

ISSN 2414-3146

Received 12 February 2019 Accepted 15 February 2019

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; chlorine; polycyclic aromatics; disorder.

CCDC reference: 1897363

Structural data: full structural data are available from iucrdata.iucr.org

5,8,13,13-Tetrachloro-13*H*-dibenzo[*a*,*i*]fluorene cyclohexane hemisolvate

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

In the crystal structure of the solvated pentacyclic title compound, $C_{21}H_{10}Cl_4.0.5C_6H_{12}$, the pentacyclic chloroaromatic rings are arranged in parallel layers, with the chlorine atoms protruding from these planes. Channels orthogonal to these layers are filled with disordered cyclohexane molecules.

Structure description

The pentacyclic compound $C_{21}H_{20}Cl_4$ (Fig. 1) appeared as a new byproduct in the synthesis of the 13,13-dichloro analogue, an intermediate for bis-(dibenzo[*a.i*])fluorenylidene (Bergmann *et al.*, 1953, Franzen & Joschek, 1961), a biradical still under discussion (Kanawati *et al.*, 2012; Wentrup *et al.*, 2016). Eight identical molecules fill the unit cell, these aromatic compounds are essentially planar, the largest deviation from the mean plane being 0.0164 (18) Å at C8. With a bond angle of 107.26 (9)°, the Cl1-Cl-Cl2 unit makes an angle of 89.97 (11)° to the aromatic plane. In the crystal, the molecules are arranged in layers parallel to the *ac* plane with an interlayer spacing of 3.28 Å. Channels along the *b*-axis direction (Fig. 2) are filled with one disordered cyclohexane molecule per two dibenzofluorene molecules.

Synthesis and crystallization

Bis- α -naphthylketone (10.0 g), prepared from α -cyanonaphthalene according to Blicke (1927), was added to PCl₅ (13.0 g) and the mixture was heated to 423 K for 5 h. Following the procedure of Magidson (1925), additional PCl₅ (13.0 g) was added, and after 5 h at 423 K, cooled to ambient temperature and the residue washed with light petroleum. The yield after threefold recrystallization from toluene solution was 0.6 g of a yellow solid with m.p. = 505–509 K. Single crystals were grown by slow evaporation of a solution in chloroform/cyclohexane (1/2). IR (KBr): 3420, 3072, 1620, 1566, 1518, 1421, 1376, 1344,

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disordered cyclohexane solvent molecule is shown.

1288, 1261, 1195, 1161, 1072, 1029, 956, 930, 853, 795, 764, 728, 623, 584, 533, 519, 501, 429. ¹H NMR (400 MHz, CDCl₃): 8.77 (*dd*, 2H, 6-H), 8.41 (*d*, 2 H, 3-H), 7.91 (2, 2 H, 1-H), 7.80 (*m*, 2 H, 5-H), 7.69 (*m*, 2 H, 4-H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The solvent molecule (cyclohexane) is highly disordered and was refined using split positions. The s.o.f. were kept fixed due to the imposed symmetry. The displacement parameters of the solvent atoms were restrained to approximate isotropic behaviour. Equiva-

Figure 2 Part of the packing diagram. View along the *b* axis.

Crystal data	
Chemical formula	$C_{21}H_{10}Cl_4 \cdot 0.5C_6H_{12}$
M _r	446.17
Crystal system, space group	Monoclinic, I2/c
Temperature (K)	120
a, b, c (Å)	13.7822 (6), 10.7752 (4), 27.0787 (13)
β(°)	99.901 (4)
$V(\dot{A}^3)$	3961.5 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.61
Crystal size (mm)	$0.90 \times 0.37 \times 0.08$
Data collection	
Diffractometer	Stoe IPDS 2T
Absorption correction	Integration (X-RED and X-AREA; Stoe & Cie, 1996
T_{\min}, T_{\max}	0.736, 0.952
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11344, 4935, 4194
R _{int}	0.018
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.102, 1.05
No. of reflections	4935
No. of parameters	290
No. of restraints	66
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.51, -0.51

Computer programs: X-RED and X-AREA (Stoe & Cie, 1996), SIR2004 (Altomare et al., 1999), SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2009).

lent bond lengths and angles involving the disordered atoms were restrained to be equal.

