ISSN 2414-3146

Received 5 February 2019 Accepted 6 February 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

# Additional correspondence author: e-mail kariukib@cardiff.ac.uk.

Keywords: crystal structure; furan; pyrazole.

CCDC reference: 1895864

**Structural data**: full structural data are available from iucrdata.iucr.org

## 5-[(4-Chlorophenyl)diazenyl]-2-[5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl]-4methylthiazole

Gamal A El-Hiti,<sup>a</sup>\* Bakr F. Abdel-Wahab,<sup>b,c</sup> Emad Yousif,<sup>d</sup> Mohammad Hayal Alotaibi,<sup>e</sup> Amany S. Hegazy<sup>f</sup> and Benson M. Kariuki<sup>f</sup>‡

<sup>a</sup>Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, <sup>b</sup>Department of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, <sup>c</sup>Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, <sup>d</sup>Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, <sup>e</sup>National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and <sup>f</sup>School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. \*Correspondence e-mail: gelhiti@ksu.edu.sa

The title compound,  $C_{23}H_{17}ClFN_5OS$ , comprises fluorophenyl (*A*), furanyl (*B*), pyrazolyl (*C*), methylthiazoyl (*D*) and chlorophenyl (*E*) rings. The *B*-*C*-*D*-*E* linked ring system is close to planar with the dihedral angles *B*/*C*, *C*/*D* and *D*/*E* being 7.6 (1), 3.4 (1) and 8.4 (1)°, respectively. The fluorophenyl group is almost perpendicular to the pyrazoyl ring, as indicated by an *A*/*C* twist angle of 79.4 (1)°. In the crystal, inversion dimers linked by pairs of C-H···S contacts are observed.



#### Structure description

Thiazoles are of importance in medicinal chemistry as they have various biological activities (Kashyap *et al.*, 2012) and occur in natural products (Chhabria *et al.*, 2016). Pyrazoles have a broad spectrum of biological activities (Faria *et al.*, 2017). As part of our studies in these areas, we now describe the structure of the title compound.

The asymmetric unit consists of one molecule of the title compound and comprises fluorophenyl (A), furanyl (B), pyrazolyl (C), methylthiazoyl (D) and chlorophenyl (E) rings (Fig. 1). The B-C-D-E linked ring system is close to planar with the B/C, C/D and D/E angles between neighbouring rings being 7.6 (1), 3.4 (1) and 8.4 (1)°, respectively. The fluorophenyl group (A) is almost perpendicular to the B-E system as indicated by an





#### Figure 1

The molecular structure of the title compound showing 50% displacement ellipsoids.

A/C twist angle of 79.4 (1)°. In the crystal, inversion dimers linked by pairs of C-H···S bonds (Table 1) generate  $R_2^2(18)$ loops, which are stacked in the [100] direction (Fig. 2).

#### Synthesis and crystallization

The title compound was synthesized by the condensation of 5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1*H*-pyrazole-1carbothioamide with N'-(4-chlorophenyl)-2-oxopropanehydrazonoyl chloride in ethanol containing catalytic amount of triethylamine as previously reported (Abdel-Wahab *et al.*, 2013). The product was recrystallized from dimethylformamide solution to give colourless crystals (74%), m.p. 227–228°C.



#### Figure 2

A view of the crystal structure down [100] showing intermolecular short contacts as dotted lines.

| Table 1                | _   |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D - \mathbf{H} \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C13-H13\cdots S2^{i}$               | 0.93 | 2.85                    | 3.612 (2)    | 140                                  |

Symmetry code: (i) -x - 1, -y, -z.

