

ISSN 2414-3146

Received 26 August 2019 Accepted 27 August 2019

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; polycyclic hydrocarbon; planarized stilbene.

CCDC reference: 1949606

Structural data: full structural data are available from iucrdata.iucr.org

5,10-Dihydroindeno[2,1-a]indene

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The title compound, $C_{16}H_{12}$, crystallizes with four half molecules in the asymmetric unit, each of which is located on a crystallographic centre of inversion. The molecules are essentially planar. The crystal studied was a non-merohedral twin.

Structure description

Indenoindene is well known as starting material for *e.g.* pentalenes (Frank & Gompper, 1987) and has been studied as a stiffened stilbene (Ogawa *et al.*, 1988; Krohn *et al.*, 2019). While the compound is formed in pyrolytic processes (Hofmann *et al.*, 1995), synthetic routes involve benzocyclobutene derivatives (Barton & Shepherd 1987; Schiess & Heitzmann 1977; Detert & Schollmeyer 2018) and a photochemical rearrangement (Oelgemöller *et al.*, 2002).

Four independent and nearly identical molecules of the title compound with essential C_{2h} symmetry fill the unit cell (Fig. 1). The crystal packing shows pairs of tilted molecules along the *a* axis and along the *b* axis (Fig. 2). The molecules are completely planar [maximum deviation from the mean plane of all carbon atoms in a molecule: 0.014 (3) Å for C6D]. The central dihydropentalene unit shows averaged bond lengths of 1.466 (4) Å for C2–C3 and 1.331 (4) Å for C2–C2'. A comparison of these data with *trans* stilbene (1.466 and 1.324 Å, respectively; Luo *et al.*, 2019) reveals a bond-length convergence in the planarized indenoindene [dihedral angle = 1.2 (2)°] relative to the twisted stilbene (phenylethenyl torsion angle = 6.64°)

Synthesis and crystallization

The title compound was prepared according to Oelgemöller *et al.* (2002). Single crystals were obtained by slow evaporation of a solution in dichloromethane/propanol-2 (2:1).

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal studied was a nonmerohedral two-component twin with a fractional contribution of 0.4085 (12) for the minor domain.

Acknowledgements

The authors are grateful to N. Jacobs for the preparation of the title compound.

References

- Barton, J. W. & Shepherd, M. K. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1561–1565.
- Detert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.
- Frank, W. & Gompper, R. (1987). Tetrahedron Lett. 28, 3083-3086.
- Hofmann, J., Zimmermann, G., Guthier, K., Hebgen, P. & Homann, K.-H. (1995). *Liebigs Ann.*, pp. 631–636.
- Krohn, O. A., Quick, M., Ioffe, I. N., Mazaleva, O. N., Lenoir, D., Detert, H. & Kovalenko, S. A. (2019). J. Phys. Chem. B, 123, 4291– 4300.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$C_{16}H_{12}$
$M_{ m r}$	204.26
Crystal system, space group	Triclinic, P1
Temperature (K)	193
a, b, c (Å)	7.5009 (9), 7.6819 (9), 19.387 (3)
α, β, γ (°)	99.733 (11), 100.641 (11),
	90.523 (9)
$V(Å^3)$	1081.2 (2)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.07
Crystal size (mm)	$0.22 \times 0.15 \times 0.04$
Data collection	
Diffractometer	Stoe IPDS 2T
Absorption correction	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14443, 14443, 7500
R _{int}	?
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.669
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.141, 1.03
No. of reflections	14443
No. of parameters	290
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.29, -0.21

Computer programs: X-AREA and X-RED (Stoe & Cie, 1996), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2009).

- Luo, X., Chen, X., Chen, L., Zhang, K. & Li, Y. (2019). Chem. Commun. 55 20170–20173.
- Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760–1771.
- Ogawa, K., Futakami, M., Suzuki, H. & Kira, A. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 2115–2118.
- Schiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485-485.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.