Acknowledgements

The authors are grateful to M. Prenzel for the synthesis of this compound.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bergmann, E. D., Fischer, E., Hirshberg, Y., Lavie, D., Sprinzak, Y. & Szmuszkovicz, J. (1953). Bull. Soc. Chim. Fr., 798-809.
- Blicke, F. F. (1927). J. Am. Chem. Soc. 49, 2843-2849.
- Franzen, V. & Joschek, H. I. (1961). Justus Liebigs Ann. Chem. 648, 63–68.
- Kanawati, B., Genest, A., Schmitt-Kopplin, P. & Lenoir, D. (2012). J. Molec. Model. 18, 63–68.
- Magidson, O. I. (1925). Ber. Dtsch. Chem. Ges. A/B, 58, 433-442.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
- Wentrup, C., Regimbald-Krnel, M. J., Müller, D. & Comba, P. (2016). *Angew. Chem. Int. Ed.* **55**, 14600–14605.

full crystallographic data

IUCrData (2019). **4**, x190236 [https://doi.org/10.1107/S2414314619002360]

5,8,13,13-Tetrachloro-13H-dibenzo[a,i]fluorene cyclohexane hemisolvate

F(000) = 1824

 $\theta = 2.0 - 28.6^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$

Plate, colourless

 $0.90 \times 0.37 \times 0.08 \text{ mm}$

 $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

11344 measured reflections

4935 independent reflections 4194 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int} = 0.018$

 $h = -18 \rightarrow 18$

 $k = -14 \rightarrow 14$

 $l = -33 \rightarrow 36$

 $D_{\rm x} = 1.496 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 17812 reflections

Heiner Detert and Dieter Schollmeyer

5,8,13,13-Tetrachloro-13H-dibenzo[a,i]fluorene cyclohexane hemisolvate

Crystal data

 $C_{21}H_{10}Cl_4 \cdot 0.5C_6H_{12}$ $M_r = 446.17$ Monoclinic, *I2/c* a = 13.7822 (6) Å b = 10.7752 (4) Å c = 27.0787 (13) Å $\beta = 99.901$ (4)° V = 3961.5 (3) Å³ Z = 8

