

ISSN 2414-3146

Received 27 July 2018 Accepted 3 August 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; solvate; hydrogen bonding.

CCDC reference: 1859987

Structural data: full structural data are available from iucrdata.iucr.org

Bis(triphenylphosphine)iminium tetrafluoroborate chloroform monosolvate

Rachana Manandhar,^a Nigam P. Rath^b and Myron W. Jones^a*

^aDepartment of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1652, USA, and ^bDepartment of Chemistry and Biochemistry and, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, MO 63121-4400, USA. *Correspondence e-mail: myrjone@siue.edu

In the title compound, $C_{36}H_{30}NP_2^+ BF_4^- CHCl_3$ or $[PPN]BF_4 CHCl_3$, where $[PPN] = [(Ph_3P)_2N]^+$, two triphenylphosphine units are attached to a central N atom. The P-N-P bond angle is 137.69 (11)°. The two P-N bonds are nearly equivalent, with lengths of 1.5834 (18) and 1.5798 (17) Å. Both the BF_4^- anion and the chloroform solvent molecule are disordered over two positions, with occupancy ratios of 0.872 (3):0.128 (3) and 0.9628 (9):0.0372 (9), respectively. In the crystal, C-H···F and C-H···Cl hydrogen bonds link the $[PPN]^+$ cations, the BF₄⁻ anions, and the chloroform solvent molecules into an array which extends along the *b*-axis direction.

Structure description

The bis(triphenylphosphine)iminium cation, $[PPN]^+$ is a large cation commonly used by synthetic chemists to isolate reactive anions. $[PPN]^+$ salts such as the commercially available [PPN]Cl are a common source of the cation. The utility of $[PPN]^+$ is demonstrated in part by the over 4600 substances containing the cation listed in SciFinder(R) (SciFinder, 2018). Indeed $[PPN]^+$ has been used in many diverse applications. For example, some $[PPN]^+$ salts have been shown to have *in vitro* anticancer activity (Folda *et al.*, 2015) while $[PPN]NO_2$ is an often used nitrosylating reagent in chemical synthesis (Stevens *et al.*, 1981). $[PPN]^+$ -(bipyridyl)tetracyanidoruthenate has been used as a humidity sensor (Evju & Mann, 1999), and the $[PPN]^+$ has been used to construct a nitrate-selective electrode (Werner *et al.*, 1989). A variety of $[PPN]^+$ salts are co-catalysts for the copolymerization of cyclohexene oxide and CO₂ (Darensbourg & Mackiewicz, 2005).

Table 1			
Hydrogen-bond	geometry	(Å, `	ິ).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8\cdots F2^i$	0.95	2.57	3.394 (3)	145
$C8-H8\cdots F2'^{i}$	0.95	2.32	2.903 (8)	119
$C14-H14\cdots F2^{i}$	0.95	2.44	3.333 (3)	157
$C18-H18\cdots Cl3'$	0.95	2.78	3.481 (18)	131
$C20-H20\cdots F3'^{ii}$	0.95	2.61	3.308 (15)	131
$C26-H26\cdots F4'^{iii}$	0.95	2.52	3.427 (14)	160
$C1S - H1S \cdot \cdot \cdot F2^{ii}$	1.00	2.15	3.132 (3)	166

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

To the best of our knowlege, only four reports of $[PPN]BF_4$ structures are known: solvent-free $[PPN]BF_4$ (Bertocco *et al.*, 2016; Denny & Darensbourg, 2016; Folda *et al.*, 2015) and the solvate $[PPN]BF_4$ ·CH₂Cl₂ (Liau *et al.*, 2002).

The structure of the title compound is shown in Fig. 1. There is one formula unit per asymmetric unit that consists of one $[PPN]^+$ cation, a tetrafluoroborate (BF_4^-) anion, and one chloroform solvate molecule. The anion and solvate molecule are each disordered over two sites. The central P-N-P bond angle of 137.69 (11)° is similar to the angles observed in the solvent free $[PPN]BF_4$, 139.42 (10)°, and its dichloromethane solvate, 138.54 (14)°. The extensive $C-H\cdots$ F and $C-H\cdots$ Cl hydrogen-bonding interactions, summarized in Table 1, help to stack an array of $[PPN]^+$ cations, BF_4^- anions and CHCl₃ molecules along the *b*-axis direction as shown in Fig. 2.

Synthesis and crystallization

The title compound was obtained during our attempt to crystallize the mono-substituted VDPP derivative of $Fe(NO)_2(CO)_2$ (VDPP = 1,1-bis(diphenylphosphino)ethylene), which had been prepared in THF by reaction of [PPN][Fe(CO)_3(NO)] and [NO]BF₄. The resulting solution of

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{36}H_{30}NP_2^+ \cdot BF_4^- \cdot CHCl_3$
$M_{ m r}$	744.73
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	9.6306 (7), 10.8130 (8), 17.0381 (14)
α, β, γ (°)	91.826 (5), 95.619 (4), 90.734 (4)
$V(Å^3)$	1764.6 (2)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.40
Crystal size (mm)	$0.57 \times 0.14 \times 0.11$
Data collection	
Diffractometer	Bruker SMART APEX CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.769, 0.838
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32342, 11718, 7247
R _{int}	0.056
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.736
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.130, 1.03
No. of reflections	11718
No. of parameters	474
No. of restraints	109
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.47, -0.90

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT2013 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick, 2008).

