ISSN 2414-3146

Received 6 February 2019 Accepted 20 February 2019

Edited by O. Blacque, University of Zürich, Switzerland

‡ Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; carbohydrazide; 1,2,3-triazole.

CCDC reference: 1898411

Structural data: full structural data are available from iucrdata.iucr.org

1-(4-Fluorophenyl)-5-methyl-N'-{1-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol-4-yl]ethylidene}-1*H*-1,2,3-triazole-4-carbohydrazide

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Emad Yousif,^d Mohammad Hayal Alotaibi,^e Amany S. Hegazy^f and Benson M. Kariuki^f‡

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, ^eNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and ^fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

The title molecule, $C_{22}H_{21}FN_8O$, comprises fluorophenyl (*A*), methyltriazolyl (*B*), methyltriazolyl (*C*) and tolyl (*D*) rings. The twist angles between the planes through neighbouring ring pairs *A*/*B*, *B*/*C* and *C*/*D* are 45.0 (1), 9.4 (1) and 43.2 (1)°, respectively. Intermolecular π - π interactions between rings *A* and *C* and between *B* and *D* propagate the structure in the [010] direction and weak C-H···O interactions also occur.

Structure description

Acyl hydrazides are common precursors for the synthesis of various heterocycles and have a wide range of applications such as use in pharmaceuticals, as chemical preservatives for plants, and in the manufacture of polymers (Abdel-Wahab *et al.*, 2017; Hassan & Shawky, 2010; Sarma *et al.*, 2011; Shamsabadi & Chudasama, 2017).

The asymmetric unit comprises one molecule of the title compound. The molecule has fluorophenyl (A; C1–C6), methyltriazolyl (B; N1–N3/C7/C8), methyltriazolyl (C; N6–N8/C13/C14) and tolyl (D; C16–C21) rings (Fig. 1). The twist angles between the planes through neighbouring ring pairs A/B, B/C and C/D are 45.0 (1), 9.4 (1) and 43.2 (1)°, respectively. Intermolecular π – π interactions between rings A and C and between B and D with centroid-to-centroid distances in the range 3.774 (3) to 4.075 (3) Å propagate the structure in the [010] direction (Fig. 2). Weak C–H···O interactions (Table 1) also occur.

Figure 1

An *ORTEP* representation of the asymmetric unit showing 50% probability ellipsoids.

Synthesis and crystallization

The title compound was synthesized by condensation of 1-(4-fluorophenyl)-5-methyl-1*H*-1,2,3-triazole-4-carbohydrazide with 1-(5-methyl-1-*p*-tolyl-1*H*-1,2,3-triazol-4-yl)ethanone in ethanol in the presence of a catalytic amount of glacial acetic acid under reflux for 2 h. The solid obtained was collected by filtration, washed with ethanol, dried and recrystallized from dimethylformamide solution to give colourless crystals (78%), m.p. 241–242°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The geometries of the fluorophenyl and tolyl rings were restrained to be regular hexagons.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, for financial support (award No. 020–0180).

Table 1Hydrogen-bond geomet	ry (Å, °).				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$C12-H12A\cdots O1^{i}$).96	2.48	3.229 (12)	135	
Symmetry code: (i) $x + \frac{1}{2}, -y$	$+\frac{1}{2}, z.$				
Table 2Experimental details.					
Crystal data Chemical formula M_r Crystal system, space gro	up	C ₂₂ H 432.4 Orth	I ₂₁ FN ₈ O 47 10rhombic, <i>Pna</i> 2	21	
Temperature (K) a, b, c (Å) V (Å ³) Z		293 12.2574 (10), 7.6912 (8), 22.821 (3) 2151.5 (4) 4			
Radiation type μ (mm ⁻¹) Crystal size (mm)		Mo 0.09 0.25	$K\alpha$		
Data collection Diffractometer		Riga No	ku Oxford Diffi ova, Dual, Cu a	raction Super- t home/near,	
Absorption correction		Mult O	tias ti-scan (<i>CrysAlis</i> D, 2018)	<i>PRO</i> ; Rigaku	
I_{\min} , I_{\max} No. of measured, independence observed $[I > 2\sigma(I)]$ re	ndent and flections	0.329	5, 3917, 2393		
$ \begin{array}{c} R_{\rm int} \\ (\sin \theta / \lambda)_{\rm max} \left({\rm \AA}^{-1} \right) \end{array} $		0.059 0.602	2		
Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, No. of reflections No. of parameters No. of restraints H-atom treatment	S	0.062 3917 272 2 H-at	2, 0.178, 1.08 om parameters	not refined	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$		0.17,	-0.23		

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

References

Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596.

