

ISSN 2414-3146

Received 31 May 2019 Accepted 1 June 2019

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; salicylaldehyde derivative; O— $H \cdots N$ hydrogen bond; C— $H \cdots \pi$ interactions.

CCDC reference: 1920116

Structural data: full structural data are available from iucrdata.iucr.org

(E)-4-Iodo-2-[(phenylimino)methyl]phenol

G. Swetha,^a R. Ida Malarselvi,^b C. Ramachandra Raja,^a A. Thiruvalluvar^{c*} and J. Priscilla^d

^aPostgraduate and Research Department of Physics, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, ^bPostgraduate and Research Department of Physics, D.G. Government Arts College for Women, Mayiladuthurai 609 001, Tamilnadu, India, ^cPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and ^dPostgraduate Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam 611 001, Tamilnadu, India. *Correspondence e-mail: thiruvalluvar.a@gmail.com

The title compound, $C_{13}H_{10}INO$, is not planar as the dihedral angle between the planes of the two aryl rings is 44.5 (9)°. The configuration about the central C—N bond is *E*, and there is an intramolecular $O-H\cdots N$ hydrogen bond which generates an *S*(6) ring. The molecular packing is stabilized by weak $C-H\cdots\pi$ interactions. The structure was refined as a two-component inversion twin.

Structure description

We report here, as part of our on-going research (Ida Malarselvi *et al.*, 2016; Swetha *et al.*, 2017, 2018), the synthesis and X-ray crystal structure determination of the title iodinated Schiff base compound, Fig. 1, which was synthesized from the condensation reaction of equimolar amounts of 5-iodosalicylaldehyde and aniline in DMSO.

The benzene and phenyl rings deviate from co-planarity with the dihedral angle between the two ring being 44.5 (9)°. The molecule has an *E* configuration about the C—N bond, and the C1–C7—N1–C8 torsion angle is 169.5 (17)°. There is a strong intra-molecular O1–H1···N1 hydrogen bond, Table 1, with an H···N separation of 1.94 Å which leads to an S(6) ring. The crystal structure (Fig. 2) is stabilized by three weak C–H··· π interactions, see Table 1.

Yan *et al.* (2014) have reported the crystal structure determination of 4-bromo-2-[(phenylimino)methyl]phenol, in which the molecule is essentially planar (r.m.s. deviation = 0.026 Å), a result in contrast to our present study.

Figure 1

A view of the molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and showing the atom-numbering scheme. Dashed lines indicate the intramolecular hydrogen-bonding interaction (Table 1).

Synthesis and crystallization

5-Iodosalicylaldehyde (0.3 g) was dissolved in DMSO (15 ml). To this solution, aniline (0.2 g) was added dropwise with constant stirring for 1 h at 50°C. During this time, the solution turned light yellow. On standing for 1 month with slow evaporation of the solvent, light-orange crystals of the title compound suitable for the X-ray study were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as a twocomponent inversion twin.

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

Brandenburg, K. & Putz, H. (2018). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Figure 2 The molecular packing, viewed along the crystallographic c axis.

Table 1 Hydrogen bond geometr

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 and Cg2 are the centroids of the C1–C6 benzene ring and the C8–C13 phenyl ring, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.82	1.94	2.64 (2)	143
$C5-H5\cdots Cg1^{i}$	0.93	2.86	3.476 (15)	125
$C9 - H9 \cdots Cg2^{ii}$	0.93	2.81	3.48 (2)	129
$C12-H12\cdots Cg2^{iii}$	0.93	2.82	3.55 (3)	136

Symmetry codes: (i) $x + \frac{1}{2}, -y, z - 1$; (ii) $x + \frac{3}{2}, -y, z - 1$; (iii) $x + \frac{1}{2}, -y, z$.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	C ₁₃ H ₁₀ INO
Mr	323.12
Crystal system, space group	Orthorhombic, Pca2 ₁
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.0848 (8), 26.422 (3), 6.2664 (7)
$V(Å^3)$	1173.1 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.71
Crystal size (mm)	$0.30\times0.25\times0.15$
Data collection	
Diffractometer	Bruker Kappa APEX3 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.287, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13051, 2057, 2043
R _{int}	0.055
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.080, 0.223, 1.18
No. of reflections	2057
No. of parameters	146
No. of restraints	148
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	2.90, -1.22
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.53 (13)

Computer programs: APEX3, SAINT and XPREP (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2018), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

- Bruker (2016). *APEX3, SAINT, XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). *IUCrData*, **1**, x161595.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). *IUCrData*, **2**, x171671.
- Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2018). *IUCrData*, **3**, x180464.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, 0853.

full crystallographic data

IUCrData (2019). 4, x190788 [https://doi.org/10.1107/S2414314619007880]