 $Fe(NO)_2(CO)_2$ was ostensibly isolated from the solid [PPN]BF₄ byproduct by filter cannulation. Subsequent reaction of $Fe(NO)_2(CO)_2$ with VDPP produced $Fe(NO)_2$ -(CO)(vdpp) which was isolated as a solid *in vacuo*. A chloroform solution of the filtered $Fe(NO)_2(CO)(vdpp)$ was

Figure 1

A view of the asymmetric unit of $[PPN]BF_4$ - $CHCl_3$ with displacement ellipsoids drawn at the 50% probability level. For clarity only the major disorder components of the BF_4^- anion and $CHCl_3$ solvent molecule are shown.

Figure 2

Overall packing viewed along the *b*-axis showing representative C– $H \cdots F$ and C– $H \cdots Cl$ hydrogen bonding contacts as dotted lines. Only the major disorder components are shown.

layered with pentane and allowed to evaporate slowly at room temperature under argon. After one week crystals of $[PPN]BF_4$ suitable for single-crystal structure determination were serendipitously obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Both the BF_4^- anion and the chloroform molecules were found to be disordered over two positions. Their occupancies were separately refined to sum to unity and the occupancy ratios converged to BF_4^- [0.872 (3):0.128 (3)] and CHCl₃ [0.9628 (9):0.0372 (9)], respectively. The disorder models were refined with geometrical constraints (SADI). The solvent Cl atoms were refined with displacement parameter constraints (EADP).

Acknowledgements

The authors thank Mr Jordan M. Grant for his assistance preparing some of the starting materials for this work.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. MRI, CHE-0420497 to UMSL); College of Arts and Sciences, Southern Illinois University Edwardsville; Graduate School, Southern Illinois University Edwardsville.

References

- Bertocco, P., Bolli, C., Correia Bicho, B. A., Jenne, C., Erken, B., Laitinen, R. S., Seeger, H. A. & Takaluoma, T. T. (2016). *Inorg. Chem.* 55, 3599–3604.
- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Darensbourg, D. J. & Mackiewicz, R. M. (2005). J. Am. Chem. Soc. 127, 14026–14038.
- Denny, J. A. & Darensbourg, M. Y. (2016). (CCDC Reference 1450627).
- Evju, J. K. & Mann, K. R. (1999). Chem. Mater. 11, 1425-1433.
- Folda, A., Scalcon, V., Ghazzali, M., Jaafar, M. H., Khan, R. A., Casini, A., Citta, A., Bindoli, A., Rigobello, M. P., Al-Farhan, K., Alsalme, A. & Reedijk, J. (2015). J. Inorg. Biochem. 153, 346–354.
- Liau, R.-Y., Ehlich, H., Schier, A. & Schmidbaur, H. (2002). Z. Naturforsch. Teil B, 57, 1085–1089.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- SciFinder (2018). Chemical Abstracts Service, Columbus, Ohio, USA. (accessed July 20, 2018).
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stevens, R. E., Yanta, T. J. & Gladfelter, W. L. (1981). J. Am. Chem. Soc. 103, 4981–4982.
- Werner, G., Kolowos, I. & Senkýr, J. (1989). Talanta, 36, 966-968.

full crystallographic data

IUCrData (2018). **3**, x181108 [https://doi.org/10.1107/S2414314618011082]

Bis(triphenylphosphine)iminium tetrafluoroborate chloroform monosolvate

Rachana Manandhar, Nigam P. Rath and Myron W. Jones

Bis(triphenyl- λ^5 -phosphanylidene)azanium tetrafluoridoborate chloroform monosolvate

Crystal data $C_{36}H_{30}NP_2^+ \cdot BF_4^- \cdot CHCl_3$ Z = 2 $M_r = 744.73$ F(000) = 764Triclinic, $P\overline{1}$ $D_{\rm x} = 1.402 {\rm Mg} {\rm m}^{-3}$ a = 9.6306 (7) ÅMo *K* α radiation, $\lambda = 0.71073$ Å *b* = 10.8130 (8) Å Cell parameters from 6075 reflections $\theta = 2.3 - 29.4^{\circ}$ c = 17.0381 (14) Å $\alpha = 91.826 (5)^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ $\beta = 95.619 \ (4)^{\circ}$ T = 100 K $\gamma = 90.734 \ (4)^{\circ}$ Rod, yellow V = 1764.6 (2) Å³ $0.57 \times 0.14 \times 0.11 \text{ mm}$ Data collection

Bruker SMART APEX CCD area detector 32342 measured reflections 11718 independent reflections Radiation source: sealed tube 7247 reflections with $I > 2\sigma(I)$ Detector resolution: 8 pixels mm⁻¹ $R_{\rm int} = 0.056$ $\theta_{\text{max}} = 31.6^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -11 \rightarrow 14$ Absorption correction: multi-scan (SADABS; Bruker, 2016) $k = -15 \rightarrow 15$ $T_{\min} = 0.769, T_{\max} = 0.838$ $l = -24 \rightarrow 24$