Figure 2

A segment of the crystal structure showing intermolecular π - π contacts as green dotted lines and C-H···O contacts in red.

- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hassan, A. A. & Shawky, A. M. (2010). J. Heterocycl. Chem. 47, 745–763.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sarma, B. K., Yousufuddin, M. & Kodadek, T. (2011). Chem. Commun. 47, 10590–10592.
- Shamsabadi, A. & Chudasama, V. (2017). Org. Biomol. Chem. 15, 17–33.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2019). **4**, x190261 [https://doi.org/10.1107/S241431461900261X]

1-(4-Fluorophenyl)-5-methyl-N'-{1-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol-4-yl]ethylidene}-1*H*-1,2,3-triazole-4-carbohydrazide

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Emad Yousif, Mohammad Hayal Alotaibi, Amany S. Hegazy and Benson M. Kariuki

1-(4-Fluorophenyl)-5-methyl-N'-{1-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol-4-yl]ethylidene}-1*H*-1,2,3-triazole-4-carbohydrazide

Crystal data

 $C_{22}H_{21}FN_8O$ $M_r = 432.47$ Orthorhombic, $Pna2_1$ a = 12.2574 (10) Å b = 7.6912 (8) Å c = 22.821 (3) Å V = 2151.5 (4) Å³ Z = 4F(000) = 904

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.329, T_{\max} = 1.000$ 13165 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.178$ S = 1.083917 reflections 272 parameters 2 restraints $D_x = 1.335 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1237 reflections $\theta = 3.7-22.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.25 \times 0.16 \times 0.09 \text{ mm}$

3917 independent reflections 2393 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 25.3^\circ, \theta_{min} = 3.3^\circ$ $h = -14 \rightarrow 14$ $k = -9 \rightarrow 9$ $l = -27 \rightarrow 27$

Hydrogen site location: mixed H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.0857P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms except N–H were placed in calculated positions and refined using a riding model. Bond distances for sp^2 C–H H atoms were set to 0.93 Å with their U_{iso} set to 1.2 times U_{eq} (C). Bond distances for methyl C–H H atoms were set to 0.96 Å and their U_{iso} set to 1.5 times U_{eq} (C) with the group free to spin about the C–C bond. The bond distance for the N–H hydrogen was restrained to 0.86 (1) Å and the U_{iso} (H) set to 1.2 times U_{eq} (N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1001 (4)	0.3862 (6)	0.57816 (15)	0.099 (2)	
C2	0.0357 (3)	0.3166 (6)	0.5338 (2)	0.0845 (18)	
H2	-0.033152	0.272817	0.542505	0.101*	
C3	0.0742 (3)	0.3125 (5)	0.47657 (17)	0.0728 (15)	
H3	0.031140	0.265995	0.446919	0.087*	
C4	0.1771 (3)	0.3780 (5)	0.46362 (15)	0.0656 (16)	
C5	0.2415 (3)	0.4476 (5)	0.5079 (2)	0.0768 (17)	
H5	0.310362	0.491423	0.499269	0.092*	
C6	0.2030 (4)	0.4517 (6)	0.56520 (18)	0.100 (2)	
H6	0.246072	0.498247	0.594855	0.120*	
C7	0.1671 (4)	0.4180 (6)	0.3554 (3)	0.0631 (14)	
C8	0.2445 (5)	0.3941 (6)	0.3136 (3)	0.0690 (16)	
C9	0.0536 (4)	0.4855 (8)	0.3510 (3)	0.0775 (16)	
H9A	0.035619	0.548120	0.386103	0.116*	
H9B	0.003943	0.389995	0.346236	0.116*	
H9C	0.047980	0.561882	0.317889	0.116*	
C10	0.2357 (5)	0.4209 (8)	0.2504 (3)	0.0759 (17)	
C11	0.4198 (5)	0.3741 (8)	0.1336 (3)	0.0767 (17)	
C12	0.5277 (6)	0.3532 (16)	0.1639 (4)	0.140 (4)	
H12A	0.523474	0.258780	0.191350	0.209*	
H12B	0.545407	0.458534	0.184426	0.209*	
H12C	0.583298	0.329026	0.135441	0.209*	
C13	0.4183 (5)	0.3728 (7)	0.0706 (3)	0.0673 (16)	
C14	0.3354 (4)	0.4048 (6)	0.0315 (3)	0.0600 (14)	
C15	0.2226 (5)	0.4680 (8)	0.0398 (3)	0.0730 (15)	
H15A	0.174259	0.370597	0.044115	0.110*	
H15B	0.200989	0.535370	0.006314	0.110*	
H15C	0.219163	0.539128	0.074298	0.110*	
C16	0.3374 (3)	0.3845 (5)	-0.07862 (13)	0.0619 (15)	
C17	0.3995 (3)	0.4562 (5)	-0.12351 (18)	0.0797 (17)	
H17	0.468108	0.502043	-0.115472	0.096*	
C18	0.3591 (4)	0.4593 (5)	-0.18040 (15)	0.0878 (19)	
H18	0.400619	0.507228	-0.210432	0.105*	
C19	0.2566 (4)	0.3907 (5)	-0.19241 (14)	0.0851 (19)	
C20	0.1945 (3)	0.3191 (5)	-0.14752 (19)	0.0771 (16)	

