Received 29 January 2019 Accepted 25 February 2019

Edited by W. Imhof, University Koblenz-Landau, Germany

Keywords: crystal structure; bidentate; diimine; molybdenum.

CCDC reference: 1899206

Structural data: full structural data are available from iucrdata.iucr.org

Tetracarbonyl[4,4-dimethyl-2-(pyridin-2-yl)-2oxazoline- $\kappa^2 N, N'$]molybdenum(0)

Christoph Steinlechner, Anke Spannenberg, Henrik Junge and Matthias Beller*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Correspondence e-mail: matthias.beller@catalysis.de

In the title compound, $[Mo(C_{10}H_{12}N_2O)(CO)_4]$, the molybdenum(0) center is surrounded by a bidentate diimine [4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline] and four carbonyl ligands in a distorted octahedral coordination geometry. The diimine ligand coordinates *via* the two nitrogen atoms.

Structure description

A diimine and four carbonyl ligands are coordinated to a molybdenum(0) atom which shows a distorted octahedral coordination geometry (Fig. 1). The largest deviations from 90° are observed for N2-Mo1-N1 72.27 (3)° and C11-Mo1-N2 99.97 (4)°. The diimine ligand coordinates *via* the two nitrogen atoms to the metal center. The two carbonyl ligands coordinated perpendicular to the diimine ligand are slightly bent [Mo1-C12-O3 173.7 (1), Mo1-C14-O5 173.5 (1)°]. This deviation was expected as it has already been observed for similar tetra-carbonyl molybdenum(0) complexes containing 2-(pyridin-2-yl)benzoxazole (Datta *et al.*, 2011) or 2,6-bis[(4*S*)-isopropyl-oxazolin-2-yl]pyridine acting as bidentate ligands (Heard *et al.*, 1998).

In the crystal, molecules of the title compound are linked by weak intermolecular C– $H \cdots O$ interactions (Table 1).

Synthesis and crystallization

A mixture of $Mo(CO)_6$ (0.10 g, 0.38 mmol) and an equimolar amount of the diimine ligand (0.67 g, 0.38 mmol) in dry toluene was refluxed under argon atmosphere and light exclusion overnight resulting in a deep-red solution. The solvent was removed *in vacuo* and the red residue was washed three times with *n*-pentane and diethyl ether. Recrystallization from CH₂Cl₂/*n*-pentane 2:1 gave deep-red crystals suitable for X-ray crystal structure analysis. Yield 0.112 (76%). ¹H NMR (300 MHz, CD₂Cl₂, p.p.m.) $\delta = 9.05$ (*d*, *J* =

Figure 1

Molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids correspond to 30% probability.

5.3 Hz, 1H), 7.95 (*td*, J = 7.7 Hz, 1.6 Hz, 1H), 7.87–7.83 (*m*, 1H), 7.50 (*ddd*, J = 7.3 Hz, 5.8 Hz, 1.5 Hz, 1H), 4.52 (*s*, 2H), 1.56 (*s*, 6H); ¹³C NMR (75 MHz, CDCl₃, p.p.m.) $\delta = 256.8$ (CO), 223.2 (CO), 203.7 (CO), 154.0 (C₆Py), 137.6 (C₄Py), 127.1 (C₅Py), 124.6 (C₃Py), 81.8 (C₄Pyrox), 68.5 (C₅Pyrox), 27.8 (CH₃), signals for the quaternary carbon atoms C₂Py and C₂Pyrox were not detectable as it was also observed for a highly related manganese complex with the same diimine ligand (Steinlechner *et al.*, 2019); **IR**: $\tilde{\nu}_{(CO)}/\text{cm}^{-1} = 2010$, 1891, 1851, 1810; **HR–MS (ESI):** calcd. mass C₁₃H₁₂BrMoN₂O₄: 357.98511; found: 357.98100; **elemental analysis:** (calculated) C:43.77, H: 3.15, N:7.29; (found) C: 43.77, H: 3.07, N: 7.43.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