Refinement

 ω and φ scans

diffractometer

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.130$	neighbouring sites
S = 1.02	H-atom parameters constrained
11718 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 0.7191P]$
474 parameters	where $P = (F_0^2 + 2F_c^2)/3$
109 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: dual	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.89 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.69176 (5)	0.63460 (5)	0.26638 (3)	0.01319 (11)	
P2	0.48489 (5)	0.43360 (5)	0.27647 (3)	0.01301 (11)	
N1	0.62869 (16)	0.49844 (16)	0.26408 (10)	0.0148 (3)	
C1	0.57105 (19)	0.75089 (19)	0.23202 (12)	0.0157 (4)	
C2	0.5522 (2)	0.7720 (2)	0.15149 (13)	0.0196 (4)	
H2	0.610487	0.732477	0.116805	0.023*	
C3	0.4485 (2)	0.8504 (2)	0.12177 (14)	0.0252 (5)	
Н3	0.436059	0.864985	0.066854	0.030*	
C4	0.3633 (2)	0.9074 (2)	0.17236 (15)	0.0262 (5)	
H4	0.291936	0.960845	0.151920	0.031*	
C5	0.3811 (2)	0.8873 (2)	0.25255 (15)	0.0245 (5)	
Н5	0.322160	0.926754	0.286924	0.029*	
C6	0.4851 (2)	0.8094 (2)	0.28262 (14)	0.0205 (4)	
H6	0.497801	0.795870	0.337662	0.025*	
C7	0.76765 (19)	0.68021 (19)	0.36417 (12)	0.0158 (4)	
C8	0.8034 (2)	0.8032 (2)	0.38425 (13)	0.0202 (4)	
H8	0.784752	0.865338	0.346625	0.024*	
C9	0.8660 (2)	0.8352 (2)	0.45895 (13)	0.0248 (5)	
H9	0.889935	0.919186	0.472459	0.030*	
C10	0.8937 (2)	0.7448 (2)	0.51411 (13)	0.0249 (5)	
H10	0.935525	0.767132	0.565514	0.030*	
C11	0.8605 (2)	0.6222 (2)	0.49425 (13)	0.0229 (5)	
H11	0.880453	0.560347	0.531933	0.028*	
C12	0.7980 (2)	0.5890 (2)	0.41919 (12)	0.0185 (4)	
H12	0.776046	0.504651	0.405501	0.022*	
C13	0.83060 (19)	0.63487 (19)	0.20303 (12)	0.0153 (4)	
C14	0.9004 (2)	0.7454 (2)	0.19064 (12)	0.0181 (4)	
H14	0.870581	0.821089	0.212779	0.022*	
C15	1.0130 (2)	0.7446 (2)	0.14607 (13)	0.0215 (5)	
H15	1.060562	0.819759	0.137526	0.026*	
C16	1.0565 (2)	0.6340 (2)	0.11391 (13)	0.0237 (5)	
H16	1.134730	0.633353	0.084002	0.028*	
C17	0.9866 (2)	0.5248 (2)	0.12519 (13)	0.0236 (5)	
H17	1.015904	0.449618	0.102114	0.028*	
C18	0.8737 (2)	0.5239 (2)	0.16997 (13)	0.0189 (4)	
H18	0.826224	0.448500	0.178013	0.023*	
C19	0.5175 (2)	0.29576 (19)	0.33066 (12)	0.0152 (4)	
C20	0.6497 (2)	0.2436 (2)	0.33518 (12)	0.0182 (4)	
H20	0.722698	0.281398	0.310350	0.022*	
C21	0.6734 (2)	0.1357 (2)	0.37646 (13)	0.0227 (5)	
H21	0.763352	0.100050	0.380535	0.027*	
C22	0.5661 (2)	0.0803 (2)	0.41155 (14)	0.0247 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22	0.582976	0.006646	0.439609	0.030*	
C23	0.4346 (2)	0.1308 (2)	0.40634 (14)	0.0245 (5)	
H23	0.361194	0.091130	0.429795	0.029*	
C24	0.4104 (2)	0.2395 (2)	0.36678 (12)	0.0195 (4)	
H24	0.320791	0.275719	0.364244	0.023*	
C25	0.39051 (19)	0.39030 (19)	0.18288 (11)	0.0147 (4)	
C26	0.2980 (2)	0.2889 (2)	0.17448 (13)	0.0184 (4)	
H26	0.282939	0.241214	0.218841	0.022*	
C27	0.2284 (2)	0.2582 (2)	0.10121 (13)	0.0208 (4)	
H27	0.166375	0.188757	0.095418	0.025*	
C28	0.2484 (2)	0.3278 (2)	0.03660 (13)	0.0204 (4)	
H28	0.200121	0.306118	-0.013360	0.024*	
C29	0.3386 (2)	0.4291 (2)	0.04445 (12)	0.0214 (4)	
H29	0.351457	0.477553	0.000110	0.026*	
C30	0.4104 (2)	0.4597 (2)	0.11750 (12)	0.0201 (4)	
H30	0.473351	0.528467	0.122725	0.024*	
C31	0.37409 (19)	0.52727 (19)	0.33263 (11)	0.0141 (4)	
C32	0.2454 (2)	0.5688 (2)	0.30098 (13)	0.0223 (5)	
H32	0.208129	0.541282	0.249618	0.027*	
C33	0.1714 (2)	0.6509 (2)	0.34489 (14)	0.0286 (5)	
H33	0.083476	0.679621	0.323240	0.034*	
C34	0.2246 (2)	0.6910(2)	0.41956 (13)	0.0247 (5)	
H34	0.173998	0.748083	0.448792	0.030*	
C35	0.3519 (2)	0.6480 (2)	0.45208 (13)	0.0203 (4)	
H35	0.388190	0.674706	0.503774	0.024*	
C36	0.4257 (2)	0.56592 (19)	0.40883 (12)	0.0161 (4)	
H36	0.512425	0.535668	0.431262	0.019*	
B1	0.9734 (2)	0.9172 (2)	0.72177 (15)	0.0247 (5)	
F1	0.9085 (2)	0.9440 (2)	0.78950 (13)	0.0427 (6)	0.872 (3)
F2	1.10792 (15)	0.96714 (16)	0.73349 (10)	0.0332 (5)	0.872 (3)
F3	0.9817 (3)	0.79082 (18)	0.70909 (14)	0.0496 (7)	0.872 (3)
F4	0.9052 (2)	0.9718 (2)	0.65640 (11)	0.0535 (7)	0.872 (3)
F1′	0.9596 (18)	0.9723 (15)	0.7953 (6)	0.067 (5)	0.128 (3)