H20	0.125893	0.273217	-0.155560	0.092*
C21	0.2349 (3)	0.3160 (5)	-0.09063 (16)	0.0689 (15)
H21	0.193380	0.268032	-0.060599	0.083*
C22	0.2099 (9)	0.3958 (12)	-0.2541 (4)	0.121 (3)
H22A	0.236919	0.298342	-0.275996	0.181*
H22B	0.231591	0.501791	-0.272951	0.181*
H22C	0.131744	0.390311	-0.252184	0.181*
N1	0.2179 (4)	0.3754 (6)	0.4059 (2)	0.0660 (12)
N2	0.3231 (4)	0.3254 (7)	0.3958 (3)	0.0812 (15)
N3	0.3393 (4)	0.3382 (7)	0.3394 (3)	0.0783 (14)
N4	0.3292 (4)	0.3919 (7)	0.2199 (3)	0.0825 (15)
H4	0.386 (4)	0.375 (9)	0.242 (3)	0.099*
N5	0.3285 (4)	0.3929 (6)	0.1598 (3)	0.0761 (14)
N6	0.5106 (4)	0.3288 (7)	0.0395 (3)	0.0846 (15)
N7	0.4885 (4)	0.3301 (7)	-0.0159 (3)	0.0821 (14)
N8	0.3819 (4)	0.3770 (5)	-0.0218 (2)	0.0641 (12)
O1	0.1518 (4)	0.4662 (7)	0.2271 (2)	0.1086 (16)
F1	0.0628 (5)	0.3904 (9)	0.6317 (2)	0.149 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.110 (6)	0.104 (5)	0.083 (6)	0.032 (4)	-0.008 (5)	0.005 (4)
C2	0.073 (4)	0.082 (4)	0.099 (5)	0.014 (3)	0.001 (4)	0.009 (4)
C3	0.066 (4)	0.065 (3)	0.087 (4)	0.003 (3)	-0.005 (3)	-0.001 (3)
C4	0.058 (3)	0.055 (3)	0.084 (5)	0.007 (2)	-0.012 (3)	0.004 (3)
C5	0.070 (4)	0.072 (3)	0.088 (5)	-0.002 (3)	-0.018 (4)	0.007 (3)
C6	0.115 (7)	0.093 (5)	0.094 (6)	0.012 (4)	-0.029 (5)	-0.007(4)
C7	0.052 (3)	0.057 (3)	0.080 (4)	-0.009 (2)	-0.007 (3)	-0.001 (3)
C8	0.061 (4)	0.055 (3)	0.091 (5)	-0.007(2)	-0.009 (3)	-0.005 (3)
C9	0.054 (3)	0.078 (3)	0.101 (5)	0.003 (3)	-0.013 (3)	0.004 (3)
C10	0.065 (4)	0.073 (3)	0.090 (5)	-0.002 (3)	-0.011 (4)	-0.010 (3)
C11	0.058 (4)	0.084 (4)	0.088 (5)	0.001 (3)	-0.005 (3)	0.004 (3)
C12	0.074 (5)	0.232 (11)	0.112 (7)	0.014 (5)	-0.015 (5)	-0.005 (6)
C13	0.051 (3)	0.063 (3)	0.088 (5)	0.000(2)	0.006 (3)	0.003 (3)
C14	0.047 (3)	0.055 (3)	0.079 (4)	-0.003 (2)	0.008 (3)	0.003 (3)
C15	0.057 (3)	0.074 (3)	0.088 (4)	0.008 (3)	0.011 (3)	0.003 (3)
C16	0.054 (3)	0.048 (3)	0.083 (4)	0.009(2)	0.013 (3)	0.000(2)
C17	0.077 (4)	0.070 (4)	0.092 (5)	-0.005 (3)	0.027 (4)	-0.009 (3)
C18	0.103 (5)	0.081 (4)	0.080 (5)	0.001 (4)	0.028 (4)	0.003 (3)
C19	0.098 (5)	0.069 (3)	0.088 (5)	0.020 (3)	0.001 (4)	0.001 (3)
C20	0.070 (4)	0.066 (3)	0.095 (5)	0.015 (3)	-0.007 (4)	-0.001 (3)
C21	0.058 (3)	0.060 (3)	0.088 (4)	0.005 (3)	0.004 (3)	0.008 (3)
C22	0.151 (8)	0.119 (6)	0.091 (6)	0.013 (5)	-0.004 (5)	0.002 (5)
N1	0.055 (3)	0.062 (3)	0.081 (4)	-0.001 (2)	-0.012 (3)	-0.001 (2)
N2	0.054 (3)	0.085 (3)	0.105 (5)	0.011 (2)	-0.005 (3)	0.005 (3)
N3	0.060 (3)	0.081 (3)	0.094 (4)	0.003 (2)	-0.004 (3)	0.005 (3)
N4	0.067 (4)	0.097 (4)	0.084 (4)	-0.002 (3)	-0.006 (3)	0.000 (3)

