

IUCrData

ISSN 2414-3146

Received 3 October 2019 Accepted 15 October 2019

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; Schiff base; hydrogen bonding.

CCDC references: 1860532; 1860532

Structural data: full structural data are available from iucrdata.iucr.org

2,4-Dichloro-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone

Tarun Kumar Pal,^a Md Ashraful Alam,^a Md Dulal Hossain,^a Subrata Paul,^b Ryuta Miyatake^c and Md Chanmiya Sheikh^{d,e}*

^aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, ^bDepartment of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh, ^cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, ^dGraduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan, and ^eDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan. *Correspondence e-mail: chansheikh@yahoo.com

The title compound, $C_{14}H_{11}Cl_2NO_2$, has been prepared by the condensation of 3,5-dichlorosalicylaldehyde and 2-amino-4-methylphenol. The asymmetric unit consists of two independent molecules, both of which are almost planar; the dihedral angle between the two benzene rings is 10.61 (8)° for one molecule and 2.46 (8)° for the other. There is an intramolecular N-H···O hydrogen bond that generates S(6) ring motifs in each molecule. In the crystal, the two independent molecules are linked by O-H···O and C-H···Cl hydrogen bonds, forming a pseudo-inversion dimer. A π - π interaction, with a centroid-centroid distance of 3.6065 (12) Å, is also observed.

Structure description

Halogen atoms in Schiff base ligands (Dong *et al.*, 2015; Pal *et al.*, 2018) and their metal complexes are interesting because of their possible bioactivities (Dong *et al.*, 2015; Rani & Bheeter, 2016). In view of the biological activities of these compounds, which are related to structural aspects, and as part of our studies on 2,4-dibromo-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone, we report herein the synthesis and crystal structure of 2,4-dichloro-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone.

The C2–O1 and C16–O3 bond lengths reveal double-bond character, while the C7–N1 and C15–N2 bonds show single-bond character (Khalaji *et al.*, 2015; Pal *et al.*, 2018). There is an intramolecular N–H···O hydrogen bond (Table 1) that generates S(6) ring

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O2−H2···O3	0.84 (3)	1.87 (3)	2.693 (2)	168 (3)
$O4-H4\cdots O1$	0.83 (3)	1.89 (3)	2.685 (2)	160 (3)
$N1 - H1 \cdots O1$	0.80(2)	1.96 (2)	2.617 (2)	139 (2)
$N2-H3\cdots O3$	0.87(2)	1.90 (2)	2.603 (2)	137 (2)
$C10-H10\cdots Cl3$	0.95	2.88	3.660 (2)	140
$C24-H24\cdots Cl1$	0.95	2.72	3.661 (2)	172

motifs in each molecule. In the crystal, the two independent molecules are linked through two $O-H\cdots O$ hydrogen bonds, creating a pseudo-inversion dimer, with an $R_2^2(18)$ ring motif, in which $C-H\cdots Cl$ interactions further link the molecules (Fig. 1 and Table 1). A $\pi-\pi$ stacking interaction, with a centroid–centroid distance of 3.6065 (12) Å, is also observed between the C16–C21 and C22–C27 rings.

Synthesis and crystallization

An ethanol solution of 3,5-dichlorosalicylaldehyde (100 mg, 0.52 mmol) was added dropwise to an ethanol solution of 2-amino-4-methylphenol (77 mg, 0.62 mmol) with continuous stirring at 333 K. A bright-orange coloured precipitate of the title compound formed immediately. The resulting mixture was stirred for a further 1 h at room temperature for completion of the reaction. On cooling, an orange solid product was isolated by filtration, washed with hot ethanol and dried in a vacuum (yield 125 mg, 77%). Orange needle-like single crystals were obtained from an N,N-dimethyl-formamide–acetonitrile (1:7 ν/ν) solution by slow evaporation of the solvent at room temperature over a period of 15 d (m.p. 457 K).

Figure 1

The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. Intermolecular $C-H\cdots Cl$ and $O-H\cdots O$ and intramolecular $N-H\cdots O$ hydrogen bonds are indicated by dashed lines.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{14}H_{11}Cl_2NO_2$
Mr	296.15
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
a, b, c (Å)	16.6119 (5), 6.83947 (16), 22.5749 (6)
β (°)	98.255 (7)
$V(\dot{A}^3)$	2538.30 (12)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.51
Crystal size (mm)	$0.37 \times 0.15 \times 0.07$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.697, 0.965
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflec- tions	24092, 5794, 4366
Rint	0.049
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.100, 1.03
No. of reflections	5794
No. of parameters	361
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.32, -0.39

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2018).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are grateful to the Department of Chemistry, Rajshahi University of Engineering & Technology (RUET), for the provision of laboratory facilities, and the Center for Environmental Conservation and Research Safety, University of Toyama, Japan, for providing facilities for single-crystal X-ray analysis. TKP is highly obliged to the director, Research and extension RUET, for providing internal research project funding.

