IUCrData

ISSN 2414-3146

Received 31 January 2019 Accepted 10 February 2019

Edited by A. J. Lough, University of Toronto, Canada

‡ Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; pyrazole; thiazole; indole.

CCDC reference: 1896426

Structural data: full structural data are available from iucrdata.iucr.org

2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-8*H*-indeno[1,2-*d*]thiazole

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Alaa Alqahtani,^d Amany S. Hegazy^e and Benson M. Kariuki^e‡

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research, Centre, Dokki, Giza, Egypt, ^dPharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia, and ^eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

The title molecule, $C_{25}H_{17}ClFN_3S$, contains indenothiazolyl (*A*), pyrazolyl (*B*), fluorophenyl (*C*) and chlorophenyl (*D*) groups. The dihedral angles between the ring planes *A*/*B*, *B*/*C* and *B*/*D* are 14.2 (1), 83.0 (1) and 6.5 (2)°, respectively. In the crystal, pairs of molecules related by inversion symmetry are linked by pairwise weak C-H···N interactions, forming dimers. These dimers interact through π - π contacts between the thiazolyl units [centroid-to-centroid distance = 3.826 (1) Å], forming chains along [010].

Structure description

Indeno[1,2-*d*]thiazoles act as histone deacetylase inhibitors (Zhou *et al.*, 2013; Chordia *et al.*, 2005). Thiazoles and pyrazoles have various biological activities (Chhabria *et al.*, 2016; Faria *et al.*, 2017). As part of our studies in these areas we now report the synthesis and structure of the title compound.

The asymmetric unit consists of one molecule of the title compound. The molecule contains an indenothiazolyl ring system (A) and pyrazolyl (B), fluorophenyl (C) and chlorophenyl (D) rings (Fig. 1). The twist angles between the planes through neighbouring ring pairs A/B, B/C and B/D are 14.2 (1)°, 83.0 (1)° and 6.5 (2)°, respectively. In the crystal, pairs of molecules related by inversion symmetry are linked by C–H···N interactions, forming dimers in the crystal structure (Table 1, Fig. 2). Neighbouring dimers interact through π - π contacts involving the thiazolyl fragments with centroid-to-centroid distances of 3.826 (1) Å, forming chains along [010].

data reports

 $C16-H16\cdots N1^{i}$

Table 1 Hydrogen-bond	geometry (Å,	°).		
$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H

2 59

3.392 (3)

145

Symmetry code: (i) -x + 1, -y + 1, -z.

Synthesis and crystallization

0.93

The title compound was synthesized from the condensation reaction between 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide (0.67 g, 2.0 mmol) and 2-bromo-2,3-dihydro-1*H*-inden-1-one (1.10 g, 2.0 mmol)

Figure 1

The molecular structure of the title compound showing 50% probability ellipsoids.

Figure 2

The crystal packing viewed along the *a* axis showing intermolecular contacts as dotted lines (C-H···N in green and π - π in red) with some hydrogen atoms omitted for clarity.

C ₂₅ H ₁₇ ClFN ₃ S
445.92
Monoclinic, $P2_1/c$
296
11.6975 (6), 11.0671 (5), 16.5395 (10)
100.303 (6)
2106.6 (2)
4
Μο <i>Κα</i>
0.31
$0.44 \times 0.32 \times 0.06$
Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, Atlas
Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
0.989, 0.998
21492, 5397, 3547
0.043
0.703
0.048, 0.129, 1.03
5397
280
H-atom parameters constrained
0.25, -0.22

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

in anhydrous ethanol (20 ml) under reflux for 2 h. The solid obtained was recrystallized from dimethylformamide solution to give colourless crystals (72%), m.p. 510–511 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Umm Al-Qura and Cardiff Universities for their continuing support.

Funding information

Funding for this research was provided by: Deanship of Scientific Research at Umm Al-Qura University (award No. 17-MED-1-03-0007).

References

Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.

Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). *Curr. Top. Med. Chem.* **16**, 2841–2862.

Chordia, M. D., Zigler, M., Murphree, L. J., Figler, H., Macdonald, T. L., Olsson, R. A. & Linden, J. (2005). *J. Med. Chem.* **48**, 5131– 5139.