data reports

N5	0.064 (3)	0.079 (3)	0.085 (4)	-0.001 (2)	-0.002 (3)	0.002 (3)
N6	0.058 (3)	0.097 (4)	0.099 (5)	0.008 (3)	-0.002 (3)	0.002 (3)
N7	0.051 (3)	0.093 (3)	0.102 (4)	0.018 (2)	0.010 (3)	0.003 (3)
N8	0.048 (3)	0.060 (3)	0.085 (4)	0.0050 (19)	0.005 (3)	0.002 (2)
01	0.078 (3)	0.159 (5)	0.089 (3)	0.020 (3)	-0.013 (3)	-0.011 (3)
F1	0.150 (5)	0.216 (6)	0.082 (3)	0.031 (4)	0.018 (3)	-0.001 (3)

Geometric parameters (Å, °)

C1—F1	1.305 (6)	C13—C14	1.375 (8)
C1—C2	1.3900	C13—N6	1.378 (8)
C1—C6	1.3900	C14—N8	1.360 (8)
C2—C3	1.3900	C14—C15	1.478 (8)
С2—Н2	0.9300	C15—H15A	0.9600
C3—C4	1.3900	C15—H15B	0.9600
С3—Н3	0.9300	C15—H15C	0.9600
C4—C5	1.3900	C16—C17	1.3900
C4—N1	1.410 (6)	C16—C21	1.3900
C5—C6	1.3900	C16—N8	1.408 (6)
С5—Н5	0.9300	C17—C18	1.3900
С6—Н6	0.9300	С17—Н17	0.9300
C7—N1	1.349 (8)	C18—C19	1.3900
С7—С8	1.358 (9)	C18—H18	0.9300
С7—С9	1.489 (8)	C19—C20	1.3900
C8—N3	1.371 (8)	C19—C22	1.519 (9)
C8—C10	1.462 (10)	C20—C21	1.3900
С9—Н9А	0.9600	С20—Н20	0.9300
С9—Н9В	0.9600	C21—H21	0.9300
С9—Н9С	0.9600	C22—H22A	0.9600
C10—O1	1.209 (7)	C22—H22B	0.9600
C10—N4	1.358 (8)	C22—H22C	0.9600
C11—N5	1.278 (8)	N1—N2	1.365 (6)
C11—C13	1.438 (9)	N2—N3	1.304 (7)
C11—C12	1.501 (10)	N4—N5	1.373 (8)
C12—H12A	0.9600	N4—H4	0.867 (15)
C12—H12B	0.9600	N6—N7	1.294 (7)
C12—H12C	0.9600	N7—N8	1.362 (7)
F1—C1—C2	119.5 (5)	N8—C14—C15	124.0 (5)
F1—C1—C6	120.5 (5)	C13—C14—C15	131.8 (6)
C2—C1—C6	120.0	C14—C15—H15A	109.5
C3—C2—C1	120.0	C14—C15—H15B	109.5
С3—С2—Н2	120.0	H15A—C15—H15B	109.5
C1—C2—H2	120.0	C14—C15—H15C	109.5
C2—C3—C4	120.0	H15A—C15—H15C	109.5
С2—С3—Н3	120.0	H15B—C15—H15C	109.5