F2′	1.0385 (15)	0.9971 (11)	0.6767 (8)	0.067 (5)	0.128 (3)
F3′	1.0466 (14)	0.8091 (9)	0.7339 (10)	0.056 (5)	0.128 (3)
F4′	0.8399 (7)	0.8879 (10)	0.6880 (7)	0.040 (4)	0.128 (3)
C1S	0.7670(2)	0.1105 (2)	0.09896 (14)	0.0279 (5)	
H1S	0.821917	0.092867	0.150168	0.033*	
Cl1	0.75419 (7)	-0.02595 (6)	0.03878 (4)	0.03460 (16)	0.9628 (9)
C12	0.60017 (7)	0.15976 (7)	0.11801 (5)	0.04246 (19)	0.9628 (9)
C13	0.85322 (8)	0.22581 (7)	0.05260 (5)	0.0483 (2)	0.9628 (9)
Cl1′	0.8811 (16)	0.0694 (15)	0.0272 (8)	0.03460 (16)	0.0372 (9)
C13′	0.7185 (19)	0.2620 (10)	0.0726 (13)	0.0483 (2)	0.0372 (9)
C12′	0.6530 (16)	0.0073 (13)	0.1361 (11)	0.04246 (19)	0.0372 (9)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0129 (2)	0.0141 (3)	0.0125 (2)	0.00158 (18)	0.00078 (18)	-0.00049 (19)
P2	0.0146 (2)	0.0142 (3)	0.0102 (2)	0.00071 (18)	0.00114 (18)	-0.00015 (19)
N1	0.0149 (7)	0.0151 (8)	0.0148 (8)	0.0016 (6)	0.0026 (6)	0.0002 (7)
C1	0.0133 (8)	0.0140 (10)	0.0194 (11)	0.0006 (7)	-0.0007 (7)	0.0004 (8)
C2	0.0182 (9)	0.0204 (11)	0.0201 (11)	0.0006 (8)	0.0007 (8)	0.0018 (9)
C3	0.0227 (10)	0.0260 (12)	0.0257 (12)	0.0006 (9)	-0.0064 (9)	0.0084 (10)
C4	0.0182 (10)	0.0211 (12)	0.0387 (14)	0.0025 (9)	-0.0028(9)	0.0087 (10)
C5	0.0181 (10)	0.0179 (11)	0.0384 (14)	0.0041 (8)	0.0069 (9)	-0.0001 (10)
C6	0.0209 (10)	0.0182 (11)	0.0224 (11)	0.0019 (8)	0.0027 (8)	-0.0006 (9)
C7	0.0125 (8)	0.0197 (10)	0.0151 (10)	0.0011 (7)	0.0023 (7)	-0.0009 (8)
C8	0.0212 (10)	0.0212 (11)	0.0182 (11)	0.0010 (8)	0.0025 (8)	-0.0019 (9)
C9	0.0232 (11)	0.0283 (13)	0.0219 (12)	-0.0013 (9)	0.0007 (9)	-0.0104 (10)
C10	0.0174 (10)	0.0414 (15)	0.0151 (11)	0.0000 (9)	0.0000 (8)	-0.0070 (10)
C11	0.0187 (10)	0.0347 (13)	0.0154 (11)	0.0042 (9)	0.0001 (8)	0.0040 (9)
C12	0.0171 (9)	0.0217 (11)	0.0169 (10)	0.0017 (8)	0.0022 (8)	0.0008 (8)
C13	0.0129 (8)	0.0199 (10)	0.0131 (10)	0.0024 (7)	-0.0003 (7)	0.0018 (8)
C14	0.0180 (9)	0.0195 (11)	0.0163 (10)	-0.0001 (8)	-0.0006 (8)	0.0008 (8)
C15	0.0174 (9)	0.0268 (12)	0.0198 (11)	-0.0058 (8)	-0.0007 (8)	0.0041 (9)
C16	0.0146 (9)	0.0369 (14)	0.0204 (11)	0.0055 (9)	0.0043 (8)	0.0057 (10)
C17	0.0223 (10)	0.0263 (12)	0.0232 (12)	0.0078 (9)	0.0069 (9)	0.0016 (9)
C18	0.0181 (9)	0.0186 (11)	0.0205 (11)	0.0020 (8)	0.0036 (8)	0.0014 (8)
C19	0.0192 (9)	0.0155 (10)	0.0107 (9)	0.0012 (7)	0.0008 (7)	-0.0020 (8)
C20	0.0204 (9)	0.0194 (11)	0.0156 (10)	0.0033 (8)	0.0049 (8)	0.0003 (8)
C21	0.0298 (11)	0.0196 (11)	0.0195 (11)	0.0076 (9)	0.0052 (9)	0.0001 (9)
C22	0.0352 (12)	0.0183 (11)	0.0218 (12)	0.0060 (9)	0.0070 (9)	0.0049 (9)
C23	0.0284 (11)	0.0243 (12)	0.0224 (12)	-0.0003 (9)	0.0085 (9)	0.0064 (9)
C24	0.0206 (10)	0.0220 (11)	0.0162 (11)	0.0022 (8)	0.0026 (8)	0.0035 (9)
C25	0.0161 (9)	0.0177 (10)	0.0102 (9)	0.0020 (7)	0.0014 (7)	-0.0026 (8)
C26	0.0190 (9)	0.0199 (11)	0.0164 (10)	-0.0014 (8)	0.0024 (8)	0.0004 (8)
C27	0.0175 (9)	0.0218 (11)	0.0223 (11)	-0.0019 (8)	-0.0015 (8)	-0.0032 (9)
C28	0.0196 (10)	0.0251 (12)	0.0152 (10)	0.0045 (8)	-0.0028 (8)	-0.0070 (9)
C29	0.0277 (11)	0.0246 (12)	0.0117 (10)	0.0011 (9)	0.0001 (8)	0.0024 (9)
C30	0.0243 (10)	0.0197 (11)	0.0162 (11)	-0.0031 (8)	0.0023 (8)	0.0004 (8)
C31	0.0152 (8)	0.0170 (10)	0.0104 (9)	0.0009 (7)	0.0021 (7)	0.0000 (7)
C32	0.0178 (9)	0.0334 (13)	0.0150 (11)	0.0042 (9)	-0.0021 (8)	-0.0029 (9)
C33	0.0198 (10)	0.0398 (15)	0.0256 (13)	0.0129 (10)	-0.0008 (9)	-0.0019 (11)
C34	0.0246 (11)	0.0302 (13)	0.0203 (12)	0.0101 (9)	0.0067 (9)	-0.0012 (10)
C35	0.0220 (10)	0.0249 (12)	0.0139 (10)	0.0037 (8)	0.0023 (8)	-0.0029 (9)
C36	0.0164 (9)	0.0197 (10)	0.0119 (10)	0.0026 (8)	-0.0009 (7)	0.0008 (8)
B1	0.0252 (12)	0.0247 (14)	0.0241 (14)	-0.0004 (10)	0.0032 (10)	-0.0035 (11)
F1	0.0458 (12)	0.0362 (12)	0.0516 (13)	0.0010 (9)	0.0338 (10)	-0.0018 (9)
F2	0.0253 (8)	0.0431 (11)	0.0322 (10)	-0.0042 (7)	0.0082 (7)	0.0032 (8)
F3	0.0881 (19)	0.0230 (11)	0.0372 (14)	-0.0085 (11)	0.0084 (12)	-0.0088 (9)
F4	0.0584 (14)	0.0584 (15)	0.0396 (12)	0.0099 (11)	-0.0190 (10)	0.0091 (10)
F1′	0.087 (11)	0.052 (8)	0.069 (9)	-0.009 (7)	0.039 (8)	0.017 (6)