CS acknowledges financial support from EU fund H2020-MSCA-ITN-2015 in Horizon 2020 as part of the NoNoMeCat (grant agreement No. 675020). The publication of this article was funded by the Open Access Fund of the Leibniz Association.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C1 - H1 \cdots O2^{i} \\ C10 - H10 A \cdots O4^{ii} \end{array}$	0.95	2.61	3.2786 (15)	128
	0.98	2.64	3.4880 (17)	145

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[Mo(C_{10}H_{12}N2O)(CO)_4]$
M _r	384.20
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	8.8166 (3), 12.2837 (5), 14.0636 (6)
β (°)	99.3347 (11)
$V(Å^3)$	1502.93 (10)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.90
Crystal size (mm)	$0.50 \times 0.49 \times 0.36$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.69, 0.74
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29586, 3993, 3889
R _{int}	0.017
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.682
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.016, 0.043, 1.10
No. of reflections	3993
No. of parameters	201
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.41, -0.44

Computer programs: *APEX2* (Bruker, 2014), *SAINT* (Bruker, 2013), *XP* in *SHELXTL* and *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

References

- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Datta, P., Sardar, D., Mukhopadhyay, A. P., López-Torres, E., Pastor, C. J. & Sinha, C. (2011). *J. Organomet. Chem.* **696**, 488–495.
- Heard, P. J. & Tocher, D. A. (1998). J. Chem. Soc. Dalton Trans. pp. 2169–2176.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Steinlechner, C., Roesel, A. F., Oberem, E., Päpcke, A., Rockstroh, N., Gloaguen, F., Lochbrunner, S., Ludwig, R., Spannenberg, A., Junge, H., Francke, R. & Beller, M. (2019). ACS Catal. pp. 2091– 2100.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). 4, x190283 [https://doi.org/10.1107/S2414314619002839]

Tetracarbonyl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline- $\kappa^2 N$,N']molybdenum(0)

Christoph Steinlechner, Anke Spannenberg, Henrik Junge and Matthias Beller

Tetracarbonyl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline- $\kappa^2 N, N'$]molybdenum(0)

Crystal data

 $[Mo(C_{10}H_{12}N2O)(CO)_4]$ $M_r = 384.20$ Monoclinic, $P2_1/n$ a = 8.8166 (3) Åb = 12.2837 (5) Å c = 14.0636 (6) Å $\beta = 99.3347 (11)^{\circ}$ $V = 1502.93 (10) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.3333 pixels mm⁻¹ $R_{\rm int} = 0.017$ φ and φ scans $h = -11 \rightarrow 12$ Absorption correction: multi-scan $k = -16 \rightarrow 16$ (SADABS; Bruker, 2014) $T_{\rm min} = 0.69, T_{\rm max} = 0.74$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.016$ H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0202P)^2 + 0.6769P]$ $wR(F^2) = 0.043$ S = 1.10where $P = (F_0^2 + 2F_c^2)/3$ 3993 reflections $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$ 201 parameters $\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 768 $D_{\rm x} = 1.698 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9837 reflections $\theta = 2.2 - 30.6^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 150 KPrism. red $0.50\times0.49\times0.36~mm$