С4—С3—Н3	120.0	C17—C16—C21	120.0
C5—C4—C3	120.0	C17—C16—N8	118.9 (3)

C5—C4—N1	119.0 (3)	C21—C16—N8	121.1 (3)
C3—C4—N1	121.0 (3)	C16—C17—C18	120.0
C6—C5—C4	120.0	С16—С17—Н17	120.0
С6—С5—Н5	120.0	C18—C17—H17	120.0
С4—С5—Н5	120.0	C19—C18—C17	120.0
C5—C6—C1	120.0	C19—C18—H18	120.0
С5—С6—Н6	120.0	C17—C18—H18	120.0
С1—С6—Н6	120.0	C20—C19—C18	120.0
N1—C7—C8	104.1 (5)	C20—C19—C22	119.1 (5)
N1—C7—C9	125.0 (6)	C18—C19—C22	120.9 (5)
C8—C7—C9	130.8 (6)	C19—C20—C21	120.0
C7—C8—N3	109.4 (6)	С19—С20—Н20	120.0
C7—C8—C10	128.5 (6)	C21—C20—H20	120.0
N3—C8—C10	122.1 (6)	C20—C21—C16	120.0
С7—С9—Н9А	109.5	C20—C21—H21	120.0
С7—С9—Н9В	109.5	C16—C21—H21	120.0
H9A—C9—H9B	109.5	C19—C22—H22A	109.5
С7—С9—Н9С	109.5	C19—C22—H22B	109.5
Н9А—С9—Н9С	109.5	H22A—C22—H22B	109.5
Н9В—С9—Н9С	109.5	C19—C22—H22C	109.5
O1—C10—N4	122.7 (7)	H22A—C22—H22C	109.5
O1—C10—C8	122.5 (6)	H22B—C22—H22C	109.5
N4—C10—C8	114.8 (6)	C7—N1—N2	111.1 (5)
N5—C11—C13	117.1 (6)	C7—N1—C4	129.1 (4)
N5—C11—C12	124.7 (7)	N2—N1—C4	119.8 (5)
C13—C11—C12	118.2 (6)	N3—N2—N1	106.8 (5)
C11—C12—H12A	109.5	N2—N3—C8	108.6 (5)
C11—C12—H12B	109.5	C10—N4—N5	120.4 (5)
H12A—C12—H12B	109.5	C10—N4—H4	115 (5)
C11—C12—H12C	109.5	N5—N4—H4	125 (5)
H12A—C12—H12C	109.5	C11—N5—N4	117.5 (5)
H12B—C12—H12C	109.5	N7—N6—C13	109.3 (5)
C14—C13—N6	108.4 (6)	N6—N7—N8	107.4 (5)
C14—C13—C11	131.2 (6)	C14—N8—N7	110.9 (5)
N6-C13-C11	120.4 (6)	C14—N8—C16	130.9 (4)
N8—C14—C13	104.0 (5)	N7—N8—C16	118.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C12— $H12A$ ···O1 ⁱ	0.96	2.48	3.229 (12)	135

Symmetry code: (i) x+1/2, -y+1/2, z.