Figure 2

Packing diagram of the title compound viewed along the a axis. Symmetry-independent molecules are drawn with different colours.

full crystallographic data

IUCrData (2019). 4, x191179 [https://doi.org/10.1107/S2414314619011799]

5,10-Dihydroindeno[2,1-a]indene

Heiner Detert and Dieter Schollmeyer

5,10-Dihydroindeno[2,1-a]indene

Crystal data

C₁₆H₁₂ $M_r = 204.26$ Triclinic, $P\overline{1}$ a = 7.5009 (9) Å b = 7.6819 (9) Å c = 19.387 (3) Å $\alpha = 99.733$ (11)° $\beta = 100.641$ (11)° $\gamma = 90.523$ (9)° V = 1081.2 (2) Å³

Data collection

Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method scans 14443 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.056$ Hydrogen site location: inferred from $wR(F^2) = 0.141$ neighbouring sites S = 1.03H-atom parameters constrained 14443 reflections $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.1143P]$ 290 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 4

F(000) = 432

 $\theta = 2.8 - 28.0^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

Plate, colourless

 $0.22 \times 0.15 \times 0.04 \text{ mm}$

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

14443 independent reflections

7500 reflections with $I > 2\sigma(I)$

T = 193 K

 $h = -9 \rightarrow 9$

 $k = -10 \rightarrow 10$

 $l = -25 \rightarrow 25$

 $D_{\rm x} = 1.255 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2411 reflections

Refinement. Refined as a 2-component twin. BASF 0.40850 Twin law for transforming hkl(1) to hkl(2): -1.00006 0.00023 0.00003 0.00016 -1.00020 0.00001 0.95946 0.87001 1.00038

Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 $U_{eq}(C)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1A	0.6265 (4)	0.1349 (3)	0.58366 (16)	0.0420 (7)	
H1A	0.570270	0.239199	0.607100	0.050*	
H1B	0.758394	0.160278	0.588948	0.050*	
C2A	0.5377 (3)	0.0821 (3)	0.50682 (15)	0.0379 (7)	
C3A	0.5094 (3)	0.1575 (3)	0.44194 (16)	0.0371 (7)	
C4A	0.5622 (3)	0.3197 (3)	0.42737 (17)	0.0424 (7)	
H4A	0.627703	0.406985	0.464147	0.051*	
C5A	0.5171 (4)	0.3509 (4)	0.35798 (18)	0.0463 (8)	
H5A	0.553328	0.460341	0.347082	0.056*	
C6A	0.4206 (4)	0.2254 (4)	0.30472 (18)	0.0475 (8)	
H6A	0.390593	0.250000	0.257642	0.057*	
C7A	0.3663 (4)	0.0633 (4)	0.31857 (17)	0.0461 (8)	
H7A	0.299603	-0.022537	0.281531	0.055*	
C8A	0.4111 (3)	0.0299 (3)	0.38696 (16)	0.0396 (7)	
C1B	0.9607 (4)	0.6291 (3)	0.58564 (17)	0.0485 (8)	
H1C	0.834972	0.652170	0.592501	0.058*	
H1D	1.040849	0.733646	0.609137	0.058*	
C2B	0.9702 (4)	0.5806(3)	0.50825 (17)	0.0428 (7)	
C3B	0.9306 (3)	0.6610(3)	0.44363 (17)	0.0416 (7)	
C4B	0.8648 (4)	0.8222 (3)	0.43136 (18)	0.0472 (8)	
H4B	0.837765	0.907055	0.469307	0.057*	
C5B	0.8391 (4)	0.8579 (4)	0.36300 (19)	0.0512 (8)	
H5B	0.792298	0.967956	0.353938	0.061*	
C6B	0.8799 (4)	0.7372 (4)	0.30744 (19)	0.0523 (8)	
H6B	0.862114	0.765677	0.260901	0.063*	
C7B	0.9472 (4)	0.5735 (4)	0.3191 (2)	0.0537 (9)	
H7B	0.974921	0.489898	0.280873	0.064*	
C8B	0.9724 (3)	0.5359 (3)	0.38743 (18)	0.0439 (7)	
C1C	0.6484 (4)	0.4528 (4)	0.08155 (17)	0.0491 (8)	
H1E	0.760177	0.527069	0.102405	0.059*	
H1F	0.670975	0.328768	0.087230	0.059*	
C2C	0.5827 (3)	0.4677 (3)	0.00581 (17)	0.0422 (7)	
C3C	0.6498 (4)	0.4309 (3)	-0.06130 (17)	0.0422 (7)	
C4C	0.8104 (4)	0.3624 (3)	-0.07899 (18)	0.0506 (8)	
H4C	0.903217	0.330126	-0.043541	0.061*	
C5C	0.8316 (4)	0.3425 (3)	-0.14959 (19)	0.0530 (8)	
H5C	0.939557	0.295384	-0.162728	0.064*	
C6C	0.6969 (4)	0.3906 (4)	-0.20061 (19)	0.0537 (8)	
H6C	0.713696	0.377195	-0.248581	0.064*	
C7C	0.5370 (4)	0.4585 (4)	-0.18306 (19)	0.0512 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7C	0.445029	0.491165	-0.218706	0.061*
C8C	0.5134 (4)	0.4776 (3)	-0.11433 (17)	0.0429 (7)
C1D	0.1447 (4)	0.1273 (4)	0.08064 (18)	0.0545 (8)
H1G	0.168542	0.255730	0.083898	0.065*
H1H	0.255170	0.074407	0.103547	0.065*
C2D	0.0818 (4)	0.0383 (3)	0.00570 (18)	0.0461 (8)
C3D	0.1529 (4)	0.0084 (3)	-0.06117 (18)	0.0451 (7)
C4D	0.3153 (4)	0.0594 (3)	-0.07869 (19)	0.0525 (8)
H4D	0.406367	0.127811	-0.043834	0.063*