Funding information

Funding for this research was provided by: Rajshahi University of Engineering and Technology (award No. DRE/5/RUET/200).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Dong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426–1430.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Khalaji, A. D., Hafez Ghoran, S., Pojarová, M. & Dušek, M. (2015). J. Struct. Chem. 56, 1410–1414.
- Pal, T. K., Hossain, M. D., Sheikh, M. C., Miyatake, R. & Alam, M. A. (2018). *IUCrData*, **3**, x180388.
- Rani, K. J. & Bheeter, S. R. (2016). Asian J. Biochem. Pharm. Res. 3, 72–81.
- Rigaku (2001). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku (2018). *CrystalStructure*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

full crystallographic data

IUCrData (2019). **4**, x191401 [https://doi.org/10.1107/S2414314619014019]

2,4-Dichloro-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-

dienone

Tarun Kumar Pal, Md Ashraful Alam, Md Dulal Hossain, Subrata Paul, Ryuta Miyatake and Md Chanmiya Sheikh

2,4-Dichloro-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone

Crystal data

C₁₄H₁₁Cl₂NO₂ $M_r = 296.15$ Monoclinic, $P2_1/n$ a = 16.6119 (5) Å b = 6.83947 (16) Å c = 22.5749 (6) Å $\beta = 98.255$ (7)° V = 2538.30 (12) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.697, T_{max} = 0.965$ 24092 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.100$ S = 1.025794 reflections 361 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1216.00 $D_x = 1.550 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 16379 reflections $\theta = 1.8-27.5^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 173 KNeedle, orange $0.37 \times 0.14 \times 0.07 \text{ mm}$

