ISSN 2414-3146

Received 10 June 2019
Accepted 9 September 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; inorganic-organic hybrid compound; cadmium; hydrogen bonding.

CCDC reference: 1921720

Structural data: full structural data are available from iucrdata.iucr.org

Poly[di(μ_{2}-2-hydroxypropanoato)cadmium]

Ao-Wei Chen, Rong Shi, Ce Wang, Bi-Bo Shi and Zheng Yin*

College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China. *Correspondence e-mail: yinzheng@sust.edu.cn

The asymmetric unit of the title inorganic-organic salt, poly[di(μ_{2}-2-hydroxypropanoato)cadmium $]$, $\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right]_{n}$ or $\left[\mathrm{Cd}(\mathrm{Hlac})_{2}\right]_{n}\left(\mathrm{H}_{2}\right.$ lac $=2$-hydroxypropanoic acid), comprises of a cadmium cation and two 2-hydroxypropanoate anions. The cadmium cation exhibits a distorted pentagonal-bipyramidal coordination environment defined by the hydroxy and carbonyl O atoms of the 2-hydroxypropanoate anions. The coordination mode leads to the formation of layers extending parallel to (010). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the hydroxy and carbonyl groups stabilizes the structure packing.

Structure description

Compounds with metal-organic framework (MOF) structures with accessible open space have rapidly grown into a major area of chemical research because of their structural diversity and wide applications (Furukawa et al., 2013). Crystal engineering of MOFs has been dominated by single organic units like polycarboxylates, polypyridines, azolate or their derivatives. Recently, mixed-ligand MOFs (Yin et al., 2015), were found to be successful in the rational construction of materials with targeted functionalities. One of the interesting candidates for the construction of mixed-ligand MOFs is 2-hydroxypropanoic acid $\left(\mathrm{H}_{2} \mathrm{lac}\right)$. Working with the corresponding anion has several advantages: (i) multiple coordination modes by using the hydroxyl and carboxyl groups are possible; (ii) the anion is flexible and a chelating ligand, and thus can facilitate the formation of key building units such as chains or layers; (iii) the terminal methyl group can be replaced by $-\mathrm{H},-\mathrm{C}_{2} \mathrm{H}_{5},-\mathrm{Ph}$ and other groups for structural regulation and expansion. As a typical example, the combination of $\mathrm{H}_{2} \mathrm{lac}$ and linear pyridine carboxylate generates highly stable rod-spacer MOFs with double π-wall and square nano-channels (Zeng et al., 2010), achieving high-efficiency iodine capture.

During exploration of the coordination chemistry of $\mathrm{H}_{2} \mathrm{lac}$ with different metals and co-ligands, the title compound was obtained as a single-ligand cadmium compound,

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O} 2^{\mathrm{i}}$	$0.87(1)$	$1.81(2)$	$2.657(6)$	$163(5)$
C5-H5 $^{\mathrm{ii}}$	0.98	2.22	$3.021(8)$	139
O6-H6 $^{\mathrm{O}} \mathrm{O}^{\mathrm{ii}}$	$0.85(1)$	$2.11(9)$	$2.747(7)$	$132(11)$

Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
notwithstanding the presence of the linear pyrazine co-ligand under the given solvothermal conditions. The asymmetric unit of the title compound comprises of one cadmium cation and two 2-hydroxypropanoate anions (Fig. 1). The Cd1 cation is sevenfold-coordinated by oxygen and adopts a distorted pentagonal-bipyramidal coordination environment. Four oxygen atoms stem from carboxyl groups and three from hydroxyl groups from four different Hlac^{-}ligands whereby three ligands are chelating and one is monodentate. This coordination mode leads to the formation of layers extending parallel to (010) (Fig. 2, left). Under consideration of the Cd as nodes, the cations are extended to tapes parallel to [001] consisting of a $(4,4)$ grid (Fig. 2, right). The tapes are stacked along [100] and are linked into a three-dimensional network by more distant nodes [Cd…Cd distances of 6.4014 (14) \AA] parallel to [210]. The crystal packing is consolidated by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions of medium strength between hydroxy and carbonyl functions, and additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1).