- Faria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). *Bioorg. Med. Chem.* 25, 5891– 5903.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zhou, M., Ning, C., Liu, R., He, Y. & Yu, N. (2013). Bioorg. Med. Chem. Lett. 23, 3200–3203.

full crystallographic data

IUCrData (2019). **4**, x190218 [https://doi.org/10.1107/S2414314619002189]

2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-8*H*-indeno[1,2-*d*]thiazole

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Alaa Alqahtani, Amany S. Hegazy and Benson M. Kariuki

F(000) = 920

 $\theta = 4.0 - 27.3^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Plate, colourless

 $0.44 \times 0.32 \times 0.06 \text{ mm}$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

5397 independent reflections

3547 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.043$

 $h = -15 \rightarrow 15$

 $k = -15 \rightarrow 13$

 $l = -22 \rightarrow 22$

 $D_{\rm x} = 1.406 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5333 reflections

2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-8H-indeno[1,2-d]thiazole

Crystal data

C₂₅H₁₇ClFN₃S $M_r = 445.92$ Monoclinic, $P2_1/c$ a = 11.6975 (6) Å b = 11.0671 (5) Å c = 16.5395 (10) Å $\beta = 100.303$ (6)° V = 2106.6 (2) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.989, T_{\max} = 0.998$ 21492 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 0.7878P]$
S = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
5397 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
280 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Bond distances for methine and aromatic C—H H atoms were set to 0.98 Å and 0.93 Å respectively. Bond distances for methylene C—H H atoms were set to 0.97 Å and all $U_{iso}(H)$ set to 1.2 times $U_{eq}(C)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.36830 (18)	-0.00576 (17)	-0.10974 (13)	0.0483 (5)
C2	0.44396 (17)	0.08820 (17)	-0.10383 (13)	0.0462 (5)
C3	0.52516 (17)	0.06919 (17)	-0.15981 (12)	0.0464 (5)
C4	0.49318 (18)	-0.03929 (17)	-0.20216 (13)	0.0475 (5)
C5	0.3909 (2)	-0.09670 (18)	-0.17192 (14)	0.0538 (5)
H5A	0.324551	-0.105536	-0.215951	0.065*
H5B	0.411204	-0.174911	-0.146943	0.065*
C6	0.61892 (19)	0.13560 (19)	-0.17651 (14)	0.0544 (5)
H6	0.641714	0.206470	-0.147914	0.065*
C7	0.6778 (2)	0.0942 (2)	-0.23659 (15)	0.0624 (6)
H7	0.740834	0.137899	-0.248192	0.075*
C8	0.6448 (2)	-0.0103 (2)	-0.27944 (15)	0.0624 (6)
H8	0.684815	-0.035674	-0.320197	0.075*
C9	0.5523 (2)	-0.0782 (2)	-0.26226 (14)	0.0575 (6)
H9	0.530384	-0.149161	-0.291019	0.069*
C10	0.34436 (18)	0.15028 (16)	-0.01316 (13)	0.0471 (5)
C11	0.35404 (19)	0.33553 (17)	0.07738 (13)	0.0514 (5)
H11	0.439164	0.333925	0.086955	0.062*
C12	0.3099 (2)	0.33867 (18)	0.15953 (13)	0.0540 (5)
H12A	0.371666	0.320498	0.205330	0.065*
H12B	0.276437	0.416657	0.168531	0.065*
C13	0.21881 (18)	0.24094 (17)	0.14765 (13)	0.0497 (5)
C14	0.30859 (17)	0.44092 (17)	0.02312 (12)	0.0448 (4)
C15	0.37269 (18)	0.54709 (18)	0.02780 (13)	0.0483 (5)
H15	0.446141	0.549470	0.060477	0.058*
C16	0.32965 (19)	0.64896 (18)	-0.01498 (14)	0.0530 (5)
H16	0.373157	0.719698	-0.011724	0.064*
C17	0.2220 (2)	0.6434 (2)	-0.06206 (14)	0.0569 (6)
C18	0.1550 (2)	0.5415 (2)	-0.06839 (15)	0.0623 (6)
H18	0.081432	0.540603	-0.100926	0.075*