Data collection

Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED and X-AREA; Stoe & Cie, 1996) $T_{min} = 0.736$, $T_{max} = 0.952$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 6.8104P]$
$wR(F^2) = 0.102$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
4935 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e} \text{ Å}^{-3}$
290 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e} \text{ Å}^{-3}$
66 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the ridingmodel approximation with isotropic displacement parameters.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.74520 (3)	0.24458 (4)	0.60278 (2)	0.02905 (11)	
C12	0.53125 (3)	0.23873 (4)	0.58942 (2)	0.02864 (11)	
C13	0.63077 (3)	0.87411 (4)	0.59660 (2)	0.03174 (12)	
Cl4	0.61148 (4)	0.43078 (5)	0.35395 (2)	0.03516(13)	
C1	0.63442 (12)	0.32199 (16)	0.57254 (6)	0.0221 (3)	
C2	0.63383 (12)	0.45706 (16)	0.58782 (7)	0.0217 (3)	
C3	0.63784 (13)	0.51050 (17)	0.63570 (7)	0.0244 (3)	
C4	0.64182 (15)	0.44129 (19)	0.68067 (7)	0.0307 (4)	
H4	0.642579	0.353188	0.679465	0.037*	
C5	0.64455 (17)	0.4998(2)	0.72553 (8)	0.0387 (5)	
Н5	0.646238	0 452034	0.755159	0.046*	
C6	0.64488(18)	0.6299 (2)	0 72840 (8)	0.0403(5)	
H6	0.647220	0.669447	0.759936	0.048*	
C7	0.64187(16)	0.6999 (2)	0.68613 (8)	0.0340(4)	
С7 H7	0.642775	0.787869	0.688647	0.041*	
C8	0.642773 0.63741(13)	0.64337(17)	0.63870 (7)	0.041 0.0254 (4)	
C9	0.63181(12)	0.04337(17) 0.71300(17)	0.03870(7) 0.59358(7)	0.0234(4) 0.0247(4)	
C10	0.63101(12) 0.62704(12)	0.71900(17) 0.65911(17)	0.59550(7) 0.54760(7)	0.0247(4) 0.0242(3)	
H10	0.622833	0.05911 (17)	0.518124	0.0242 (3)	
C11	0.622655 0.62854(12)	0.52906 (16)	0.54535 (6)	0.029	
C12	0.62551(12)	0.32900(10) 0.44863(16)	0.54555(0)	0.0213(3)	
C12	0.62051(12)	0.48153(17)	0.30131(7) 0.45073(7)	0.0221(3) 0.0248(4)	
H13	0.618390	0.46100 (17)	0.440677	0.0248 (4)	
C14	0.61879(12)	0.38833 (19)	0.41650(7)	0.030	
C15	0.61079(12) 0.62220(12)	0.36033(17)	0.42978(7)	0.0237(4) 0.0249(4)	
C16	0.62220(12) 0.62121(13)	0.20011(10) 0.1634(2)	0.42978(7) 0.39421(7)	0.0249(4)	
H16	0.618368	0.183250	0.359817	0.025*	
C17	0.010500 0.62430(14)	0.103239 0.0420(2)	0.359817	0.0331(4)	
U17	0.02430 (14)	-0.021715	0.40878 (8)	0.0331 (4)	
C18	0.023303 0.62885(14)	0.021713	0.384433	0.040	
U18	0.02885 (14)	-0.074267	0.45940 (8)	0.0313 (4)	
C10	0.031003	0.074207 0.10060 (17)	0.405000	0.038°	
U19 U10	0.03012(13)	0.10009(17)	0.49312(7)	0.0272 (4)	
П19 С20	0.032970 0.62723(12)	0.07704(17)	0.329224	0.033°	
C20	0.02723(12)	0.22794(17) 0.22607(16)	0.46130(7)	0.0237(3)	
C21	0.02889 (12)	0.32007(10) -0.0571(8)	0.31031 (0)	0.0224(3)	0.5
	0.500000	-0.0371(6)	0.750000	0.055 (2)	0.5
	0.330101	-0.111210	0.778039	0.063*	0.25
C2L	0.409897	-0.111200	0.721900	0.003	0.23
C2L	0.5837(6)	0.0255 (8)	0.7298 (4)	0.098 (5)	0.5
	0.040442	-0.021255	0.755150	0.117*	0.5
H2L2	0.502514	0.04/455	0.094003	$0.11/^{*}$	0.5
	0.5967 (4)	0.1440 (5)	0.708052	0.0488 (11)	0.5
H3L1	0.009080	0.121030	0.798933	0.059*	0.5
H3L2	0.652236	0.194808	0./33464	0.009*	0.5
C4L	0.500000	0.2150 (7)	0.750000	0.0497 (19)	0.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4L1	0.493161	0.269490	0.778629	0.060*	0.25
H4L2	0.506841	0.269488	0.721371	0.060*	0.25
C1M	0.4912 (6)	-0.0506 (8)	0.7717 (3)	0.0326 (17)	0.25
H1M1	0.492958	-0.136370	0.757813	0.039*	0.25
H1M2	0.479821	-0.055842	0.806770	0.039*	0.25
C2M	0.5902 (3)	0.0093 (4)	0.76390 (19)	0.0419 (10)	0.5
H2M1	0.620698	0.029383	0.798809	0.050*	0.5
H2M2	0.634240	-0.049693	0.750461	0.050*	0.5
C3M	0.5827 (7)	0.1294 (8)	0.7328 (4)	0.094 (2)	0.5
H3M1	0.595833	0.107738	0.698994	0.112*	0.5
H3M2	0.635843	0.186338	0.748122	0.112*	0.5
C4M	0.4818 (7)	0.2036 (8)	0.7269 (4)	0.0376 (19)	0.25
H4M1	0.447575	0.199768	0.691691	0.045*	0.25
H4M2	0.493363	0.291640	0.736596	0.045*	0.25