Table 2 Experimental details

| Experimental details.                                                    |                                                   |
|--------------------------------------------------------------------------|---------------------------------------------------|
| Crystal data                                                             |                                                   |
| Chemical formula                                                         | C23H17ClFN5OS                                     |
| M <sub>r</sub>                                                           | 465.92                                            |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                              |
| Temperature (K)                                                          | 298                                               |
| a, b, c (Å)                                                              | 5.2879 (3), 26.3742 (10),<br>15 7872 (7)          |
| β (°)                                                                    | 98.293 (4)                                        |
| $V(A^3)$                                                                 | 2178 72 (18)                                      |
| 7                                                                        | 4                                                 |
| Radiation type                                                           | Μο Κα                                             |
| $\mu \text{ (mm}^{-1})$                                                  | 0.31                                              |
| Crystal size (mm)                                                        | $0.49 \times 0.16 \times 0.15$                    |
| Data collection                                                          |                                                   |
|                                                                          | Disalar Orfend Differentian Same                  |
| Diffractometer                                                           | Nova, Dual, Cu at zero, Atlas                     |
| Absorption correction                                                    | Gaussian ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015) |
| $T_{\min}, T_{\max}$                                                     | 0.993, 0.997                                      |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 21057, 5523, 4143                                 |
| Rint                                                                     | 0.028                                             |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.697                                             |
| Refinement                                                               |                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.042, 0.113, 1.04                                |
| No of reflections                                                        | 5523                                              |
| No. of parameters                                                        | 290                                               |
| H-atom treatment                                                         | H-atom parameters constrained                     |
| $\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$                         | 0.16 - 0.31                                       |
| $-r \max = -r \min \left( -r \right)$                                    |                                                   |

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### Acknowledgements

The authors thank King Saud and Cardiff Universities for continuous support.

#### **Funding information**

Funding for this research was provided by: King Abdulaziz City for Science and Technology (KACST), Saudi Arabia (award No. 020-0180).

#### References

Abdel-Wahab, B. F., Sediek, A., Mohamed, H. A. & Awad, G. E. A. (2013). *Lett. Drug. Des. Discov.* **10**, 111–118.

Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.

Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). *Curr. Top. Med. Chem.* **16**, 2841–2862.

Faria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). *Bioorg. Med. Chem.* 25, 5891– 5903.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Kashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). *Med. Chem. Res.* **21**, 2123–2132.

- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

# full crystallographic data

*IUCrData* (2019). **4**, x190211 [https://doi.org/10.1107/S2414314619002116]

5-[(4-Chlorophenyl)diazenyl]-2-[5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl]-4-methylthiazole

Gamal A El-Hiti, Bakr F. Abdel-Wahab, Emad Yousif, Mohammad Hayal Alotaibi, Amany S. Hegazy and Benson M. Kariuki

5-[(4-Chlorophenyl)diazenyl]-2-[5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl]-4-methylthiazole

## Crystal data

 $C_{23}H_{17}CIFN_5OS$   $M_r = 465.92$ Monoclinic,  $P2_1/c$  a = 5.2879 (3) Å b = 26.3742 (10) Å c = 15.7872 (7) Å  $\beta = 98.293$  (4)° V = 2178.72 (18) Å<sup>3</sup> Z = 4

## Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer  $\omega$  scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015)  $T_{\min} = 0.993, T_{\max} = 0.997$ 21057 measured reflections

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.113$ S = 1.035523 reflections 290 parameters 0 restraints F(000) = 960  $D_x = 1.420 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6690 reflections  $\theta = 4.2-28.8^{\circ}$   $\mu = 0.31 \text{ mm}^{-1}$  T = 298 KNeedle, colourless  $0.49 \times 0.16 \times 0.14 \text{ mm}$ 