C5D	0.3409 (4)	0.0080 (4)	-0.1484 (2)	0.0555 (8)
H5D	0.450338	0.041999	-0.161536	0.067*
C6D	0.2082 (5)	-0.0922 (4)	-0.1985 (2)	0.0569 (9)
H6D	0.227975	-0.128483	-0.245749	0.068*
C7D	0.0464 (4)	-0.1404 (4)	-0.18077 (19)	0.0538 (8)
H7D	-0.044961	-0.208078	-0.215738	0.065*
C8D	0.0193 (4)	-0.0903 (3)	-0.11304 (19)	0.0467 (8)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0377 (15)	0.0378 (14)	0.0459 (19)	-0.0018 (11)	0.0034 (13)	-0.0003 (12)
C2A	0.0280 (14)	0.0375 (14)	0.046 (2)	0.0033 (11)	0.0065 (13)	0.0017 (13)
C3A	0.0260 (13)	0.0400 (14)	0.045 (2)	0.0029 (10)	0.0086 (13)	0.0063 (13)
C4A	0.0326 (14)	0.0404 (15)	0.052 (2)	-0.0012 (11)	0.0064 (14)	0.0024 (14)
C5A	0.0391 (16)	0.0437 (16)	0.059 (2)	0.0007 (12)	0.0120 (15)	0.0131 (15)
C6A	0.0438 (17)	0.0529 (17)	0.046 (2)	0.0044 (13)	0.0081 (15)	0.0107 (15)
C7A	0.0433 (17)	0.0443 (16)	0.047 (2)	0.0017 (12)	0.0047 (15)	0.0003 (14)
C8A	0.0309 (14)	0.0378 (14)	0.050 (2)	0.0030 (11)	0.0107 (14)	0.0028 (13)
C1B	0.0444 (17)	0.0417 (15)	0.058 (2)	0.0015 (12)	0.0159 (15)	-0.0037 (13)
C2B	0.0300 (13)	0.0409 (14)	0.055 (2)	-0.0026 (10)	0.0113 (13)	-0.0038 (14)
C3B	0.0285 (14)	0.0421 (15)	0.054 (2)	-0.0032(11)	0.0119 (14)	0.0043 (14)
C4B	0.0367 (15)	0.0449 (16)	0.060 (2)	0.0036 (12)	0.0139 (15)	0.0048 (15)
C5B	0.0392 (16)	0.0478 (17)	0.068 (3)	0.0023 (12)	0.0127 (16)	0.0111 (16)
C6B	0.0483 (18)	0.0549 (18)	0.055 (2)	-0.0045 (14)	0.0114 (16)	0.0123 (16)
C7B	0.0486 (18)	0.0484 (18)	0.062 (3)	-0.0057 (14)	0.0153 (17)	-0.0023 (16)
C8B	0.0325 (14)	0.0396 (15)	0.058 (2)	-0.0045 (11)	0.0101 (14)	0.0017 (14)
C1C	0.0473 (17)	0.0473 (16)	0.051 (2)	0.0010 (13)	-0.0026 (15)	0.0165 (14)
C2C	0.0426 (15)	0.0292 (13)	0.051 (2)	-0.0031 (11)	-0.0029 (15)	0.0103 (13)
C3C	0.0506 (17)	0.0307 (14)	0.046 (2)	-0.0035 (12)	0.0108 (15)	0.0083 (13)
C4C	0.0574 (19)	0.0395 (15)	0.055 (2)	0.0042 (13)	0.0067 (17)	0.0138 (15)
C5C	0.057 (2)	0.0428 (16)	0.060(2)	0.0033 (13)	0.0187 (18)	0.0043 (15)
C6C	0.066 (2)	0.0473 (17)	0.048 (2)	-0.0080 (15)	0.0156 (18)	0.0038 (15)
C7C	0.0547 (19)	0.0494 (17)	0.047 (2)	-0.0093 (14)	0.0039 (16)	0.0083 (15)
C8C	0.0464 (17)	0.0334 (14)	0.047 (2)	-0.0053 (12)	0.0060 (15)	0.0067 (13)
C1D	0.0495 (18)	0.0459 (16)	0.062 (2)	-0.0013 (13)	-0.0032 (16)	0.0057 (15)
C2D	0.0440 (16)	0.0286 (14)	0.059 (2)	0.0023 (11)	-0.0074 (16)	0.0065 (14)
C3D	0.0525 (18)	0.0321 (14)	0.053 (2)	0.0110 (12)	0.0115 (16)	0.0130 (13)
C4D	0.0554 (19)	0.0352 (15)	0.063 (3)	-0.0011 (13)	0.0002 (17)	0.0086 (15)