F2′	0.087 (11)	0.052 (8)	0.069 (9)	-0.009(7)	0.039 (8)	0.017 (6)
F3′	0.061 (11)	0.040 (9)	0.065 (13)	0.006 (8)	0.004 (8)	-0.025 (8)
F4′	0.021 (6)	0.034 (8)	0.062 (9)	0.005 (5)	-0.012 (5)	-0.016 (6)
C1S	0.0330 (12)	0.0253 (13)	0.0251 (13)	0.0042 (10)	0.0012 (10)	0.0009 (10)
Cl1	0.0473 (4)	0.0227 (3)	0.0350 (4)	0.0078 (3)	0.0097 (3)	-0.0010 (3)
Cl2	0.0410 (4)	0.0408 (4)	0.0481 (5)	0.0076 (3)	0.0192 (3)	-0.0086 (3)
Cl3	0.0442 (4)	0.0402 (4)	0.0609 (5)	-0.0183 (3)	0.0070 (4)	0.0095 (4)
Cl1′	0.0473 (4)	0.0227 (3)	0.0350 (4)	0.0078 (3)	0.0097 (3)	-0.0010 (3)
Cl3′	0.0442 (4)	0.0402 (4)	0.0609 (5)	-0.0183 (3)	0.0070 (4)	0.0095 (4)
Cl2′	0.0410 (4)	0.0408 (4)	0.0481 (5)	0.0076 (3)	0.0192 (3)	-0.0086 (3)