29586 measured reflections 3993 independent reflections 3889 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 29.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.80476 (13)	0.45885 (9)	0.99223 (8)	0.0202 (2)	
H1	0.8765	0.4015	1.0089	0.024*	
C2	0.81678 (13)	0.55152 (10)	1.04953 (8)	0.0228 (2)	
H2	0.8953	0.5569	1.1042	0.027*	
C3	0.71361 (14)	0.63589 (10)	1.02638 (9)	0.0248 (2)	
Н3	0.7219	0.7008	1.0636	0.030*	
C4	0.59747 (13)	0.62380 (9)	0.94757 (9)	0.0222 (2)	
H4	0.5233	0.6795	0.9305	0.027*	
C5	0.59241 (12)	0.52863 (9)	0.89456 (8)	0.01714 (19)	
C6	0.47421 (12)	0.50561 (9)	0.81159 (8)	0.01724 (19)	
C7	0.26379 (14)	0.53003 (10)	0.70282 (9)	0.0248 (2)	
H7A	0.2551	0.5782	0.6458	0.030*	
H7B	0.1597	0.5170	0.7183	0.030*	
C8	0.34159 (12)	0.42100 (9)	0.68335 (8)	0.0191 (2)	
C9	0.23763 (15)	0.32331 (11)	0.68853 (10)	0.0273 (2)	
H9A	0.2944	0.2563	0.6801	0.041*	
H9B	0.1481	0.3286	0.6374	0.041*	
H9C	0.2033	0.3220	0.7514	0.041*	
C10	0.40366 (16)	0.42340 (11)	0.58851 (9)	0.0282 (2)	
H10A	0.4746	0.4848	0.5886	0.042*	
H10B	0.3181	0.4317	0.5350	0.042*	
H10C	0.4582	0.3553	0.5808	0.042*	
C11	0.61991 (14)	0.18720 (10)	0.71624 (9)	0.0228 (2)	
C12	0.57667 (13)	0.20789 (9)	0.89897 (8)	0.0206 (2)	
C13	0.87057 (14)	0.23449 (10)	0.85597 (9)	0.0234 (2)	
C14	0.78619 (15)	0.38044 (11)	0.70982 (10)	0.0288 (3)	
Mo1	0.67341 (2)	0.30510(2)	0.80894 (2)	0.01647 (4)	
N1	0.69605 (10)	0.44698 (7)	0.91437 (7)	0.01694 (17)	
N2	0.47339 (10)	0.41686 (7)	0.76431 (7)	0.01688 (17)	
01	0.36316 (10)	0.57885 (7)	0.78477 (6)	0.02363 (17)	
O2	0.58250 (12)	0.11532 (8)	0.66411 (7)	0.0349 (2)	
03	0.52810 (11)	0.14502 (8)	0.94630 (7)	0.03051 (19)	
04	0.99039 (12)	0.19647 (8)	0.88247 (8)	0.0361 (2)	
05	0.85256 (15)	0.41239 (12)	0.65282 (10)	0.0525 (3)	
	. ,	× /	× /	~ /	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0178 (5)	0.0222 (5)	0.0203 (5)	0.0002 (4)	0.0024 (4)	-0.0003 (4)
C2	0.0204 (5)	0.0283 (6)	0.0193 (5)	-0.0023 (4)	0.0016 (4)	-0.0047 (4)
C3	0.0249 (5)	0.0240 (5)	0.0253 (6)	-0.0021 (4)	0.0038 (4)	-0.0094 (4)
C4	0.0218 (5)	0.0193 (5)	0.0257 (5)	0.0014 (4)	0.0038 (4)	-0.0049 (4)
C5	0.0160 (4)	0.0168 (5)	0.0188 (5)	-0.0004 (4)	0.0032 (4)	-0.0013 (4)
C6	0.0160 (4)	0.0162 (5)	0.0195 (5)	0.0011 (4)	0.0030 (4)	0.0008 (4)
C7	0.0201 (5)	0.0238 (5)	0.0277 (6)	0.0024 (4)	-0.0041 (4)	-0.0006 (4)