5523 independent reflections 4143 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.028$  $\theta_{max} = 29.7^{\circ}, \theta_{min} = 3.5^{\circ}$  $h = -6 \rightarrow 6$  $k = -33 \rightarrow 36$  $l = -18 \rightarrow 21$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0435P)^2 + 0.7096P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. All hydrogen atoms were placed in calculated positions and refined using a riding model. Bond distances for aromatic, methine and methylene C—H hydrogen atoms were set to 0.93 Å, 0.98 Å and 0.93 Å, respectively and their  $U_{iso}$  values set to 1.2 times  $U_{eq}(C)$ . Bond distances for methyl C—H hydrogen atoms were set to 0.96 Å and their  $U_{iso}$  set to 1.5 times  $U_{eq}(C)$  with the group free to rotate about the C—C bond.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ C1 0.0626 (6) 0.0781 (5) 0.26438 (8) 0.25920(13) C2 0.0632 (6) -0.0593(4)0.22058 (9) 0.25800(12) H2 0.076\* -0.1881070.216992 0.291921 C3 0.0508 (4) -0.0025(4)0.18144 (8) 0.20494 (11) H3 -0.0949470.202736 0.061\* 0.151351 C4 0.1904 (3) 0.18705 (6) 0.15553 (10) 0.0385(3)C5 0.3267 (4) 0.23211 (6) 0.15976 (11) 0.0465 (4) Н5 0.458123 0.126987 0.056\* 0.235950 C6 0.2705 (5) 0.27143 (7) 0.21185 (13) 0.0594(5)H6 0.361295 0.301722 0.214416 0.071\* C7 0.09325 (11) 0.0414(4)0.2489(3)0.14657 (6) H7 0.427871 0.148875 0.084020 0.050\* C8 0.0458 (4) 0.0710(4)0.14838 (6) 0.00674 (11) 0.179117 H8A -0.0308110.001392 0.055\* H8B -0.0409170.055\* 0.167553 0.146253 C9 -0.0937(3)0.10222 (6) 0.01124 (10) 0.0406(4)C10 0.0431 (4) -0.3123(4)0.09025(6)-0.05042(11)C11 -0.4169(4)0.11166(7)-0.12524(11)0.0510(4)H11 -0.3588380.140346 -0.1507840.061\* C12 -0.6331(4)0.08164 (8) -0.15704(12)0.0559(5)H12 -0.7438480.086687 -0.2076900.067\* C13 -0.6459(4)0.04478 (8) -0.09992(13)0.0568(5)H13 -0.7707050.019689 -0.1047600.068\* C14 0.3140 (3) 0.07128 (6) 0.19213 (11) 0.0413 (4) C15 0.5955 (4) 0.05794(7)0.30614 (11) 0.0453(4)C16 0.4562(4)0.01408 (6) 0.30647 (11) 0.0451(4)C17 0.8202 (4) 0.07168 (8) 0.37081 (13) 0.0588(5)H17A 0.963604 0.079446 0.342109 0.088\* H17B 0.862443 0.043675 0.409091 0.088\*H17C 0.778770 0.100733 0.402770 0.088\*C18 0.3905(4)-0.10285(7)0.40559(11) 0.0457(4)C19 0.0598(5)0.6009(4)-0.10844(8)0.46822(13)0.072\* H19 -0.0827980.477058 0.722638 C20 -0.15181(8)0.51757 (13) 0.0628 (6) 0.6311 (4) H20 0.772774 -0.1555800.559425 0.075\*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C21 | 0.4493 (4)   | -0.18944 (7) | 0.50416 (11) | 0.0475 (4)   |  |
|-----|--------------|--------------|--------------|--------------|--|
| C22 | 0.2386 (4)   | -0.18456 (7) | 0.44334 (12) | 0.0565 (5)   |  |
| H22 | 0.116268     | -0.210100    | 0.435302     | 0.068*       |  |
| C23 | 0.2105 (4)   | -0.14106 (7) | 0.39398 (13) | 0.0563 (5)   |  |
| H23 | 0.068133     | -0.137504    | 0.352340     | 0.068*       |  |
| N1  | 0.1930 (3)   | 0.09521 (5)  | 0.12251 (9)  | 0.0466 (4)   |  |
| N2  | -0.0195 (3)  | 0.07306 (5)  | 0.07564 (9)  | 0.0444 (3)   |  |
| N3  | 0.5145 (3)   | 0.09084 (5)  | 0.24081 (9)  | 0.0452 (3)   |  |
| N4  | 0.5021 (3)   | -0.02481 (6) | 0.36380 (9)  | 0.0480 (4)   |  |
| N5  | 0.3409 (3)   | -0.06088 (6) | 0.34945 (10) | 0.0503 (4)   |  |
| F1  | 0.0203 (4)   | 0.30294 (6)  | 0.31041 (9)  | 0.1010 (6)   |  |