data reports

C5D	0.055 (2)	0.0489 (17)	0.069 (3)	0.0053 (14)	0.0181 (18)	0.0218 (17)
C6D	0.068 (2)	0.0544 (18)	0.051 (2)	0.0175 (16)	0.0114 (19)	0.0142 (16)
C7D	0.0508 (19)	0.0484 (17)	0.058 (2)	0.0094 (14)	-0.0006 (17)	0.0090 (16)
C8D	0.0456 (17)	0.0354 (15)	0.058 (2)	0.0071 (12)	0.0029 (16)	0.0117 (14)

Geometric parameters (Å, °)

C1A—C2A	1.500 (4)	C1C—C2C	1.484 (4)
C1A—C8A ⁱ	1.518 (4)	C1C—C8C ⁱⁱⁱ	1.531 (4)
C1A—H1A	0.9900	C1C—H1E	0.9900
C1A—H1B	0.9900	C1C—H1F	0.9900
C2A—C2A ⁱ	1.341 (4)	C2C—C2C ⁱⁱⁱ	1.335 (5)
C2A—C3A	1.453 (4)	C2C—C3C	1.465 (4)
C3A—C4A	1.393 (3)	C3C—C4C	1.396 (4)
C3A—C8A	1.408 (4)	C3C—C8C	1.406 (4)
C4A—C5A	1.387 (4)	C4C—C5C	1.390 (4)
C4A—H4A	0.9500	C4C—H4C	0.9500
C5A—C6A	1.376 (4)	C5C—C6C	1.377 (4)
C5A—H5A	0.9500	C5C—H5C	0.9500
C6A—C7A	1.390 (4)	C6C—C7C	1.388 (4)
С6А—Н6А	0.9500	C6C—H6C	0.9500
C7A—C8A	1.374 (4)	C7C—C8C	1.360 (4)
C7A—H7A	0.9500	C7C—H7C	0.9500
C1B—C2B	1.499 (4)	C1D—C2D	1.485 (4)
C1B—C8B ⁱⁱ	1.506 (4)	C1D—C8D ^{iv}	1.526 (4)
C1B—H1C	0.9900	C1D—H1G	0.9900
C1B—H1D	0.9900	C1D—H1H	0.9900
C2B—C2B ⁱⁱ	1.329 (5)	C2D—C2D ^{iv}	1.321 (5)
C2B—C3B	1.472 (4)	C2D—C3D	1.475 (4)
C3B—C4B	1.379 (4)	C3D—C4D	1.393 (4)
C3B—C8B	1.410 (4)	C3D—C8D	1.395 (4)
C4B—C5B	1.378 (4)	C4D—C5D	1.392 (4)
C4B—H4B	0.9500	C4D—H4D	0.9500
C5B—C6B	1.379 (4)	C5D—C6D	1.380 (4)
C5B—H5B	0.9500	C5D—H5D	0.9500
C6B—C7B	1.397 (4)	C6D—C7D	1.385 (4)
C6B—H6B	0.9500	C6D—H6D	0.9500
C7B—C8B	1.384 (4)	C7D—C8D	1.357 (4)
С7В—Н7В	0.9500	C7D—H7D	0.9500
C2A—C1A—C8A ⁱ	101.2 (2)	C2C—C1C—C8C ⁱⁱⁱ	100.7 (2)
C2A—C1A—H1A	111.5	C2C—C1C—H1E	111.6
C8A ⁱ —C1A—H1A	111.5	C8C ⁱⁱⁱ —C1C—H1E	111.6
C2A—C1A—H1B	111.5	C2C—C1C—H1F	111.6
C8A ⁱ —C1A—H1B	111.5	C8C ⁱⁱⁱ —C1C—H1F	111.6
H1A—C1A—H1B	109.3	H1E—C1C—H1F	109.4
C2A ⁱ —C2A—C3A	109.8 (3)	C2C ⁱⁱⁱ —C2C—C3C	109.6 (3)
C2A ⁱ —C2A—C1A	111.8 (3)	C2C ⁱⁱⁱ —C2C—C1C	113.0 (4)