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0292 (2)	0.0266 (2)	0.0289 (2)	0.00530 (16)	-0.00196 (17)	0.00312 (17)
Cl2	0.0305 (2)	0.0274 (2)	0.0290 (2)	-0.00694 (16)	0.00791 (17)	0.00400 (17)
C13	0.0293 (2)	0.0222 (2)	0.0446 (3)	-0.00073 (16)	0.00885 (19)	0.00088 (18)
Cl4	0.0333 (2)	0.0510(3)	0.0216 (2)	-0.0015 (2)	0.00606 (17)	0.0058 (2)
C1	0.0207 (8)	0.0226 (8)	0.0227 (8)	-0.0010 (6)	0.0029 (6)	0.0036 (6)
C2	0.0179 (7)	0.0224 (8)	0.0246 (8)	-0.0006 (6)	0.0036 (6)	0.0016 (6)
C3	0.0215 (8)	0.0261 (8)	0.0255 (8)	-0.0015 (6)	0.0038 (6)	0.0025 (7)
C4	0.0364 (10)	0.0289 (9)	0.0268 (9)	-0.0042 (8)	0.0058 (8)	0.0025 (7)
C5	0.0519 (13)	0.0398 (11)	0.0250 (9)	-0.0052 (10)	0.0086 (9)	0.0034 (9)
C6	0.0541 (13)	0.0402 (12)	0.0275 (10)	-0.0079 (10)	0.0098 (9)	-0.0065 (9)
C7	0.0385 (11)	0.0307 (10)	0.0333 (10)	-0.0060 (8)	0.0080 (8)	-0.0051 (8)
C8	0.0215 (8)	0.0261 (8)	0.0290 (9)	-0.0025 (7)	0.0052 (7)	-0.0006 (7)
C9	0.0178 (7)	0.0223 (8)	0.0343 (9)	-0.0009 (6)	0.0051 (7)	0.0010(7)
C10	0.0182 (8)	0.0254 (8)	0.0294 (9)	-0.0007 (6)	0.0049 (7)	0.0067 (7)
C11	0.0157 (7)	0.0244 (8)	0.0246 (8)	0.0002 (6)	0.0036 (6)	0.0033 (6)
C12	0.0164 (7)	0.0258 (8)	0.0240 (8)	-0.0004 (6)	0.0031 (6)	0.0034 (7)
C13	0.0189 (8)	0.0286 (9)	0.0272 (9)	-0.0004 (6)	0.0048 (6)	0.0071 (7)
C14	0.0177 (8)	0.0391 (10)	0.0203 (8)	-0.0003 (7)	0.0035 (6)	0.0042 (7)
C15	0.0163 (7)	0.0335 (9)	0.0246 (8)	-0.0004 (6)	0.0029 (6)	-0.0005 (7)
C16	0.0206 (8)	0.0415 (11)	0.0255 (9)	-0.0002 (7)	0.0029 (7)	-0.0059 (8)
C17	0.0229 (9)	0.0390 (11)	0.0364 (10)	-0.0001 (8)	0.0017 (8)	-0.0123 (9)
C18	0.0248 (9)	0.0283 (9)	0.0399 (11)	-0.0002 (7)	0.0012 (8)	-0.0045 (8)
C19	0.0235 (8)	0.0271 (9)	0.0300 (9)	-0.0005 (7)	0.0018 (7)	0.0002 (7)
C20	0.0168 (7)	0.0281 (8)	0.0257 (8)	-0.0001 (6)	0.0019 (6)	0.0001 (7)
C21	0.0180 (7)	0.0253 (8)	0.0236 (8)	0.0005 (6)	0.0030 (6)	0.0033 (7)
C1L	0.055 (3)	0.049 (3)	0.055 (3)	0.000	0.0094 (19)	0.000
C2L	0.096 (3)	0.096 (3)	0.101 (3)	0.0071 (19)	0.0155 (19)	-0.0107 (19)
C3L	0.0497 (18)	0.0403 (17)	0.0541 (19)	-0.0057 (15)	0.0023 (15)	0.0018 (15)
C4L	0.051 (2)	0.046 (2)	0.052 (2)	0.000	0.0086 (18)	0.000
C1M	0.034 (2)	0.032 (2)	0.032 (2)	-0.0033 (17)	0.0066 (18)	0.0050 (18)