| S2  | 0.20523 (9)  | 0.01261 (2)  | 0.22069 (3)  | 0.04565 (13) |  |
| Cl1 | 0.49098 (13) | -0.24529 (2) | 0.56357 (3)  | 0.07087 (18) |  |
| 01  | -0.4519 (3)  | 0.04886 (5)  | -0.03373 (8) | 0.0550 (3)   |  |
|     |              |              |              |              |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|---------------|---------------|
| C1  | 0.0723 (15) | 0.0617 (12) | 0.0474 (10) | 0.0251 (11)   | -0.0127 (10)  | -0.0170 (9)   |
| C2  | 0.0544 (13) | 0.0884 (16) | 0.0475 (10) | 0.0187 (11)   | 0.0095 (9)    | -0.0047 (10)  |
| C3  | 0.0451 (11) | 0.0570 (11) | 0.0504 (10) | -0.0036 (8)   | 0.0076 (8)    | -0.0034 (8)   |
| C4  | 0.0371 (9)  | 0.0372 (8)  | 0.0398 (8)  | -0.0012 (6)   | 0.0012 (6)    | 0.0004 (6)    |
| C5  | 0.0482 (11) | 0.0399 (9)  | 0.0491 (9)  | -0.0048(7)    | -0.0007(8)    | 0.0001 (7)    |
| C6  | 0.0702 (15) | 0.0404 (10) | 0.0604 (12) | 0.0013 (9)    | -0.0152 (10)  | -0.0079 (8)   |
| C7  | 0.0424 (10) | 0.0352 (8)  | 0.0473 (9)  | -0.0052 (7)   | 0.0087 (7)    | -0.0015 (7)   |
| C8  | 0.0553 (11) | 0.0403 (9)  | 0.0417 (9)  | -0.0062 (8)   | 0.0071 (8)    | -0.0021 (7)   |
| C9  | 0.0450 (10) | 0.0357 (8)  | 0.0416 (8)  | -0.0002 (7)   | 0.0078 (7)    | -0.0031 (6)   |
| C10 | 0.0469 (10) | 0.0380 (8)  | 0.0445 (9)  | -0.0023 (7)   | 0.0073 (7)    | -0.0038 (7)   |
| C11 | 0.0572 (12) | 0.0473 (10) | 0.0472 (9)  | 0.0034 (8)    | 0.0035 (8)    | 0.0022 (8)    |
| C12 | 0.0574 (13) | 0.0578 (11) | 0.0486 (10) | 0.0084 (9)    | -0.0050 (9)   | -0.0065 (8)   |
| C13 | 0.0500 (12) | 0.0548 (11) | 0.0613 (11) | -0.0068 (9)   | -0.0066 (9)   | -0.0083 (9)   |
| C14 | 0.0432 (10) | 0.0344 (8)  | 0.0460 (9)  | 0.0005 (7)    | 0.0048 (7)    | -0.0042 (7)   |
| C15 | 0.0430 (10) | 0.0462 (9)  | 0.0460 (9)  | 0.0013 (7)    | 0.0038 (7)    | -0.0081 (7)   |
| C16 | 0.0466 (10) | 0.0436 (9)  | 0.0434 (9)  | 0.0026 (7)    | 0.0007 (7)    | -0.0034 (7)   |
| C17 | 0.0512 (12) | 0.0675 (13) | 0.0543 (11) | -0.0070 (10)  | -0.0043 (9)   | -0.0089 (9)   |
| C18 | 0.0461 (11) | 0.0468 (9)  | 0.0428 (9)  | 0.0037 (8)    | 0.0013 (7)    | 0.0001 (7)    |
| C19 | 0.0511 (12) | 0.0591 (12) | 0.0647 (12) | -0.0075 (9)   | -0.0071 (9)   | 0.0090 (9)    |
| C20 | 0.0536 (13) | 0.0695 (13) | 0.0588 (11) | -0.0006 (10)  | -0.0136 (9)   | 0.0128 (10)   |
| C21 | 0.0543 (12) | 0.0478 (9)  | 0.0399 (8)  | 0.0058 (8)    | 0.0054 (8)    | 0.0036 (7)    |
| C22 | 0.0565 (13) | 0.0495 (10) | 0.0592 (11) | -0.0059 (9)   | -0.0066 (9)   | 0.0042 (8)    |
| C23 | 0.0532 (12) | 0.0534 (11) | 0.0559 (11) | -0.0018 (9)   | -0.0138 (9)   | 0.0042 (8)    |
| N1  | 0.0522 (9)  | 0.0332 (7)  | 0.0506 (8)  | -0.0070 (6)   | -0.0060(7)    | 0.0001 (6)    |
| N2  | 0.0472 (9)  | 0.0367 (7)  | 0.0469 (8)  | -0.0040 (6)   | -0.0011 (6)   | -0.0018 (6)   |
| N3  | 0.0457 (9)  | 0.0403 (7)  | 0.0485 (8)  | -0.0033 (6)   | 0.0024 (6)    | -0.0046 (6)   |
| N4  | 0.0510 (10) | 0.0463 (8)  | 0.0456 (8)  | 0.0020 (7)    | 0.0030 (7)    | -0.0001 (6)   |
| N5  | 0.0530 (10) | 0.0462 (8)  | 0.0493 (8)  | 0.0020 (7)    | -0.0006 (7)   | 0.0027 (6)    |
| F1  | 0.1302 (14) | 0.0924 (10) | 0.0740 (9)  | 0.0464 (10)   | -0.0072 (9)   | -0.0408 (8)   |
| S2  | 0.0486 (3)  | 0.0353 (2)  | 0.0500 (2)  | -0.00246 (17) | -0.00321 (19) | -0.00071 (16) |