C19	0.19912 (19)	0.4400 (2)	-0.02540 (14)	0.0553 (5)
H19	0.154650	0.369904	-0.029061	0.066*
C20	0.13608 (18)	0.21879 (18)	0.20216 (13)	0.0495 (5)
C21	0.1378 (2)	0.2885 (2)	0.27216 (14)	0.0600 (6)
H21	0.193419	0.348873	0.284704	0.072*
C22	0.0585 (2)	0.2697 (2)	0.32356 (15)	0.0647 (6)
H22	0.059898	0.317708	0.369871	0.078*
C24	-0.0221 (2)	0.1798 (2)	0.30554 (15)	0.0591 (6)
C25	-0.0244 (2)	0.1081 (2)	0.23778 (17)	0.0673 (6)
H25	-0.078825	0.046278	0.226694	0.081*
C26	0.0535 (2)	0.1274 (2)	0.18630 (15)	0.0632 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H26	0.051152	0.078706	0.140185	0.076*
N1	0.43084 (15)	0.17969 (14)	-0.04911 (11)	0.0488 (4)
N2	0.30655 (17)	0.21900 (15)	0.04455 (12)	0.0582 (5)
N3	0.22147 (16)	0.17424 (15)	0.08447 (12)	0.0529 (4)
F1	0.17949 (14)	0.74318 (13)	-0.10484 (10)	0.0883 (5)
C11	-0.12023 (6)	0.15339 (7)	0.37082 (5)	0.0860 (2)
S1	0.27382 (5)	0.01232 (4)	-0.04205 (3)	0.05072 (16)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0528 (12)	0.0401 (10)	0.0530 (12)	0.0004 (9)	0.0120 (10)	-0.0012 (9)
C2	0.0492 (11)	0.0405 (10)	0.0490 (11)	0.0013 (8)	0.0090 (9)	0.0003 (9)
C3	0.0492 (11)	0.0431 (10)	0.0466 (11)	0.0056 (9)	0.0080 (9)	0.0056 (9)
C4	0.0545 (12)	0.0413 (10)	0.0464 (11)	0.0058 (9)	0.0084 (9)	0.0033 (9)
C5	0.0631 (13)	0.0428 (11)	0.0560 (13)	0.0009 (10)	0.0123 (11)	-0.0032 (9)
C6	0.0576 (13)	0.0480 (11)	0.0594 (14)	-0.0001 (10)	0.0154 (11)	0.0005 (10)
C7	0.0642 (14)	0.0611 (14)	0.0668 (15)	0.0035 (11)	0.0247 (12)	0.0086 (12)
C8	0.0743 (16)	0.0621 (14)	0.0560 (14)	0.0138 (12)	0.0260 (12)	0.0073 (11)
C9	0.0729 (15)	0.0490 (12)	0.0520 (13)	0.0080 (11)	0.0153 (12)	-0.0003 (10)
C10	0.0531 (12)	0.0372 (9)	0.0520 (12)	-0.0001 (8)	0.0122 (10)	-0.0003 (9)
C11	0.0544 (12)	0.0423 (10)	0.0591 (13)	-0.0048 (9)	0.0149 (10)	-0.0069 (9)
C12	0.0653 (14)	0.0468 (11)	0.0499 (12)	-0.0032 (10)	0.0106 (11)	-0.0019 (9)
C13	0.0553 (12)	0.0419 (10)	0.0520 (12)	0.0014 (9)	0.0103 (10)	-0.0012 (9)
C14	0.0474 (11)	0.0453 (10)	0.0441 (11)	-0.0066 (8)	0.0148 (9)	-0.0082 (8)
C15	0.0460 (11)	0.0515 (11)	0.0489 (12)	-0.0086 (9)	0.0128 (9)	-0.0069 (9)
C16	0.0599 (13)	0.0466 (11)	0.0557 (13)	-0.0113 (10)	0.0191 (11)	-0.0031 (10)
C17	0.0667 (14)	0.0527 (12)	0.0525 (13)	0.0027 (11)	0.0141 (11)	0.0022 (10)
C18	0.0561 (13)	0.0701 (15)	0.0568 (14)	-0.0075 (11)	-0.0007 (11)	-0.0016 (12)
C19	0.0555 (12)	0.0529 (12)	0.0574 (13)	-0.0152 (10)	0.0097 (11)	-0.0070 (10)
C20	0.0552 (12)	0.0435 (10)	0.0503 (12)	0.0047 (9)	0.0108 (10)	0.0026 (9)
C21	0.0714 (15)	0.0521 (12)	0.0591 (14)	-0.0044 (11)	0.0186 (12)	-0.0020 (11)
C22	0.0825 (17)	0.0596 (14)	0.0559 (14)	0.0024 (12)	0.0231 (13)	-0.0005 (11)
C24	0.0531 (13)	0.0668 (14)	0.0605 (14)	0.0118 (11)	0.0187 (11)	0.0170 (12)
C25	0.0587 (14)	0.0705 (15)	0.0743 (17)	-0.0080 (12)	0.0163 (13)	0.0031 (13)
C26	0.0623 (14)	0.0668 (14)	0.0622 (15)	-0.0082 (11)	0.0164 (12)	-0.0100 (12)
N1	0.0522 (10)	0.0406 (8)	0.0554 (10)	-0.0033 (7)	0.0143 (8)	-0.0059 (7)
N2	0.0699 (12)	0.0414 (9)	0.0705 (12)	-0.0104 (8)	0.0324 (10)	-0.0115 (8)
N3	0.0598 (11)	0.0432 (9)	0.0601 (11)	-0.0049 (8)	0.0224 (9)	-0.0049 (8)
F1	0.0987 (11)	0.0689 (9)	0.0919 (12)	0.0080 (8)	0.0023 (9)	0.0216 (8)
Cl1	0.0753 (4)	0.1069 (6)	0.0848 (5)	0.0073 (4)	0.0388 (4)	0.0210 (4)
S 1	0.0565 (3)	0.0401 (3)	0.0580 (3)	-0.0045 (2)	0.0169 (3)	-0.0028 (2)