C3A - C2A - C1A	138 4 (2)	C3C - C2C - C1C	1374(2)
C4A - C3A - C8A	120.1(2)	C4C-C3C-C8C	1201(3)
$C_{4} = C_{3} = C_{2}$	120.1(3) 1325(3)	$C_{4}C_{-}C_{3}C_{-}C_{2}C_{-}C_{3$	120.1(3) 133 1(3)
$C_{AA} = C_{AA} = C_{AA}$	107.5(2)	$C_{4}C_{4}C_{5}C_{4}C_{5}C_{4}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5$	106.8(2)
C_{0}^{5}	107.5(2) 118 5 (3)	$C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}$	100.0(2)
$C_{5A} C_{4A} H_{4A}$	110.5 (5)	$C_{5C} = C_{4C} = U_{5C}$	120.7
$C_{3A} = C_{4A} = H_{4A}$	120.7	$C_{3}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4$	120.7
$C_{A} = C_{A} = \Pi_{A}$	120.7	$C_{5}C_{-}C_{4}C_{-}C_{-$	120.7
C6A C5A H5A	120.9 (3)	C6C C5C H5C	120.4 (3)
$C_{AA} C_{AA} C_{AA} H_{AA} H_{AA}$	119.0	$C_{AC} = C_{SC} = H_{SC}$	119.0
$C_{A} = C_{A} = C_{A}$	119.0	$C_{4}C_{-}C_{5}C_{-}C_{7$	119.0
$C_{A} = C_{A} = C_{A}$	121.2 (5)	$C_{5C} = C_{6C} = U_{6C}$	121.1 (5)
C7A = C(A = H(A = A))	119.4		119.5
C/A = COA = HOA	119.4	$C/C = C\delta C = H\delta C$	119.5
$C_{A} = C_{A} = C_{A}$	118.0 (3)	$C_{8}C_{-}C_{7}C_{-}C_{6}C_{-}C_{6}C_{-}C_{7}C_{-}C_{7}C_{-}C_{6}C_{-}C_{7$	119.5 (5)
CA = C/A = H/A	120.7	$C_{8}C_{-}C_{-}C_{-}H_{-}C_{-}C_{-}H_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C$	120.3
C6A - C/A - H/A	120.7	$C_{6}C_{-}C_{-}C_{-}H_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C$	120.3
C/A—C8A—C3A	120.7 (3)	C/C—C8C—C3C	120.5 (3)
$C7A$ — $C8A$ — $C1A^{1}$	129.7 (3)	C7C—C8C—C1C ⁱⁿ	129.5 (3)
$C3A - C8A - C1A^{1}$	109.6 (3)	C3C—C8C—C1C ^m	109.9 (3)
$C2B-C1B-C8B^n$	101.0 (2)	$C2D$ — $C1D$ — $C8D^{iv}$	100.7 (2)
C2B—C1B—H1C	111.6	C2D—C1D—H1G	111.6
C8B ⁱⁱ —C1B—H1C	111.6	C8D ^{iv} —C1D—H1G	111.6
C2B—C1B—H1D	111.6	C2D—C1D—H1H	111.6
C8B ⁱⁱ —C1B—H1D	111.6	C8D ^{iv} —C1D—H1H	111.6
H1C—C1B—H1D	109.4	H1G—C1D—H1H	109.4
C2B ⁱⁱ —C2B—C3B	109.3 (4)	C2D ^{iv} —C2D—C3D	109.2 (4)
C2B ⁱⁱ —C2B—C1B	112.7 (4)	C2D ^{iv} —C2D—C1D	113.2 (4)
C3B—C2B—C1B	138.0 (2)	C3D—C2D—C1D	137.5 (2)
C4B—C3B—C8B	120.6 (3)	C4D—C3D—C8D	120.2 (3)
C4B—C3B—C2B	132.7 (3)	C4D—C3D—C2D	132.9 (3)
C8B—C3B—C2B	106.7 (2)	C8D—C3D—C2D	106.9 (3)
C5B—C4B—C3B	118.7 (3)	C5D—C4D—C3D	118.5 (3)
C5B—C4B—H4B	120.7	C5D—C4D—H4D	120.8
C3B—C4B—H4B	120.7	C3D—C4D—H4D	120.8
C4B—C5B—C6B	121.5 (3)	C6D—C5D—C4D	120.3 (3)
C4B—C5B—H5B	119.3	C6D—C5D—H5D	119.8
C6B—C5B—H5B	119.3	C4D—C5D—H5D	119.8
C5B—C6B—C7B	120.5 (3)	C5D—C6D—C7D	120.7 (3)
С5В—С6В—Н6В	119.7	C5D—C6D—H6D	119.6
C7B—C6B—H6B	119.7	C7D—C6D—H6D	119.6
C8B—C7B—C6B	118.5 (3)	C8D—C7D—C6D	119.6 (3)
C8B—C7B—H7B	120.7	C8D—C7D—H7D	120.2
C6B—C7B—H7B	120.7	C6D—C7D—H7D	120.2
C7B—C8B—C3B	120.2 (3)	C7DC8DC3D	120.7 (3)
C7B—C8B—C1B ⁱⁱ	129.5 (3)	C7D-C8D-C1D ^{iv}	129.4 (3)
C3B—C8B—C1B ⁱⁱ	110.3 (3)	C3D-C8D-C1D ^{iv}	109.9 (3)
	. *		
C8A ⁱ —C1A—C2A—C2A ⁱ	-0.1 (3)	C8C ⁱⁱⁱ —C1C—C2C—C2C ⁱⁱⁱ	0.0 (4)