# data reports

| Cl1 | 0.0867 (4) | 0.0649 (3) | 0.0580 (3) | 0.0043 (3)  | 0.0002 (3)  | 0.0203 (2) |
|-----|------------|------------|------------|-------------|-------------|------------|
| 01  | 0.0565 (9) | 0.0499 (7) | 0.0546 (7) | -0.0141 (6) | -0.0052 (6) | 0.0049 (6) |

Geometric parameters (Å, °)

| C1—C6    | 1.359 (3)   | С13—Н13       | 0.9300      |
|----------|-------------|---------------|-------------|
| C1—F1    | 1.361 (2)   | C14—N3        | 1.321 (2)   |
| C1—C2    | 1.363 (3)   | C14—N1        | 1.346 (2)   |
| C2—C3    | 1.389 (3)   | C14—S2        | 1.7330 (17) |
| С2—Н2    | 0.9300      | C15—N3        | 1.369 (2)   |
| C3—C4    | 1.379 (2)   | C15—C16       | 1.372 (3)   |
| С3—Н3    | 0.9300      | C15—C17       | 1.495 (3)   |
| C4—C5    | 1.386 (2)   | C16—N4        | 1.366 (2)   |
| C4—C7    | 1.513 (2)   | C16—S2        | 1.7546 (18) |
| C5—C6    | 1.382 (3)   | C17—H17A      | 0.9600      |
| С5—Н5    | 0.9300      | C17—H17B      | 0.9600      |
| С6—Н6    | 0.9300      | C17—H17C      | 0.9600      |
| C7—N1    | 1.475 (2)   | C18—C23       | 1.380 (3)   |
| С7—С8    | 1.543 (2)   | C18—C19       | 1.386 (3)   |
| С7—Н7    | 0.9800      | C18—N5        | 1.419 (2)   |
| С8—С9    | 1.504 (2)   | C19—C20       | 1.380 (3)   |
| C8—H8A   | 0.9700      | C19—H19       | 0.9300      |
| C8—H8B   | 0.9700      | C20—C21       | 1.377 (3)   |
| C9—N2    | 1.290 (2)   | C20—H20       | 0.9300      |
| C9—C10   | 1.435 (2)   | C21—C22       | 1.368 (3)   |
| C10-C11  | 1.353 (2)   | C21—C11       | 1.7432 (18) |
| C10-01   | 1.365 (2)   | C22—C23       | 1.383 (3)   |
| C11—C12  | 1.422 (3)   | C22—H22       | 0.9300      |
| C11—H11  | 0.9300      | C23—H23       | 0.9300      |
| C12—C13  | 1.334 (3)   | N1—N2         | 1.3823 (19) |
| C12—H12  | 0.9300      | N4—N5         | 1.276 (2)   |
| C13—O1   | 1.359 (2)   |               |             |
| C6—C1—F1 | 118.3 (2)   | O1—C13—H13    | 124.6       |
| C6—C1—C2 | 123.24 (18) | N3—C14—N1     | 122.60 (15) |
| F1-C1-C2 | 118.4 (2)   | N3—C14—S2     | 117.77 (13) |
| C1—C2—C3 | 118.5 (2)   | N1-C14-S2     | 119.63 (13) |
| C1—C2—H2 | 120.8       | N3—C15—C16    | 115.32 (16) |
| С3—С2—Н2 | 120.8       | N3—C15—C17    | 119.51 (16) |
| C4—C3—C2 | 120.21 (19) | C16—C15—C17   | 125.17 (17) |
| С4—С3—Н3 | 119.9       | N4—C16—C15    | 126.26 (17) |
| С2—С3—Н3 | 119.9       | N4—C16—S2     | 122.47 (14) |
| C3—C4—C5 | 119.12 (16) | C15—C16—S2    | 111.26 (13) |
| C3—C4—C7 | 121.94 (15) | C15—C17—H17A  | 109.5       |
| C5—C4—C7 | 118.85 (15) | C15—C17—H17B  | 109.5       |
| C6—C5—C4 | 121.13 (19) | H17A—C17—H17B | 109.5       |
| С6—С5—Н5 | 119.4       | C15—C17—H17C  | 109.5       |
| C4—C5—H5 | 119.4       | H17A—C17—H17C | 109.5       |