data reports

C2M	0.0451 (17)	0.0398 (17)	0.0400 (17)	-0.0001 (14)	0.0049 (14)	0.0038 (14)
C3M	0.094 (3)	0.092 (3)	0.097 (3)	0.0002 (19)	0.0210 (19)	0.0097 (19)
C4M	0.042 (2)	0.035 (2)	0.037 (3)	-0.0017 (18)	0.0076 (18)	0.0019 (19)

Geometric parameters (Å, °)

Cl1—C1	1.8077 (17)	C17—H17	0.9500	
Cl2—C1	1.8052 (17)	C18—C19	1.368 (3)	
Cl3—C9	1.7380 (19)	C18—H18	0.9500	
Cl4—C14	1.7407 (18)	C19—C20	1.418 (3)	
C1—C21	1.512 (2)	C19—H19	0.9500	
C1—C2	1.513 (2)	C20—C21	1.413 (3)	
C2—C11	1.379 (2)	C1L—C2L ⁱ	1.624 (9)	
C2—C3	1.411 (2)	C1L—C2L	1.624 (9)	
C3—C4	1.421 (3)	C1L—H1L1	0.9900	
C3—C8	1.434 (3)	C1L—H1L2	0.9900	
C4—C5	1.363 (3)	C2L—C3L	1.556 (8)	
C4—H4	0.9500	C2L—H2L1	0.9900	
C5—C6	1.404 (3)	C2L—H2L2	0.9900	
С5—Н5	0.9500	C3L—C4L	1.524 (6)	
C6—C7	1.366 (3)	C3L—H3L1	0.9900	
С6—Н6	0.9500	C3L—H3L2	0.9900	
C7—C8	1.414 (3)	C4L—H4L1	0.9900	
С7—Н7	0.9500	C4L—H4L2	0.9900	
C8—C9	1.424 (3)	C1M—C1M ⁱ	1.241 (18)	
C9—C10	1.365 (3)	C1M—C2M ⁱ	1.495 (10)	
C10—C11	1.403 (2)	C1M—C2M	1.556 (8)	
C10—H10	0.9500	C1M—H1M1	1.0003	
C11—C12	1.469 (2)	C1M—H1M2	0.9900	
C12—C21	1.380 (2)	C2M—C3M	1.539 (8)	
C12—C13	1.405 (2)	C2M—H2M1	0.9900	
C13—C14	1.364 (3)	C2M—H2M2	0.9900	
С13—Н13	0.9500	C3M—C4M	1.588 (10)	
C14—C15	1.426 (3)	C3M—C4M ⁱ	1.719 (13)	
C15—C16	1.418 (3)	C3M—H3M1	0.9900	
C15—C20	1.435 (2)	C3M—H3M2	0.9900	
C16—C17	1.364 (3)	C4M—C4M ⁱ	1.264 (19)	
C16—H16	0.9500	C4M—H4M1	0.9900	
C17—C18	1.403 (3)	C4M—H4M2	0.9900	
C21—C1—C2	104.22 (14)	C20—C21—C1	129.87 (16)	
C21—C1—Cl2	111.34 (12)	C2L ⁱ —C1L—C2L	113.7 (7)	
C2-C1-Cl2	111.54 (12)	C2L ⁱ —C1L—H1L1	107.0	
C21—C1—Cl1	111.22 (12)	C2L—C1L—H1L1	110.6	
C2-C1-Cl1	111.32 (12)	C2L ⁱ —C1L—H1L2	110.6	
Cl2—C1—Cl1	107.26 (9)	C2L—C1L—H1L2	106.9	
C11—C2—C3	121.66 (16)	H1L1—C1L—H1L2	107.9	
C11—C2—C1	108.36 (15)	C3L—C2L—C1L	105.8 (6)	