Geometric parameters (Å, °)

P1—N1	1.5834 (18)	C21—C22	1.383 (3)
P1—C1	1.7962 (19)	C21—H21	0.9500
P1—C13	1.799 (2)	C22—C23	1.381 (3)
Р1—С7	1.804 (2)	C22—H22	0.9500
P2—N1	1.5798 (17)	C23—C24	1.384 (3)
P2—C19	1.793 (2)	C23—H23	0.9500
P2—C31	1.802 (2)	C24—H24	0.9500
P2—C25	1.802 (2)	C25—C30	1.390 (3)
C1—C2	1.393 (3)	C25—C26	1.399 (3)
C1—C6	1.395 (3)	C26—C27	1.387 (3)
C2—C3	1.387 (3)	C26—H26	0.9500
C2—H2	0.9500	C27—C28	1.380 (3)
C3—C4	1.384 (3)	C27—H27	0.9500
С3—Н3	0.9500	C28—C29	1.384 (3)
C4—C5	1.385 (3)	C28—H28	0.9500
C4—H4	0.9500	C29—C30	1.391 (3)
C5—C6	1.387 (3)	C29—H29	0.9500
С5—Н5	0.9500	С30—Н30	0.9500
С6—Н6	0.9500	C31—C32	1.388 (3)
С7—С8	1.393 (3)	C31—C36	1.393 (3)
C7—C12	1.396 (3)	C32—C33	1.391 (3)
С8—С9	1.385 (3)	C32—H32	0.9500
C8—H8	0.9500	C33—C34	1.378 (3)
C9—C10	1.388 (3)	С33—Н33	0.9500
С9—Н9	0.9500	C34—C35	1.387 (3)
C10—C11	1.384 (3)	C34—H34	0.9500
C10—H10	0.9500	C35—C36	1.383 (3)
C11—C12	1.393 (3)	С35—Н35	0.9500
C11—H11	0.9500	С36—Н36	0.9500
C12—H12	0.9500	B1—F2′	1.361 (6)
C13—C18	1.394 (3)	B1—F3	1.381 (3)
C13—C14	1.395 (3)	B1—F3′	1.384 (6)
C14—C15	1.384 (3)	B1—F4'	1.385 (6)
C14—H14	0.9500	B1—F4	1.389 (3)
C15—C16	1.386 (3)	B1—F1'	1.389 (7)