(E)-4-lodo-2-[(phenylimino)methyl]phenol

G. Swetha, R. Ida Malarselvi, C. Ramachandra Raja, A. Thiruvalluvar and J. Priscilla

(E)-4-lodo-2-[(phenylimino)methyl]phenol

Crystal data

C₁₃H₁₀INO $M_r = 323.12$ Orthorhombic, $Pca2_1$ a = 7.0848 (8) Å b = 26.422 (3) Å c = 6.2664 (7) ÅV = 1173.1 (2) Å³ Z = 4F(000) = 624

Data collection

Bruker Kappa APEX3 CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{\rm min} = 0.287, T_{\rm max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.080$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.223$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 2.90 \text{ e } \text{\AA}^{-3}$ *S* = 1.18 2057 reflections $\Delta \rho_{\rm min} = -1.22 \ {\rm e} \ {\rm \AA}^{-3}$ 146 parameters 148 restraints twin Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. C-bound H atoms were placed in geometrically idealized positions with C—H = 0.93 Å. The OH H1 atom was placed geometrically with O—H = 0.82 Å.

 $D_{\rm x} = 1.830 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9900 reflections $\theta = 2.9 - 30.8^{\circ}$ $\mu = 2.71 \text{ mm}^{-1}$ T = 296 KPlate, orange $0.30 \times 0.25 \times 0.15$ mm

13051 measured reflections 2057 independent reflections 2043 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.055$ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -31 \rightarrow 31$ $l = -7 \rightarrow 7$

H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.1256P)^2 + 10.5304P]$ Absolute structure: Refined as an inversion Absolute structure parameter: 0.53 (13)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.528 (2)	0.7086 (7)	0.466 (3)	0.036 (3)	
C2	0.557 (2)	0.6640 (6)	0.586 (3)	0.031 (3)	
H2	0.598694	0.666661	0.725680	0.038*	
C3	0.526 (2)	0.6174 (6)	0.503 (2)	0.027 (3)	
C4	0.461 (2)	0.6133 (7)	0.289 (3)	0.035 (4)	
H4	0.439214	0.581274	0.232509	0.042*	
C5	0.429 (2)	0.6565 (6)	0.1556 (19)	0.034 (4)	
Н5	0.388597	0.653661	0.015024	0.040*	
C6	0.465 (2)	0.7045 (7)	0.255 (2)	0.035 (3)	
C7	0.551 (2)	0.7588 (8)	0.554 (4)	0.044 (4)	
H7	0.595451	0.760351	0.693338	0.053*	
N1	0.5206 (18)	0.7982 (6)	0.470 (3)	0.038 (3)	
01	0.445 (2)	0.7439 (6)	0.126 (3)	0.063 (5)	
H1	0.478128	0.769632	0.188944	0.095*	
C8	0.516 (2)	0.8464 (8)	0.565 (3)	0.043 (4)	
C9	0.582 (3)	0.8877 (6)	0.444 (4)	0.052 (5)	
H9	0.627478	0.883081	0.305929	0.062*	
C10	0.577 (4)	0.9366 (9)	0.538 (5)	0.069 (7)	
H10	0.628761	0.964479	0.468623	0.083*	
C11	0.491 (3)	0.9414 (7)	0.738 (4)	0.063 (6)	
H11	0.482026	0.973329	0.799836	0.076*	
C12	0.420 (4)	0.9000 (8)	0.847 (5)	0.077 (7)	
H12	0.363078	0.904559	0.979138	0.092*	
C13	0.431 (2)	0.8520 (7)	0.760 (3)	0.049 (5)	
H13	0.382080	0.824147	0.831719	0.059*	
I1	0.54634 (16)	0.55120 (4)	0.6950 (5)	0.0477 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.036 (8)	0.039 (6)	0.034 (7)	-0.001 (5)	-0.011 (6)	0.005 (5)
C2	0.033 (8)	0.034 (6)	0.028 (7)	-0.005 (5)	-0.009 (6)	0.000 (5)
C3	0.026 (7)	0.034 (6)	0.021 (6)	-0.007 (5)	-0.008(5)	-0.001 (5)
C4	0.038 (9)	0.043 (8)	0.024 (6)	-0.004 (6)	-0.009 (6)	-0.001 (6)
C5	0.044 (8)	0.052 (7)	0.004 (8)	0.000 (6)	-0.005 (5)	-0.001 (5)
C6	0.027 (7)	0.045 (7)	0.032 (7)	0.002 (6)	-0.008(5)	0.000 (5)
C7	0.038 (10)	0.047 (6)	0.047 (10)	-0.003 (6)	-0.010(7)	-0.006(5)
N1	0.019 (6)	0.051 (7)	0.044 (8)	-0.002 (6)	-0.008 (6)	-0.001 (6)
01	0.074 (11)	0.034 (8)	0.082 (14)	0.002 (7)	-0.015 (8)	0.005 (7)
C8	0.019 (7)	0.054 (9)	0.056 (10)	0.004 (7)	-0.009(7)	0.015 (7)
С9	0.043 (10)	0.039 (7)	0.074 (13)	0.008 (7)	0.028 (9)	-0.002(7)
C10	0.045 (11)	0.052 (9)	0.111 (17)	0.002 (10)	0.009 (12)	-0.027 (10)
C11	0.044 (9)	0.039 (8)	0.106 (18)	0.008 (7)	0.003 (12)	-0.031 (9)
C12	0.052 (12)	0.058 (9)	0.120 (18)	0.009 (9)	0.009 (12)	-0.012 (10)
C13	0.020(7)	0.052 (8)	0.074 (13)	-0.009(7)	0.014 (7)	0.003 (7)