C3—C2—C1	129.98 (16)	C3L—C2L—H2L1	110.6
C2—C3—C4	124.26 (17)	C1L—C2L—H2L1	110.6
C2—C3—C8	117.35 (16)	C3L—C2L—H2L2	110.6
C4—C3—C8	118.39 (17)	C1L—C2L—H2L2	110.6
C5—C4—C3	120.80 (19)	H2L1—C2L—H2L2	108.7
C5—C4—H4	119.6	C4L—C3L—C2L	105.7 (5)
C3—C4—H4	119.6	C4L-C3L-H3L1	110.6
C4-C5-C6	120.7 (2)	$C_2L - C_3L - H_3L_1$	110.6
C4—C5—H5	119.7	C4I - C3I - H3I2	110.6
С6—С5—Н5	119.7	$C_{1} = C_{3} = H_{3} C_{2}$	110.6
C7-C6-C5	1204(2)	$H_{3L} = C_{3L} = H_{3L}^2$	108 7
C7—C6—H6	119.8	$C3I - C4I - C3L^{i}$	119.8 (6)
C5-C6-H6	119.8	$\begin{array}{c} C_{31} \\ \hline \\ \hline \\ C_{31} \\ \hline \\ \hline \\ \hline \\ C_{41} \\ \hline \\ \hline \\ \hline \\ H_{41} \\ 1 \\ \end{array}$	108.3
C6-C7-C8	120.9(2)	$C3L^{i}$ $C4L$ $H4L1$	106.3
C6-C7-H7	110.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106.3
C8-C7-H7	119.5	C3L = C4L = H4L2	108.3
C_{7} C_{8} C_{9}	122 67 (18)		107.2
C_{7}^{-} C_{8}^{8} C_{7}^{3}	122.07(10) 118.80(17)	$\frac{11+11}{2} - \frac{11+12}{2}$	$63 \Lambda (6)$
C^{0}	110.00(17) 118 53 (17)	$C2M^{i}$ $C1M$ $C2M$	108.2(6)
$C_{2} = C_{3} = C_{2}$	110.33(17) 122.03(17)	$C1M^{i}$ $C1M$ $H1M1$	100.2 (0) 67.8
$C_{10} = C_{9} = C_{8}$	123.03(17) 117.02(14)	$C_{1M} = C_{1M} = H_{1M1}$	102.7
$C_{10} = C_{12} = C_{13}$	117.92(14) 110.05(14)	$C_{2M} = C_{1M} = H_{1M1}$	102.7
C_{0} C_{10} C_{11}	117.05(14) 117.76(17)	$C1M^{i}$ $C1M$ $H1M2$	104.7
C_{0} C_{10} H_{10}	121.1	$C_{1M} = C_{1M} = H_{1M2}$	1147
$C_{11} = C_{10} = H_{10}$	121.1	$C_{2M} = C_{1M} = H_{1M2}$	114.7
$C_1 = C_1 $	121.1	$C_{2}M - C_{1}M - H_{1}M_{2}$	100.0
$C_2 = C_{11} = C_{10}$	121.00(17) 100 50(15)	$H111^{i} C1M H112^{i}$	109.0 82.1
$C_2 = C_{11} = C_{12}$	109.39(13) 128.75(16)	$\frac{11121}{2} - \frac{11122}{2}$	02.1
$C_{10} - C_{11} - C_{12}$	128.75(10) 121.45(17)	C1Mi = C2M = C1M	92.1(0)
$C_{21} = C_{12} = C_{13}$	121.43(17) 100.22(15)	$C_{1M} = C_{2M} = C_{1M}$	47.9(7)
$C_{21} = C_{12} = C_{11}$	109.32(13) 120.22(16)	$C_{1Mi} = C_{2M} = C_{1Mi}$	140.1
C13 - C12 - C11	129.22(10) 117.06(17)	C1M - C2M - H2M1	149.1
C14 - C13 - C12	117.90 (17)	$C_{1M} = C_{2M} = H_{2M1}$	108.5
C12 C12 H12	121.0	CIM = C2M = H2M2	101.4
C12—C13—H13	121.0	C1M - C2M - H2M2	85./
C13 - C14 - C13	123.09 (16)	C_{3M} C_{2M} H_{2M2}	109.1
C13 - C14 - C14	117.32 (15)	CIM - C2M - H2M2	113.0
C15-C14-C14	119.58 (14)	$H_2MI = C_2M = H_2M_2$	10/.8
C16 - C15 - C14	123.03 (17)	$C_2M = C_3M = C_4M$	110.9(7)
C16 - C15 - C20	118.65 (17)	$C_2M - C_3M - C_4M^4$	92.1 (6)
C14 - C15 - C20	118.31 (16)	$C4M - C3M - C4M^4$	44./(/)
CI/-CI6-CI5	120.81 (18)	$C_2M = C_3M = H_3MI$	107.6
C1/-C16-H16	119.6	C4M - C3M - H3M1	108.8
C10 - C10 - H10	119.0	$C_{4M} = C_{5M} = H_{5M} = H_{5M}$	133.2
$C_{10} - C_{17} - C_{18}$	120.50 (18)	$C_{2}M = C_{3}M = H_{3}M_{2}$	108.4
C10-C17-H17	119.8	C4M - C3M - H3M2	107.6
C18 - C1 / -H1 / C18 - C19 - C17	119.8	C4M'-C3M-H3M2	82.6
C19—C18—C17	120.85 (19)	H3M1—C3M—H3M2	107.2
C19—C18—H18	119.6	$C4M^{-}C4M - C3M$	73.1 (8)