C15—H15	0.9500	B1—F1	1.389 (3)
C16—C17	1.380 (3)	B1—F2	1.391 (3)
C16—H16	0.9500	C1S-C12'	1 732 (8)
C17 - C18	1 388 (3)	C1S $C1Z$	1.752(0) 1.742(2)
C17_H17	0.0500	C1S = C12	1.742(2) 1.756(2)
	0.9300		1.730(2)
C18—H18	0.9500		1.765 (2)
C19—C24	1.395 (3)	C1S - C13'	1.769 (8)
C19—C20	1.395 (3)	C1S—C11′	1.772 (7)
C20—C21	1.391 (3)	C1S—H1S	1.0000
С20—Н20	0.9500		
N1 D1 C1	114.05 (0)	C21 C20 H20	120.4
	114.93(9)	$C_{21} = C_{20} = H_{20}$	120.4
NI - PI - CI3	107.55 (9)	C19—C20—H20	120.4
	106.98 (9)	C22—C21—C20	120.0 (2)
N1—P1—C7	111.29 (10)	C22—C21—H21	120.0
C1—P1—C7	108.64 (9)	C20—C21—H21	120.0
C13—P1—C7	107.06 (9)	C23—C22—C21	120.9 (2)
N1—P2—C19	109.18 (9)	С23—С22—Н22	119.6
N1—P2—C31	113.71 (9)	С21—С22—Н22	119.6
C19—P2—C31	106.23 (9)	C22—C23—C24	119.7 (2)
N1—P2—C25	110.65 (9)	C22—C23—H23	120.2
C19—P2—C25	108.14 (9)	C24—C23—H23	120.2
$C_{31} = P_{2} = C_{25}$	108.70 (9)	C_{23} C_{24} C_{19}	120.01 (19)
P2N1P1	137 69 (11)	C_{23} C_{24} H_{24}	120.0
$C_2 C_1 C_6$	110 55 (18)	$C_{10} C_{24} H_{24}$	120.0
$C_2 = C_1 = C_0$	119.55 (16)	$C_{19} = C_{24} = 1124$	120.0 110.34(10)
$C_2 = C_1 = P_1$	110.00(13) 121.25(16)	C_{20} C_{25} C_{20}	119.34(19)
	121.33(10)	$C_{30} = C_{23} = P_{2}$	118.98 (10)
$C_3 = C_2 = C_1$	120.2 (2)	C26-C25-P2	121.08 (10)
C3—C2—H2	119.9	$C_{27} = C_{26} = C_{25}$	119.8 (2)
C1—C2—H2	119.9	C27—C26—H26	120.1
C4—C3—C2	119.8 (2)	C25—C26—H26	120.1
С4—С3—Н3	120.1	C28—C27—C26	120.5 (2)
С2—С3—Н3	120.1	С28—С27—Н27	119.7
C3—C4—C5	120.52 (19)	С26—С27—Н27	119.7
C3—C4—H4	119.7	C27—C28—C29	120.15 (19)
C5—C4—H4	119.7	C27—C28—H28	119.9
C4—C5—C6	119.9 (2)	C29—C28—H28	119.9
С4—С5—Н5	120.0	C28—C29—C30	119.8 (2)
С6—С5—Н5	120.0	C28—C29—H29	120.1
C5-C6-C1	120.0 (2)	С30—С29—Н29	120.1
C5-C6-H6	120.0	C_{25} C_{30} C_{29}	120.4(2)
C_1 C_6 H_6	120.0	$C_{25} C_{30} H_{30}$	110.8
$C_{1}^{2} = C_{0}^{2} = C_{10}^{12}$	120.0	$C_{20} = C_{30} = H_{30}$	119.8
$C_0 - C_1 - C_{12}$	119.03(19) 121.22(16)	$C_{29} = C_{30} = H_{30}$	119.0
$C_0 - C_1 - r_1$	121.33(10) 119.05(10)	$C_{22} = C_{21} = C_{20}$	119.31 (18)
$C_1 Z - C_1 - F_1$	118.95 (16)	C_{22} C_{21} P_{2}	122.58 (16)
C9—C8—C/	120.2 (2)	C30-C31-P2	11/./4(14)
С9—С8—Н8	119.9	C31—C32—C33	119.6 (2)
С7—С8—Н8	119.9	C31—C32—H32	120.2

C8—C9—C10	120.2 (2)	С33—С32—Н32	120.2
С8—С9—Н9	119.9	C34—C33—C32	120.55 (19)
С10—С9—Н9	119.9	С34—С33—Н33	119.7
C11—C10—C9	120.0 (2)	С32—С33—Н33	119.7
C11—C10—H10	120.0	C33—C34—C35	120.1 (2)
C9—C10—H10	120.0	С33—С34—Н34	120.0
C10—C11—C12	120.3 (2)	С35—С34—Н34	120.0
C10—C11—H11	119.9	C36—C35—C34	119.6 (2)
C12—C11—H11	119.9	С36—С35—Н35	120.2
C11—C12—C7	119.7 (2)	С34—С35—Н35	120.2
C11—C12—H12	120.1	C35—C36—C31	120.57 (18)
С7—С12—Н12	120.1	С35—С36—Н36	119.7
C18—C13—C14	120.00 (19)	С31—С36—Н36	119.7
C18—C13—P1	120.05 (16)	F2'—B1—F3'	112.4 (8)
C14—C13—P1	119.85 (16)	F2'—B1—F4'	111.0 (7)
C15—C14—C13	119.9 (2)	F3'—B1—F4'	109.1 (7)
C15—C14—H14	120.0	F3—B1—F4	110.8 (2)
C13—C14—H14	120.0	F2'B1F1'	109.8 (8)
C14—C15—C16	119.9 (2)	F3'—B1—F1'	107.5 (8)
C14—C15—H15	120.0	F4'—B1—F1'	106.8 (7)
C16—C15—H15	120.0	F3—B1—F1	110.7 (2)
C17—C16—C15	120.2 (2)	F4—B1—F1	111.3 (2)
C17—C16—H16	119.9	F3—B1—F2	108.7 (2)
C15—C16—H16	119.9	F4—B1—F2	107.8 (2)
C16—C17—C18	120.5 (2)	F1—B1—F2	107.4 (2)
C16—C17—H17	119.7	Cl3—C1S—Cl2	110.20 (13)
C18—C17—H17	119.7	Cl3—C1S—Cl1	109.71 (13)
C17—C18—C13	119.3 (2)	Cl2—C1S—Cl1	110.29 (13)
C17—C18—H18	120.3	Cl2'—C1S—Cl3'	122.6 (9)
C13—C18—H18	120.3	Cl2'—C1S—Cl1'	123.8 (8)
C24—C19—C20	120.12 (19)	Cl3'—C1S—Cl1'	102.3 (9)
C24—C19—P2	120.14 (15)	Cl3—C1S—H1S	108.9
C20—C19—P2	119.73 (16)	Cl2—C1S—H1S	108.9
C21—C20—C19	119.3 (2)	Cl1—C1S—H1S	108.9
C19—P2—N1—P1	-139.36 (16)	C16—C17—C18—C13	0.6 (3)
C31—P2—N1—P1	-20.9 (2)	C14—C13—C18—C17	0.3 (3)
C25—P2—N1—P1	101.73 (17)	P1-C13-C18-C17	-176.06 (16)
C1—P1—N1—P2	-34.6 (2)	N1—P2—C19—C24	163.33 (16)
C13—P1—N1—P2	-153.64 (15)	C31—P2—C19—C24	40.33 (19)
C7—P1—N1—P2	89.39 (17)	C25—P2—C19—C24	-76.21 (18)
N1—P1—C1—C2	-85.86 (18)	N1—P2—C19—C20	-17.96 (19)
C13—P1—C1—C2	33.46 (19)	C31—P2—C19—C20	-140.97 (17)
C7—P1—C1—C2	148.73 (16)	C25—P2—C19—C20	102.49 (17)
N1—P1—C1—C6	86.61 (19)	C24—C19—C20—C21	-0.4 (3)
C13—P1—C1—C6	-154.07 (17)	P2-C19-C20-C21	-179.12 (16)
C7—P1—C1—C6	-38.8 (2)	C19—C20—C21—C22	0.9 (3)
C6—C1—C2—C3	-0.1 (3)	C20—C21—C22—C23	0.0 (3)