Synthesis and crystallization

A mixture of $\mathrm{H}_{2} \mathrm{lac}$ (0.125 mmol), pyrazine (0.1 mmol) and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(15 \mathrm{ml})$ was stirred in air with a magnetic stirrer, generating a colourless clear solution after 10 min . The reaction solution was then transferred to a solvothermal PTFE reaction vessel with 25 ml capacity, followed by heating at 393 K for 72 h . The reaction vessel was then cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The formed crystalline material was filtered to obtain colourless rod-like crystals with a yield of about 52% (based on Cd). The obtained crystals are insoluble in common

Figure 1
The asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right]$
M_{r}	290.54
Crystal system, space group	Orthorhombic, Iba2
Temperature (K)	298
$a, b, c(\AA)$	$10.238(2), 19.104(4), 9.463(2)$
$V\left(\AA^{3}\right)$	$1850.8(7)$
Z	8
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.36
Crystal size (mm)	$0.3 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan $(S A D A B S ;$ Bruker,
	$2016)$
$T_{\text {min }}, T_{\text {max }}$	$0.547,0.746$
No. of measured, independent and	$9606,2230,2032$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.031
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.672
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.025,0.065,1.05$
No. of reflections	2230
No. of parameters	127
No. of restraints	18
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.88,-0.36$
Absolute structure	Flack x determined using 836
	quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
Absolute structure parameter	$0.02(2)$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).
organic solvents such as DMF, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and acetone. IR (KBr pellets, cm^{-1}): 3044 (m), $1626(\mathrm{~s}), 1563(\mathrm{~s})$, 1451 (s), 1370 (s), 1092 (m). Elemental analysis (\%), calculated: C, 24.80; H, 3.47; found: C, 24.71; H, 3.55. The compound is thermally stable up to 533 K under an N_{2} atmosphere.

Figure 2
Left: formation of polymeric layers extending parallel to (010); right: bands of $(4,4)$ grids between Cd nodes extending parallel to [001]. H atoms have been omitted for clarity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Shaanxi University of Science and Technology for supporting this work.

Funding information
Funding for this research was provided by: the National Science Foundation of China (No. 21601116), the NSF of Shaanxi Province (Nos. 2017JQ2008, 17JK0113), the China Postdoctoral Science Foundation (2016M592736), and the College students' innovation and entrepreneurship training program (No. 201710708017).

References

Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Furukawa, H., Cordova, K. E., O'Keeffe, M. \& Yaghi, O. M. (2013). Science, 341, 1230444.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yin, Z., Zhou, Y. L., Zeng, M. H. \& Kurmoo, M. (2015). Dalton Trans. 44, 5258-5275.
Zeng, M. H., Wang, Q. X., Tan, Y. X., Hu, S., Zhao, H. X., Long, L. S. \& Kurmoo, M. (2010). J. Am. Chem. Soc. 132, 2561-2563.

full crystallographic data

IUCrData (2019). 4, x191255 [https://doi.org/10.1107/S2414314619012550]
Poly[di(μ_{2}-2-hydroxypropanoato)cadmium]

Ao-Wei Chen, Rong Shi, Ce Wang, Bi-Bo Shi and Zheng Yin

Poly[di(μ_{2}-2-hydroxypropanoato)cadmium]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right]$
$M_{r}=290.54$
Orthorhombic, Iba2
$a=10.238$ (2) \AA
$b=19.104$ (4) \AA
$c=9.463(2) \AA$
$V=1850.8(7) \AA^{3}$
$Z=8$
$F(000)=1136$
Data collection
Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min }=0.547, T_{\max }=0.746$
9606 measured reflections
$D_{\mathrm{x}}=2.085 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9045 reflections
$\theta=3.1-28.5^{\circ}$
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, clear light colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

2230 independent reflections
2032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-13 \rightarrow 13$
$k=-20 \rightarrow 25$
$l=-10 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
2230 reflections
127 parameters
18 restraints
Hydrogen site location: mixed

> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0315 P)^{2}+2.8326 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.88$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}$
> Absolute structure: Flack x determined using 836 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.02 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms (H3 and H 6) bound to the O 3 and O 6 atoms were located from a difference-Fourier map. The $\mathrm{O}-\mathrm{H}$ bond lengths were restrained by DFIX command to be $0.85 \AA$. The DANG command was used for H3 and H6 to restrain their orientation. Due to unresolved disorder of the methyl groups involving C3 and C6, the latter atoms were treated with ISOR commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cd1	$0.45111(3)$	$0.35060(2)$	$0.51898(10)$	$0.03129(11)$
O1	$0.4657(3)$	$0.3771(3)$	$0.2739(5)$	$0.0439(10)$
O2	$0.3965(5)$	$0.4340(2)$	$0.0914(5)$	$0.0512(11)$
O3	$0.3247(5)$	$0.4498(2)$	$0.4582(5)$	$0.0458(10)$
H3	$0.332(5)$	$0.4896(11)$	$0.502(3)$	0.069^{*}
O4	$0.8064(5)$	$0.2269(3)$	$0.4374(6)$	$0.0697(18)$
O5	$0.6209(4)$	$0.2835(2)$	$0.4492(5)$	$0.0461(10)$
O6	$0.7918(5)$	$0.1741(3)$	$0.6884(5)$	$0.0573(13)$
C1	$0.3958(5)$	$0.4223(3)$	$0.2229(6)$	$0.0344(11)$
C2	$0.3081(7)$	$0.4690(4)$	$0.3124(7)$	$0.0514(16)$
H2	0.3376	0.5174	0.3010	0.062^{*}
C3	$0.1765(9)$	$0.4651(6)$	$0.2688(12)$	$0.086(3)$
H3A	0.1440	0.4186	0.2847	0.129^{*}
H3B	0.1706	0.4761	0.1700	0.129^{*}
H3C	0.1254	0.4980	0.3220	0.129^{*}
C4	$0.7044(5)$	$0.2430(3)$	$0.5010(10)$	$0.0370(17)$
C5	$0.6793(7)$	$0.2125(4)$	$0.6430(6)$	$0.0497(16)$
H5	0.6663	0.2513	0.7093	0.060^{*}
C6	$0.5661(9)$	$0.1679(6)$	$0.6511(14)$	$0.086(3)$
H6A	0.5790	0.1275	0.5923	0.129^{*}
H6B	0.4906	0.1932	0.6193	0.129^{*}
H6C	0.5532	0.1532	0.7472	0.129^{*}
H6	$0.843(6)$	$0.202(2)$	$0.732(11)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03011(16)$	$0.03302(16)$	$0.03074(17)$	$-0.00204(12)$	$-0.0024(2)$	$-0.0012(2)$
O1	$0.039(2)$	$0.049(2)$	$0.043(2)$	$0.0177(17)$	$0.004(2)$	$0.004(2)$
O2	$0.073(3)$	$0.043(2)$	$0.037(2)$	$0.015(2)$	$0.012(2)$	$0.0042(18)$
O3	$0.061(3)$	$0.044(2)$	$0.0328(18)$	$0.011(2)$	$-0.0017(18)$	$-0.0084(18)$
O4	$0.052(3)$	$0.096(4)$	$0.061(3)$	$0.036(3)$	$0.021(2)$	$0.046(3)$
O5	$0.045(2)$	$0.053(2)$	$0.040(2)$	$0.0210(19)$	$0.0023(18)$	$0.0086(19)$
O6	$0.059(3)$	$0.084(3)$	$0.029(2)$	$0.036(3)$	$-0.004(2)$	$-0.002(2)$
C1	$0.035(3)$	$0.030(2)$	$0.039(3)$	$0.001(2)$	$0.002(2)$	$0.000(2)$
C2	$0.060(4)$	$0.058(4)$	$0.037(3)$	$0.021(3)$	$0.002(3)$	$-0.003(3)$
C3	$0.070(4)$	$0.111(5)$	$0.078(5)$	$0.025(4)$	$-0.001(4)$	$0.001(4)$
C4	$0.033(2)$	$0.037(2)$	$0.041(5)$	$0.0039(18)$	$-0.002(2)$	$-0.001(2)$
C5	$0.052(4)$	$0.069(4)$	$0.028(3)$	$0.029(3)$	$0.002(2)$	$0.007(3)$
C6	$0.072(4)$	$0.092(4)$	$0.094(5)$	$0.002(4)$	$0.013(4)$	$0.028(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1-O1 ${ }^{\text {i }}$	2.607 (5)	O6- $\mathrm{Cd1}^{\text {iv }}$	2.335 (5)
Cd1-O1	2.379 (5)	O6-C5	1.432 (7)
$\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	2.333 (5)	O6-H6	0.848 (14)
$\mathrm{Cd} 1-\mathrm{O} 3$	2.366 (4)	C1-C2	1.523 (8)
Cd1-O4 $4^{\text {ii }}$	2.232 (5)	C2-H2	0.9800
$\mathrm{Cd} 1-\mathrm{O} 5$	2.259 (4)	$\mathrm{C} 2-\mathrm{C} 3$	1.411 (11)
$\mathrm{Cd} 1-\mathrm{O}^{6 i}$	2.335 (5)	C3-H3A	0.9600
$\mathrm{O} 1-\mathrm{Cd1}{ }^{\text {iii }}$	2.607 (5)	С3-H3B	0.9600
$\mathrm{O} 1-\mathrm{C} 1$	1.221 (7)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
$\mathrm{O} 2-\mathrm{Cd1} 1^{\text {iii }}$	2.333 (5)	C4-C5	1.488 (10)
$\mathrm{O} 2-\mathrm{C} 1$	1.264 (7)	C5-H5	0.9800
$\mathrm{O} 3-\mathrm{H} 3$	0.868 (13)	C5-C6	1.440 (12)
O3-C2	1.438 (8)	C6-H6A	0.9600
$\mathrm{O} 4-\mathrm{Cd1}{ }^{\text {iv }}$	2.232 (5)	C6-H6B	0.9600
O4-C4	1.244 (8)	C6-H6C	0.9600
O5-C4	1.252 (7)		
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Ol}^{\mathrm{i}}$	147.17 (16)	C5-O6-H6	109 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	51.48 (14)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	120.7 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 1$	95.71 (16)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.7 (5)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Cd} 1-\mathrm{O} 3$	83.72 (18)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.6 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O}^{\text {ii }}$	113.78 (18)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	108.4 (5)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	104.37 (15)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2$	108.1
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1$	68.10 (14)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	108.1
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 1$	81.1 (2)	C3-C2-O3	112.3 (7)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	131.71 (18)	C3-C2-C1	111.7 (7)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	176.8 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	108.1
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 3$	94.8 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 5$	91.90 (19)	C2-C3-H3B	109.5
$\mathrm{O} 4{ }^{\text {ii}}-\mathrm{Cd} 1-\mathrm{O}^{\text {ii }}$	68.90 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
O5-Cd1-O1	77.72 (15)	H3A-C3-H3B	109.5
$\mathrm{O} 5-\mathrm{Cd} 1-\mathrm{Ol}^{\mathrm{i}}$	97.42 (15)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{O} 5-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	87.63 (19)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
O5-Cd1-O3	143.58 (16)	O4-C4-O5	122.5 (8)
O5-Cd1-O6 ${ }^{\text {ii }}$	128.6 (2)	O4-C4-C5	119.0 (6)
O6 $6^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 1$	139.13 (16)	O5-C4-C5	118.5 (6)
O6 ${ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	68.43 (15)	O6-C5-C4	109.5 (5)
O6 $6^{\text {ii }}$ - $\mathrm{Cd} 1-\mathrm{O} 3$	86.9 (2)	O6-C5-H5	107.7
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd1}^{\text {iii }}$	151.79 (19)	O6-C5-C6	109.2 (7)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1^{\text {iii }}$	87.9 (4)	C4-C5-H5	107.7
C1-O1-Cd1	119.9 (4)	C6-C5-C4	114.8 (7)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cd} 1^{\text {iii }}$	99.9 (4)	C6-C5-H5	107.7
Cd1-O3-H3	123 (2)	C5-C6-H6A	109.5
C2-O3-Cd1	120.1 (4)	C5-C6-H6B	109.5
C2-O3-H3	104 (2)	C5-C6-H6C	109.5
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Cd1}{ }^{\text {iv }}$	123.7 (5)	H6A-C6-H6B	109.5