C8	0.0188 (5)	0.0186 (5)	0.0186 (5)	-0.0018 (4)	-0.0007 (4)	0.0009 (4)	
C9	0.0239 (6)	0.0263 (6)	0.0299 (6)	-0.0083(5)	-0.0015 (5)	0.0019 (5)	
C10	0.0324 (6)	0.0332 (6)	0.0187 (5)	-0.0029 (5)	0.0031 (5)	0.0012 (5)	
C11	0.0219 (5)	0.0238 (5)	0.0229 (5)	0.0034 (4)	0.0039 (4)	-0.0025 (4)	
C12	0.0191 (5)	0.0209 (5)	0.0206 (5)	0.0018 (4)	-0.0002 (4)	-0.0049 (4)	
C13	0.0237 (5)	0.0202 (5)	0.0268 (6)	0.0023 (4)	0.0053 (4)	-0.0028 (4)	
C14	0.0244 (6)	0.0292 (6)	0.0338 (6)	0.0018 (5)	0.0074 (5)	0.0004 (5)	
Mo1	0.01612 (5)	0.01496 (5)	0.01826 (5)	0.00169 (3)	0.00256 (3)	-0.00258 (3)	
N1	0.0160 (4)	0.0164 (4)	0.0186 (4)	-0.0001 (3)	0.0034 (3)	-0.0015 (3)	
N2	0.0157 (4)	0.0169 (4)	0.0175 (4)	0.0000 (3)	0.0011 (3)	-0.0004 (3)	
01	0.0221 (4)	0.0188 (4)	0.0278 (4)	0.0061 (3)	-0.0028 (3)	-0.0021 (3)	
O2	0.0370 (5)	0.0319 (5)	0.0348 (5)	0.0000 (4)	0.0031 (4)	-0.0164 (4)	
O3	0.0329 (5)	0.0296 (5)	0.0291 (5)	-0.0049 (4)	0.0050 (4)	0.0036 (4)	
O4	0.0253 (5)	0.0372 (6)	0.0451 (6)	0.0118 (4)	0.0038 (4)	0.0035 (4)	
O5	0.0479 (7)	0.0630 (8)	0.0537 (7)	-0.0011 (6)	0.0295 (6)	0.0126 (6)	

Geometric parameters (Å, °)

C1—N1	1.3411 (14)	C8—C9	1.5190 (16)
C1—C2	1.3888 (16)	C8—C10	1.5219 (16)
C1—H1	0.9500	С9—Н9А	0.9800
C2—C3	1.3825 (17)	С9—Н9В	0.9800
С2—Н2	0.9500	С9—Н9С	0.9800
C3—C4	1.3895 (16)	C10—H10A	0.9800
С3—Н3	0.9500	C10—H10B	0.9800
C4—C5	1.3833 (15)	C10—H10C	0.9800
C4—H4	0.9500	C11—O2	1.1608 (15)
C5—N1	1.3550 (14)	C11—Mo1	1.9545 (12)
C5—C6	1.4605 (15)	C12—O3	1.1469 (15)
C6—N2	1.2764 (14)	C12—Mo1	2.0265 (12)
C6—O1	1.3381 (13)	C13—O4	1.1598 (16)
C7—O1	1.4587 (14)	C13—Mo1	1.9592 (12)
C7—C8	1.5492 (16)	C14—O5	1.1363 (18)
С7—Н7А	0.9900	C14—Mo1	2.0587 (13)
С7—Н7В	0.9900	Mo1—N2	2.2427 (9)
C8—N2	1.4899 (13)	Mo1—N1	2.2758 (9)
N1—C1—C2	122.69 (11)	Н9А—С9—Н9С	109.5
N1—C1—H1	118.7	Н9В—С9—Н9С	109.5
C2—C1—H1	118.7	C8-C10-H10A	109.5
C3—C2—C1	119.50 (11)	C8-C10-H10B	109.5
С3—С2—Н2	120.2	H10A—C10—H10B	109.5
C1—C2—H2	120.2	C8—C10—H10C	109.5
C2—C3—C4	118.64 (11)	H10A—C10—H10C	109.5
С2—С3—Н3	120.7	H10B-C10-H10C	109.5
С4—С3—Н3	120.7	O2—C11—Mo1	176.39 (11)
C5—C4—C3	118.38 (11)	O3—C12—Mo1	173.73 (10)
C5—C4—H4	120.8	O4C13Mo1	177.11 (11)