Geometric parameters (Å, °)

C1—C2	1.358 (3)	C12—H12B	0.9700
C1—C5	1.496 (3)	C13—N3	1.284 (3)
C1—S1	1.720 (2)	C13—C20	1.457 (3)

C2—N1	1.385 (3)	C14—C19	1.384 (3)
C2—C3	1.455 (3)	C14—C15	1.389 (3)
C3—C6	1.388 (3)	C15—C16	1.378 (3)
C3—C4	1.406 (3)	С15—Н15	0.9300
C4—C9	1.377 (3)	C16—C17	1.359 (3)
C4—C5	1.516 (3)	C16—H16	0.9300
С5—Н5А	0.9700	C17—F1	1.357 (3)
С5—Н5В	0.9700	C17—C18	1.366 (3)
C6—C7	1.384 (3)	C18—C19	1.379 (3)
С6—Н6	0.9300	C18—H18	0.9300
С7—С8	1.375 (3)	С19—Н19	0.9300
С7—Н7	0.9300	C20—C21	1.388 (3)
C8—C9	1.389 (3)	C20—C26	1.391 (3)
С8—Н8	0.9300	C21—C22	1.382 (3)
С9—Н9	0.9300	C21—H21	0.9300
C10—N1	1.303 (3)	C22—C24	1.367 (3)
C10—N2	1.355 (3)	C22—H22	0.9300
C10—S1	1.7605 (19)	C24—C25	1.369 (3)
C11—N2	1.469 (2)	C24—C11	1.735 (2)
C11—C14	1.509 (3)	C25—C26	1.371 (3)
C11—C12	1.538 (3)	C25—H25	0.9300
С11—Н11	0.9800	C26—H26	0.9300
C12—C13	1.506 (3)	N2—N3	1.381 (2)
C12—H12A	0.9700	112 113	1.501 (2)
	0.7700		
$C_{2}-C_{1}-C_{5}$	111 81 (19)	N3—C13—C20	121 49 (19)
$C_2 - C_1 - S_1$	110.52 (15)	N3-C13-C12	11355(19)
C_{5} C_{1} S_{1}	137 66 (16)	C_{20} C_{13} C_{12}	124 95 (18)
C1 - C2 - N1	117 39 (19)	C_{19} C_{14} C_{15}	118 22 (19)
C1 - C2 - C3	109 55 (18)	C19 - C14 - C11	122 01 (18)
N1 - C2 - C3	133.06 (18)	C_{15} C_{14} C_{11}	119 43 (18)
C6-C3-C4	1201(2)	C_{16} C_{15} C_{14} C_{14}	121 32 (19)
C6-C3-C2	120.1(2) 132 74 (19)	C16-C15-C14	110.3
$C_{4} - C_{3} - C_{2}$	107.13(17)	C_{14} C_{15} H_{15}	119.3
$C_{4} - C_{3} - C_{2}$	107.13(17) 120.2(2)	C17 - C16 - C15	119.5
$C_{2} = C_{4} = C_{2}$	120.2(2) 120.37(10)	C17 C16 H16	120.0
$C_{3} = C_{4} = C_{5}$	129.37(19) 110.41(18)	$C_{17} = C_{10} = H_{10}$	120.9