C17—C18—H18	119.6	C4M ⁱ —C4M—H4M1	174 5
C18 - C19 - C20	120 42 (18)	C3M - C4M - H4M1	109.8
C18 - C19 - H19	119.8	$C_{3}M^{i}$ $C_{4}M$ $H_{4}M_{1}$	112.3
C_{20} C_{19} H_{19}	119.8	$C4M^{i}$ $C4M$ $H4M2$	73.8
$C_{20} = C_{10} = H_{10}$	123 60 (17)	$C_{1}M = C_{1}M = H_{1}M_{2}$	110.0
$C_{21} = C_{20} = C_{15}$	125.09 (17)	$C_{2}M_{i} = C_{4}M_{i} = H_{4}M_{2}$	110.9
$C_{21} = C_{20} = C_{15}$	117.30(10) 118.76(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.8
C_{12} C_{20} C_{13} C_{20}	110.70(17) 121.62(16)	$\frac{1141011}{C4101} - \frac{1141012}{C4101} = \frac{1141012}{C4101}$	108.8
C_{12} C_{21} C_{20}	121.03(10) 108.50(15)	$\Pi 4 L I \longrightarrow C 4 M \longrightarrow \Pi 4 L 2$	//./
C12—C21—C1	108.30 (13)		
$C_{21} - C_{1} - C_{2} - C_{11}$	0.04(18)	C14 - C14 - C15 - C16	0.8(2)
$C_{12} - C_{1} - C_{2} - C_{11}$	-12021(13)	C_{13} C_{14} C_{15} C_{20}	0.0(2)
$C_{11} = C_{11} = C_{22} = C_{11}$	120.21(13)	C_{14} C_{14} C_{15} C_{20}	-17939(12)
C_{21} C_{1} C_{2} C_{3}	-179.87(17)	$C_{14} = C_{15} = C_{16} = C_{17}$	-179.80(12)
C_{12} C_{1} C_{2} C_{3}	500(2)	$C_{14} = C_{15} = C_{16} = C_{17}$	0.4(3)
$C_{12} = C_1 = C_2 = C_3$	-500(2)	C_{15} C_{16} C_{17} C_{18}	-0.2(3)
$C_{11} = C_{12} = C_{23} = C_{43}$	178.08(17)	$C_{15} = C_{10} = C_{17} = C_{18}$	0.2(3)
C1 - C2 - C3 - C4	1/0.90(17)	$C_{10} - C_{17} - C_{18} - C_{19}$	0.1(3)
C1 - C2 - C3 - C4	-1.1(3)	C17 - C18 - C19 - C20	-0.2(3)
C1 - C2 - C3 - C8	-0.7(2)	C18 - C19 - C20 - C21	-1/9.01(17)
C1 - C2 - C3 - C8	1/9.10 (10)	C16 - C19 - C20 - C15	0.5(3)
$C_2 = C_3 = C_4 = C_5$	-1/9.52(19)	C10 - C13 - C20 - C21	179.32 (13)
$C_{8} - C_{3} - C_{4} - C_{5}$	0.4(3)	C14 - C15 - C20 - C21	-0.3(2)