C4-O5-Cd1	139.6 (5)	H6A-C6-H6C	109.5
Cd1 ${ }^{\text {iv }}-\mathrm{O} 6-\mathrm{H} 6$	92 (8)	H6B-C6-H6C	109.5
C5-O6-Cdi ${ }^{\text {iv }}$	117.4 (3)		
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-175.5 (4)	Cd1-O5-C4-C5	19.2 (10)
$\mathrm{Cd} 1{ }^{\text {iii}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-0.4 (6)	Cdi ${ }^{\text {iv- }}$ - $66-\mathrm{C} 5-\mathrm{C} 4$	-13.4 (8)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-178.1 (5)	Cd1 ${ }^{\text {iv}}-\mathrm{O} 6-\mathrm{C} 5-\mathrm{C} 6$	113.0 (7)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	6.7 (8)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	0.2 (9)
Cd1 ${ }^{\text {iii- }}$ O2- $\mathrm{C} 1-\mathrm{O} 1$	0.5 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-124.1 (8)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	178.3 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-177.6 (6)
$\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	-7.1 (7)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	58.1 (9)
Cd1-O3-C2-C3	116.8 (7)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 6$	6.9 (9)
$\mathrm{Cd} 1{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 5$	-175.6 (5)	O4-C4-C5-C6	-116.2 (8)
$\mathrm{Cd} 1{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	3.4 (9)	O5-C4-C5-O6	-174.0 (6)
Cd1-O5-C4-O4	-161.7 (6)	$\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	62.8 (9)

Symmetry codes: (i) $-x+1, y, z+1 / 2$; (ii) $x-1 / 2,-y+1 / 2, z$; (iii) $-x+1, y, z-1 / 2$; (iv) $x+1 / 2,-y+1 / 2, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{v}}$	$0.87(1)$	$1.81(2)$	$2.657(6)$	$163(5)$
C5—H5 $\cdots 4^{\mathrm{vi}}$	0.98	2.22	$3.021(8)$	139
O6—H6 $^{\mathrm{H}} \mathrm{O}^{\mathrm{vi}}$	$0.85(1)$	$2.11(9)$	$2.747(7)$	$132(11)$

Symmetry codes: (v) $x,-y+1, z+1 / 2$; (vi) $-x+3 / 2,-y+1 / 2, z+1 / 2$.

