (2)	2.21 (2)	3.008 (2)	156 (2)	
$N1$ — $HN1B$ ···· $O1^{viii}$	0.84 (2)	2.48 (2)	3.309 (2)	171 (2)	
C3—H3····O3 ^{vii}	0.93	2.59	3.2123 (19)	124	
С5—Н5…О2 ^{ііі}	0.93	2.60	3.501 (2)	163	

Symmetry codes: (iii) -x+3/2, y+1/2, -z+1/2; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1; (vii) -x+1/2, y-1/2, -z+1/2; (viii) x-1/2, -y+3/2, z-1/2.