C3-C4-C5-C6	-0.9(3)	C16-C15-C20-C19	-0.6(2)
C4—C5—C6—C7	0.4 (4)	C14—C15—C20—C19	1/9.67 (16)
C5—C6—C7—C8	0.6 (4)	C13—C12—C21—C20	-0.2 (3)
C6—C7—C8—C9	178.47 (19)	C11—C12—C21—C20	-179.88 (15)
C6—C7—C8—C3	-1.1 (3)	C13—C12—C21—C1	179.72 (15)
C2—C3—C8—C7	-179.68 (16)	C11—C12—C21—C1	0.01 (19)
C4—C3—C8—C7	0.6 (3)	C19—C20—C21—C12	-179.72 (16)
C2—C3—C8—C9	0.7 (2)	C15—C20—C21—C12	0.2 (2)
C4—C3—C8—C9	-178.99 (16)	C19—C20—C21—C1	0.4 (3)
C7—C8—C9—C10	-179.69 (17)	C15—C20—C21—C1	-179.66 (16)
C3—C8—C9—C10	-0.1 (3)	C2—C1—C21—C12	-0.03 (18)
C7—C8—C9—Cl3	0.2 (2)	Cl2—C1—C21—C12	120.35 (13)
C3—C8—C9—Cl3	179.77 (13)	Cl1—C1—C21—C12	-120.08 (13)
C8—C9—C10—C11	-0.5 (3)	C2-C1-C21-C20	179.85 (17)
Cl3—C9—C10—C11	179.60 (12)	Cl2—C1—C21—C20	-59.8 (2)
C3—C2—C11—C10	0.1 (3)	Cl1—C1—C21—C20	59.8 (2)
C1-C2-C11-C10	-179.81 (15)	C2L ⁱ —C1L—C2L—C3L	33.3 (4)
C3—C2—C11—C12	179.88 (15)	C1L—C2L—C3L—C4L	-66.8 (7)
C1—C2—C11—C12	-0.03 (19)	C2L—C3L—C4L—C3L ⁱ	34.5 (4)
C9—C10—C11—C2	0.5 (3)	$C2M^{i}$ — $C1M$ — $C2M$ — $C1M^{i}$	-53.6 (7)
C9—C10—C11—C12	-179.21 (16)	C1M ⁱ —C1M—C2M—C3M	66.9 (6)
C2-C11-C12-C21	0.02 (19)	C2M ⁱ —C1M—C2M—C3M	13.3 (9)
C10-C11-C12-C21	179.78 (16)	C1M ⁱ —C2M—C3M—C4M	62.5 (9)
C2-C11-C12-C13	-179.67 (16)	C1M—C2M—C3M—C4M	19.4 (11)
C10—C11—C12—C13	0.1 (3)	$C1M^{i}$ — $C2M$ — $C3M$ — $C4M^{i}$	101.3 (6)
C21—C12—C13—C14	0.2 (2)	C1M—C2M—C3M—C4M ⁱ	58.2 (8)

data reports

C11—C12—C13—C14	179.83 (16)	C2M—C3M—C4M—C4M ⁱ	62.9 (8)
C12-C13-C14-C15	-0.2 (3)	$C2M - C3M - C4M - C3M^i$	8.3 (10)
C12-C13-C14-Cl4	179.44 (12)	$C4M^{i}$ — $C3M$ — $C4M$ — $C3M^{i}$	-54.6 (6)
C13—C14—C15—C16	-179.47 (17)		

Symmetry code: (i) -x+1, y, -z+3/2.