C3—C4—H4	120.8	O5-C14-Mo1	173.48 (13)
N1-C5-C4	123.57 (10)	C11—Mo1—C13	90.12 (5)
N1—C5—C6	113.01 (9)	C11—Mo1—C12	84.24 (5)
C4—C5—C6	123.41 (10)	C13—Mo1—C12	88.20 (5)
N2—C6—O1	119.03 (10)	C11—Mo1—C14	88.40 (5)
N2—C6—C5	121.64 (10)	C13—Mo1—C14	85.87 (5)
O1—C6—C5	119.32 (9)	C12—Mo1—C14	170.54 (5)
O1—C7—C8	105.58 (9)	C11—Mo1—N2	99.97 (4)
O1—C7—H7A	110.6	C13—Mo1—N2	168.48 (4)
С8—С7—Н7А	110.6	C12—Mo1—N2	98.28 (4)
O1—C7—H7B	110.6	C14—Mo1—N2	88.83 (4)
С8—С7—Н7В	110.6	C11—Mo1—N1	171.17 (4)
H7A—C7—H7B	108.8	C13—Mo1—N1	98.04 (4)
N2—C8—C9	109.77 (9)	C12—Mo1—N1	92.61 (4)
N2-C8-C10	108.88 (9)	C14—Mo1—N1	95.51 (5)
C9—C8—C10	111.28 (10)	N2—Mo1—N1	72.27 (3)
N2—C8—C7	101.97 (9)	C1—N1—C5	117.14 (9)
C9—C8—C7	112.74 (10)	C1—N1—Mo1	126.21 (7)
C10—C8—C7	111.75 (10)	C5—N1—Mo1	116.61 (7)
С8—С9—Н9А	109.5	C6—N2—C8	107.86 (9)
С8—С9—Н9В	109.5	C6—N2—Mo1	116.06 (7)
H9A—C9—H9B	109.5	C8—N2—Mo1	135.66 (7)
С8—С9—Н9С	109.5	C6—O1—C7	105.34 (9)
N1—C1—C2—C3	-0.11 (18)	C4—C5—N1—Mo1	-175.19 (9)
C1—C2—C3—C4	1.91 (18)	C6-C5-N1-Mo1	5.07 (11)
C2—C3—C4—C5	-1.37 (18)	O1—C6—N2—C8	2.20 (13)
C3—C4—C5—N1	-1.03 (17)	C5—C6—N2—C8	-178.33 (9)
C3—C4—C5—C6	178.69 (11)	O1-C6-N2-Mo1	175.93 (8)
N1—C5—C6—N2	-0.35 (15)	C5-C6-N2-Mo1	-4.60 (13)
C4—C5—C6—N2	179.90 (11)	C9—C8—N2—C6	-123.82 (11)
N1-C5-C6-O1	179.12 (9)	C10—C8—N2—C6	114.14 (11)
C4—C5—C6—O1	-0.63 (16)	C7—C8—N2—C6	-4.08 (11)
O1—C7—C8—N2	4.53 (11)	C9-C8-N2-Mo1	64.25 (13)
O1—C7—C8—C9	122.16 (10)	C10-C8-N2-Mo1	-57.79 (13)
O1—C7—C8—C10	-111.62 (11)	C7C8N2Mo1	-176.01 (8)
C2-C1-N1-C5	-2.20 (16)	N2—C6—O1—C7	0.96 (14)
C2-C1-N1-Mo1	175.57 (8)	C5-C6-O1-C7	-178.52 (10)
C4—C5—N1—C1	2.79 (16)	C8—C7—O1—C6	-3.51 (12)
C6—C5—N1—C1	-176.95 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1····O2 ⁱ	0.95	2.61	3.2786 (15)	128
C10—H10A····O4 ⁱⁱ	0.98	2.64	3.4880 (17)	145

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+3/2, y+1/2, -z+3/2.