| C1—C6—C5    | 117.82 (19) | H17B—C17—H17C | 109.5       |
|-------------|-------------|---------------|-------------|
| С1—С6—Н6    | 121.1       | C23—C18—C19   | 118.99 (17) |
| С5—С6—Н6    | 121.1       | C23—C18—N5    | 115.16 (16) |
| N1—C7—C4    | 112.05 (14) | C19—C18—N5    | 125.85 (17) |
| N1—C7—C8    | 100.45 (13) | C20-C19-C18   | 120.42 (19) |
| C4—C7—C8    | 113.43 (14) | С20—С19—Н19   | 119.8       |
| N1—C7—H7    | 110.2       | C18—C19—H19   | 119.8       |
| С4—С7—Н7    | 110.2       | C21—C20—C19   | 119.30 (18) |
| С8—С7—Н7    | 110.2       | C21—C20—H20   | 120.4       |
| C9—C8—C7    | 102.49 (13) | С19—С20—Н20   | 120.4       |
| С9—С8—Н8А   | 111.3       | C22—C21—C20   | 121.34 (17) |
| С7—С8—Н8А   | 111.3       | C22—C21—Cl1   | 118.96 (15) |
| С9—С8—Н8В   | 111.3       | C20—C21—Cl1   | 119.67 (15) |
| С7—С8—Н8В   | 111.3       | C21—C22—C23   | 118.96 (18) |
| H8A—C8—H8B  | 109.2       | C21—C22—H22   | 120.5       |
| N2-C9-C10   | 121.82 (15) | С23—С22—Н22   | 120.5       |
| N2-C9-C8    | 114.04 (15) | C18—C23—C22   | 120.99 (18) |
| С10—С9—С8   | 124.13 (15) | C18—C23—H23   | 119.5       |
| C11—C10—O1  | 109.75 (16) | С22—С23—Н23   | 119.5       |
| C11—C10—C9  | 133.48 (17) | C14—N1—N2     | 119.53 (14) |
| O1—C10—C9   | 116.77 (15) | C14—N1—C7     | 126.37 (14) |
| C10—C11—C12 | 106.40 (17) | N2—N1—C7      | 113.86 (13) |
| C10-C11-H11 | 126.8       | C9—N2—N1      | 107.54 (14) |
| C12—C11—H11 | 126.8       | C14—N3—C15    | 109.17 (14) |
| C13—C12—C11 | 106.48 (17) | N5—N4—C16     | 113.09 (15) |
| C13—C12—H12 | 126.8       | N4—N5—C18     | 114.36 (15) |
| C11—C12—H12 | 126.8       | C14—S2—C16    | 86.48 (8)   |
| C12—C13—O1  | 110.85 (17) | C13—O1—C10    | 106.51 (14) |
| С12—С13—Н13 | 124.6       |               |             |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i> | <i>D</i> —Н | H····A | D····A    | D—H…A |
|-------------------------|-------------|--------|-----------|-------|
| C13—H13…S2 <sup>i</sup> | 0.93        | 2.85   | 3.612 (2) | 140   |

Symmetry code: (i) -x-1, -y, -z.