						data reports
I1	0.0529 (8)	0.0357 (7)	0.0545 (8)	0.0010 (4)	-0.0052 (8)	0.0067 (8)
Geome	tric parameters (Å	, <i>°</i>)				
C1—C	6	1.402 (18)		N1—C8		1.41 (3)
C1—C	2	1.412 (19)		01—H1		0.8200
C1—C	7	1.44 (3)		C8—C13		1.37 (2)
С2—С	3	1.353 (19)		С8—С9		1.41 (2)
С2—Н	2	0.9300		C9—C10		1.42 (2)
С3—С	4	1.421 (19)		С9—Н9		0.9300
C3—I1		2.130 (16)		C10-C11		1.40 (2)
C4—C	5	1.431 (19)		C10—H10		0.9300
С4—Н	4	0.9300		C11—C12		1.38 (2)
С5—С	6	1.433 (19)		C11—H11		0.9300
С5—Н	5	0.9300		C12—C13		1.38 (2)
С6—О	1	1.32 (2)		С12—Н12		0.9300
C7—N	1	1.19 (3)		С13—Н13		0.9300
С7—Н	7	0.9300				
С6—С	1—C2	118.9 (17)		C7—N1—C8		127.6 (19)
С6—С	1—C7	117.9 (17)		C6		109.5
С2—С	1—C7	123.2 (16)		C13—C8—N1		119.1 (17)
С3—С	2—C1	122.1 (15)		C13—C8—C9		123 (2)
С3—С	2—Н2	119.0		N1-C8-C9		117.5 (17)
C1—C	2—Н2	119.0		C8—C9—C10		118 (2)
С2—С	3—C4	119.0 (15)		С8—С9—Н9		120.9
С2—С	3—I1	121.2 (11)		С10—С9—Н9		120.9
C4—C	3—I1	119.6 (12)		C11—C10—C9		118 (2)
С3—С	4—C5	122.7 (15)		C11—C10—H10		121.1
С3—С	4—H4	118.7		С9—С10—Н10		121.1
С5—С	4—H4	118.7		C12-C11-C10		122 (2)
С4—С	5—C6	115.2 (13)		C12—C11—H11		119.1
С4—С	5—H5	122.4		C10-C11-H11		119.1
С6—С	5—H5	122.4		C13—C12—C11		121 (2)
01—C	6—C1	123.1 (17)		C13—C12—H12		119.7
01—C	6—C5	114.5 (14)		C11—C12—H12		119.7
C1—C	6—C5	122.2 (16)		C8—C13—C12		118 (2)
N1—C	7—C1	128 (2)		C8—C13—H13		120.8
N1—C	7—H7	116.0		С12—С13—Н13		120.8
C1—C	7—H7	116.0				
С6—С	1—C2—C3	0 (3)		C6—C1—C7—N1		1 (3)
С7—С	1—C2—C3	176.9 (17)		C2-C1-C7-N1		-175.8 (19)
C1—C	2—C3—C4	0 (2)		C1—C7—N1—C8		169.5 (17)
C1—C	2—C3—I1	-174.3 (13	3)	C7—N1—C8—C13		-42 (3)
С2—С	3—C4—C5	0 (2)		C7—N1—C8—C9		145 (2)
I1—C3	G-C4-C5	174.8 (13)		C13—C8—C9—C10)	7 (3)
С3—С	4—C5—C6	-1 (2)		N1-C8-C9-C10		180 (2)

data reports

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-175.6 (16) 7 (3) 0 (3) -177.3 (16)	C8—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 N1—C8—C13—C12 C0—C8—C13—C12	-6 (4) 2 (4) 0 (4) -177 (2) -4 (2)
C4—C5—C6—O1	176.3 (16)	C9—C8—C13—C12	-4 (3)
C4—C5—C6—C1	1 (2)	C11—C12—C13—C8	1 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 benzene ring and the C8–C13 phenyl ring, respectively.

D—H	H···A	D····A	D—H···A
0.82	1.94	2.64 (2)	143
0.93	2.86	3.476 (15)	125
0.93	2.81	3.48 (2)	129
0.93	2.82	3.55 (3)	136
	<i>D</i> —H 0.82 0.93 0.93 0.93	D—H H···A 0.82 1.94 0.93 2.86 0.93 2.81 0.93 2.82	DHH···AD···A0.821.942.64 (2)0.932.863.476 (15)0.932.813.48 (2)0.932.823.55 (3)

Symmetry codes: (i) *x*+1/2, -*y*, *z*-1; (ii) *x*+3/2, -*y*, *z*-1; (iii) *x*+1/2, -*y*, *z*.