C8A ⁱ —C1A—C2A—C3A	-179.9 (3)	C8C ⁱⁱⁱ —C1C—C2C—C3C	-180.0 (3)
C2A ⁱ —C2A—C3A—C4A	-178.8 (3)	C2C ⁱⁱⁱ —C2C—C3C—C4C	-179.4 (3)
C1A—C2A—C3A—C4A	1.0 (5)	C1C—C2C—C3C—C4C	0.6 (5)
C2A ⁱ —C2A—C3A—C8A	0.1 (3)	C2C ⁱⁱⁱ —C2C—C3C—C8C	0.0 (3)
C1A—C2A—C3A—C8A	179.9 (3)	C1C—C2C—C3C—C8C	-180.0 (3)
C8A—C3A—C4A—C5A	-0.5 (4)	C8C—C3C—C4C—C5C	0.2 (4)
C2A—C3A—C4A—C5A	178.3 (3)	C2C—C3C—C4C—C5C	179.5 (3)
C3A—C4A—C5A—C6A	0.7 (4)	C3C—C4C—C5C—C6C	0.4 (4)
C4A—C5A—C6A—C7A	-0.4 (4)	C4C—C5C—C6C—C7C	-0.5 (4)
C5A—C6A—C7A—C8A	-0.1 (4)	C5C—C6C—C7C—C8C	0.0 (4)
C6A—C7A—C8A—C3A	0.3 (4)	C6C—C7C—C8C—C3C	0.6 (4)
C6A—C7A—C8A—C1A ⁱ	-178.5 (2)	C6C—C7C—C8C—C1C ⁱⁱⁱ	-179.6 (2)
C4A—C3A—C8A—C7A	0.0 (4)	C4C—C3C—C8C—C7C	-0.7 (4)
C2A—C3A—C8A—C7A	-179.1 (2)	C2C—C3C—C8C—C7C	179.8 (2)
C4A—C3A—C8A—C1A ⁱ	179.0 (2)	C4C—C3C—C8C—C1C ⁱⁱⁱ	179.5 (2)
C2A—C3A—C8A—C1A ⁱ	-0.1 (3)	C2C—C3C—C8C—C1C ⁱⁱⁱ	0.0 (3)
C8B ⁱⁱ —C1B—C2B—C2B ⁱⁱ	0.2 (4)	$C8D^{iv}$ — $C1D$ — $C2D$ — $C2D^{iv}$	-0.7 (4)
C8B ⁱⁱ —C1B—C2B—C3B	179.7 (3)	C8D ^{iv} —C1D—C2D—C3D	-179.7 (3)
C2B ⁱⁱ —C2B—C3B—C4B	179.1 (3)	C2D ^{iv} —C2D—C3D—C4D	179.8 (3)
C1B—C2B—C3B—C4B	-0.4 (5)	C1D-C2D-C3D-C4D	-1.2 (5)
C2B ⁱⁱ —C2B—C3B—C8B	-0.4 (4)	C2D ^{iv} —C2D—C3D—C8D	0.4 (4)
C1B—C2B—C3B—C8B	-179.9 (3)	C1D-C2D-C3D-C8D	179.4 (3)
C8B—C3B—C4B—C5B	0.6 (4)	C8D—C3D—C4D—C5D	-0.8 (4)
C2B—C3B—C4B—C5B	-178.9 (3)	C2D—C3D—C4D—C5D	179.9 (3)
C3B—C4B—C5B—C6B	-0.9 (4)	C3D-C4D-C5D-C6D	-0.4 (4)
C4B—C5B—C6B—C7B	0.7 (4)	C4D—C5D—C6D—C7D	1.2 (4)
C5B—C6B—C7B—C8B	-0.3 (4)	C5D—C6D—C7D—C8D	-0.8 (4)
C6B—C7B—C8B—C3B	0.0 (4)	C6D—C7D—C8D—C3D	-0.3 (4)
C6B—C7B—C8B—C1B ⁱⁱ	178.9 (3)	C6D-C7D-C8D-C1D ^{iv}	-179.6 (3)
C4B—C3B—C8B—C7B	-0.2 (4)	C4D—C3D—C8D—C7D	1.1 (4)
C2B—C3B—C8B—C7B	179.4 (2)	C2D-C3D-C8D-C7D	-179.4 (2)
C4B—C3B—C8B—C1B ⁱⁱ	-179.3 (2)	C4D-C3D-C8D-C1D ^{iv}	-179.5 (2)
C2B—C3B—C8B—C1B ⁱⁱ	0.3 (3)	C2D-C3D-C8D-C1D ^{iv}	0.0 (3)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z.