P1—C1—C2—C3	172.51 (17)	C21—C22—C23—C24	-1.2 (4)
C1—C2—C3—C4	-0.3 (3)	C22—C23—C24—C19	1.7 (3)
C2—C3—C4—C5	0.3 (3)	C20—C19—C24—C23	-0.9 (3)
C3—C4—C5—C6	0.0 (3)	P2-C19-C24-C23	177.85 (17)
C4—C5—C6—C1	-0.4 (3)	N1—P2—C25—C30	-29.05 (18)
C2-C1-C6-C5	0.4 (3)	C19—P2—C25—C30	-148.59 (16)
P1-C1-C6-C5	-171.98 (17)	C31—P2—C25—C30	96.49 (17)
N1—P1—C7—C8	-166.62 (15)	N1—P2—C25—C26	150.98 (16)
C1—P1—C7—C8	-39.09 (19)	C19—P2—C25—C26	31.45 (19)
C13—P1—C7—C8	76.11 (18)	C31—P2—C25—C26	-83.48 (18)
N1—P1—C7—C12	16.94 (18)	C30—C25—C26—C27	0.6 (3)
C1—P1—C7—C12	144.47 (16)	P2-C25-C26-C27	-179.47 (15)
C13—P1—C7—C12	-100.32 (17)	C25—C26—C27—C28	-0.7 (3)
C12—C7—C8—C9	-1.4 (3)	C26—C27—C28—C29	0.1 (3)
P1-C7-C8-C9	-177.76 (16)	C27—C28—C29—C30	0.8 (3)
C7—C8—C9—C10	0.2 (3)	C26—C25—C30—C29	0.3 (3)
C8—C9—C10—C11	0.8 (3)	P2-C25-C30-C29	-179.69 (16)
C9—C10—C11—C12	-0.6 (3)	C28—C29—C30—C25	-0.9 (3)
C10-C11-C12-C7	-0.6 (3)	N1—P2—C31—C32	116.20 (19)
C8—C7—C12—C11	1.6 (3)	C19—P2—C31—C32	-123.70 (19)
P1-C7-C12-C11	178.05 (15)	C25—P2—C31—C32	-7.5 (2)
N1—P1—C13—C18	-6.98 (19)	N1—P2—C31—C36	-59.10 (19)
C1—P1—C13—C18	-130.97 (16)	C19—P2—C31—C36	61.01 (18)
C7—P1—C13—C18	112.72 (17)	C25—P2—C31—C36	177.17 (16)
N1—P1—C13—C14	176.65 (15)	C36—C31—C32—C33	1.7 (3)
C1—P1—C13—C14	52.66 (18)	P2-C31-C32-C33	-173.55 (19)
C7—P1—C13—C14	-63.65 (18)	C31—C32—C33—C34	-0.2 (4)
C18—C13—C14—C15	-0.5 (3)	C32—C33—C34—C35	-1.0 (4)
P1—C13—C14—C15	175.84 (15)	C33—C34—C35—C36	0.7 (4)
C13—C14—C15—C16	-0.1 (3)	C34—C35—C36—C31	0.7 (3)
C14—C15—C16—C17	1.0 (3)	C32—C31—C36—C35	-1.9 (3)
C15-C16-C17-C18	-1.2 (3)	P2—C31—C36—C35	173.51 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
C8—H8…F2 ⁱ	0.95	2.57	3.394 (3)	145
C8—H8…F2′ ⁱ	0.95	2.32	2.903 (8)	119
C14— $H14$ ···F2 ⁱ	0.95	2.44	3.333 (3)	157
C18—H18····Cl3′	0.95	2.78	3.481 (18)	131
C20—H20…F3' ⁱⁱ	0.95	2.61	3.308 (15)	131
C26—H26…F4'iii	0.95	2.52	3.427 (14)	160
C1S—H1S····F2 ⁱⁱ	1.00	2.15	3.132 (3)	166

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.