$C_1 = C_2 = C_1$	10.41(18) 101.07(17)	$F_{1} = C_{17} = C_{16}$	120.9 118 5 (2)
$C1 = C5 = U5 \Lambda$	101.07 (17)	F1 = C17 = C18	118.3(2)
$C_1 = C_2 = H_2 A$	111.0	$\Gamma_{1} = C_{1} = C_{10}$	110.7(2)
$C_4 = C_5 = H_5 R$	111.0	C10 - C17 - C18	122.8(2)
$C_1 = C_2 = H_2 B$	111.0	C17 - C18 - U19	118.4 (2)
	111.0	$C_{10} = C_{10} = H_{10}$	120.8
$\Pi JA - UJ - \Pi JB$	109.4	C19 - C10 - C14	120.8
$C_{1} = C_{0} = C_{3}$	110.7 (2)	$C_{10} = C_{10} = U_{10}$	121.0 (2)
$C_{1} = C_{0} = H_{0}$	120.7	C14 C19 H19	119.5
C° C^{-} C°	120.7	C_{14} C_{19} H_{19}	119.5
	121.2 (2)	$C_{21} = C_{20} = C_{20}$	117.9(2)
$C\delta - C' - H'$	119.4	C21—C20—C13	120.70 (19)

С6—С7—Н7	119.4	C26—C20—C13	121.4 (2)
С7—С8—С9	120.5 (2)	C22—C21—C20	121.2 (2)
С7—С8—Н8	119.8	C22—C21—H21	119.4
С9—С8—Н8	119.8	C20—C21—H21	119.4
C4—C9—C8	119.3 (2)	C24—C22—C21	119.2 (2)
С4—С9—Н9	120.4	C24—C22—H22	120.4
С8—С9—Н9	120.4	C21—C22—H22	120.4
N1—C10—N2	123.99 (18)	C22—C24—C25	120.8 (2)
N1-C10-S1	117.21 (15)	C22—C24—C11	119.6 (2)
N2-C10-S1	118.80 (16)	C25—C24—C11	119.6 (2)
N2-C11-C14	112.88 (18)	C24—C25—C26	120.0 (2)
N2-C11-C12	100.47 (16)	C24—C25—H25	120.0
C14—C11—C12	111.69 (17)	С26—С25—Н25	120.0
N2—C11—H11	110.5	C25—C26—C20	120.8 (2)
C14—C11—H11	110.5	С25—С26—Н26	119.6
C12—C11—H11	110.5	С20—С26—Н26	119.6
C13—C12—C11	102.13 (16)	C10—N1—C2	107.54 (16)
C13—C12—H12A	111.3	C10—N2—N3	119.31 (16)
C11—C12—H12A	111.3	C10—N2—C11	127.12 (18)
C13—C12—H12B	111.3	N3—N2—C11	113.29 (17)
C11—C12—H12B	111.3	C13—N3—N2	107.89 (17)
H12A—C12—H12B	109.2	C1—S1—C10	87.31 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C16$ — $H16$ ··· $N1^{i}$	0.93	2.59	3.392 (3)	145

Symmetry code: (i) -x+1, -y+1, -z.