5794 independent reflections 4366 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.049$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.8^\circ$ $h = -21 \rightarrow 21$ $k = -8 \rightarrow 8$ $l = -27 \rightarrow 29$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 1.2427P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.25495 (3)	0.09343 (10)	-0.08874 (3)	0.03921 (16)
C12	0.51221 (3)	0.11130 (8)	-0.20767 (2)	0.03353 (14)
C13	0.50788 (3)	0.19328 (9)	0.35698 (3)	0.03368 (14)
Cl4	0.26343 (4)	0.11237 (10)	0.48780 (2)	0.04106 (16)
O1	0.37601 (9)	0.2150 (2)	0.01624 (6)	0.0307 (4)
O2	0.45249 (9)	0.3530 (2)	0.16615 (7)	0.0319 (4)
O3	0.37348 (9)	0.2238 (2)	0.25471 (6)	0.0312 (4)
O4	0.28678 (9)	0.1500 (3)	0.10445 (7)	0.0335 (4)
N1	0.52248 (11)	0.3018 (3)	0.06875 (8)	0.0238 (4)
N2	0.22374 (11)	0.1714 (3)	0.20494 (8)	0.0240 (4)
C1	0.49095 (12)	0.2179 (3)	-0.03532 (9)	0.0224 (4)
C2	0.40586 (12)	0.1912 (3)	-0.03220 (9)	0.0230 (4)
C3	0.35810 (12)	0.1351 (3)	-0.08807 (9)	0.0252 (4)
C4	0.39050 (13)	0.1133 (3)	-0.14003 (9)	0.0264 (4)
H4A	0.356340	0.078181	-0.175870	0.032*
C5	0.47392 (13)	0.1425 (3)	-0.14064 (9)	0.0253 (4)
C6	0.52355 (13)	0.1907 (3)	-0.08924 (9)	0.0258 (4)
H6	0.580302	0.206062	-0.089665	0.031*
C7	0.54515 (12)	0.2706 (3)	0.01641 (9)	0.0246 (4)
H7	0.601196	0.284176	0.012926	0.029*
C8	0.57277 (12)	0.3531 (3)	0.12254 (9)	0.0226 (4)
C9	0.53468 (12)	0.3730 (3)	0.17345 (9)	0.0253 (4)
C10	0.58203 (13)	0.4161 (3)	0.22768 (9)	0.0297 (5)
H10	0.557122	0.429067	0.262812	0.036*
C11	0.66529 (13)	0.4401 (3)	0.23091 (10)	0.0299 (5)
H11	0.696733	0.468769	0.268450	0.036*
C12	0.70405 (12)	0.4233 (3)	0.18025 (10)	0.0269 (5)
C13	0.65650 (12)	0.3793 (3)	0.12615 (9)	0.0252 (4)
H13	0.681486	0.366869	0.091027	0.030*
C14	0.79483 (13)	0.4497 (4)	0.18360 (11)	0.0359 (5)
H14A	0.808814	0.463165	0.143078	0.043*
H14B	0.822829	0.335619	0.203108	0.043*
H14C	0.811765	0.567534	0.206801	0.043*
C15	0.20603 (12)	0.1554 (3)	0.25913 (9)	0.0236 (4)
H15	0.150757	0.136914	0.264204	0.028*
C16	0.34976 (12)	0.1928 (3)	0.30534 (9)	0.0234 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.40453 (12)	0.1814 (3)	0.36060 (9)	0.0243 (4)
C18	0.37823 (12)	0.1580 (3)	0.41483 (9)	0.0256 (5)
H18	0.416378	0.153527	0.450438	0.031*
C19	0.29454 (13)	0.1406 (3)	0.41776 (9)	0.0266 (5)
C20	0.23901 (12)	0.1389 (3)	0.36714 (9)	0.0251 (4)
H20	0.182907	0.120713	0.369653	0.030*
C21	0.26538 (12)	0.1643 (3)	0.31084 (9)	0.0225 (4)
C22	0.16925 (12)	0.1673 (3)	0.15075 (9)	0.0231 (4)
C23	0.20467 (12)	0.1583 (3)	0.09815 (9)	0.0260 (5)
C24	0.15371 (14)	0.1588 (3)	0.04366 (10)	0.0304 (5)
H24	0.176341	0.152636	0.007370	0.037*
C25	0.07038 (13)	0.1681 (3)	0.04194 (10)	0.0300 (5)
H25	0.036697	0.168583	0.004192	0.036*
C26	0.03407 (12)	0.1770 (3)	0.09397 (10)	0.0270 (5)
C27	0.08532 (12)	0.1767 (3)	0.14838 (9)	0.0257 (4)
H27	0.062516	0.183028	0.184586	0.031*
C28	-0.05674 (13)	0.1887 (4)	0.09160 (11)	0.0360 (5)
H28A	-0.071234	0.159467	0.131228	0.043*
H28B	-0.082835	0.093679	0.062499	0.043*
H28C	-0.075315	0.320734	0.079520	0.043*
H1	0.4750 (14)	0.283 (3)	0.0701 (10)	0.025 (6)*
H2	0.4343 (18)	0.314 (4)	0.1968 (14)	0.060 (9)*
H3	0.2752 (15)	0.184 (4)	0.2018 (10)	0.033 (7)*
H4	0.3040 (18)	0.164 (4)	0.0721 (14)	0.060 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0229 (3)	0.0649 (4)	0.0302 (3)	-0.0034 (3)	0.0053 (2)	-0.0073 (3)
Cl2	0.0391 (3)	0.0394 (3)	0.0252 (3)	-0.0016 (3)	0.0151 (2)	-0.0022 (2)
C13	0.0186 (2)	0.0485 (3)	0.0346 (3)	0.0009 (2)	0.0061 (2)	0.0030 (3)
Cl4	0.0320 (3)	0.0703 (4)	0.0227 (3)	-0.0026 (3)	0.0102 (2)	-0.0022 (3)
01	0.0237 (8)	0.0454 (9)	0.0240 (8)	0.0020 (7)	0.0074 (6)	-0.0025 (7)
O2	0.0231 (8)	0.0434 (10)	0.0303 (9)	-0.0021 (7)	0.0079 (7)	0.0034 (7)
O3	0.0226 (8)	0.0473 (10)	0.0252 (8)	-0.0007 (7)	0.0084 (6)	0.0008 (7)
O4	0.0200 (8)	0.0538 (11)	0.0279 (8)	-0.0023 (7)	0.0081 (6)	-0.0002 (8)
N1	0.0197 (9)	0.0249 (9)	0.0270 (9)	-0.0011 (7)	0.0038 (7)	0.0006 (7)
N2	0.0186 (9)	0.0301 (10)	0.0239 (9)	-0.0012 (7)	0.0051 (7)	-0.0019 (7)
C1	0.0249 (10)	0.0199 (10)	0.0230 (10)	0.0000 (8)	0.0048 (8)	0.0017 (8)
C2	0.0237 (10)	0.0221 (10)	0.0236 (10)	0.0027 (8)	0.0044 (8)	0.0021 (8)
C3	0.0207 (10)	0.0282 (11)	0.0269 (11)	0.0010 (8)	0.0045 (8)	0.0005 (9)
C4	0.0304 (11)	0.0266 (11)	0.0220 (10)	0.0012 (9)	0.0029 (8)	0.0026 (9)
C5	0.0323 (11)	0.0244 (11)	0.0212 (10)	0.0008 (9)	0.0110 (9)	0.0020 (8)
C6	0.0258 (11)	0.0262 (11)	0.0268 (11)	-0.0030 (9)	0.0082 (9)	0.0022 (9)
C7	0.0229 (10)	0.0254 (11)	0.0264 (11)	-0.0013 (8)	0.0066 (8)	0.0008 (9)
C8	0.0253 (10)	0.0191 (10)	0.0232 (10)	-0.0001 (8)	0.0026 (8)	-0.0007 (8)
C9	0.0245 (10)	0.0247 (11)	0.0278 (11)	0.0015 (9)	0.0077 (8)	0.0038 (9)
C10	0.0335 (12)	0.0347 (12)	0.0224 (10)	0.0022 (10)	0.0089 (9)	0.0007 (9)

C11	0.0313 (12)	0.0337 (13)	0.0236 (11)	0.0004 (9)	-0.0005 (9)	-0.0003 (9)
C12	0.0232 (10)	0.0258 (11)	0.0311 (11)	0.0017 (9)	0.0018 (9)	0.0017 (9)
C13	0.0262 (11)	0.0260 (11)	0.0243 (10)	0.0007 (9)	0.0069 (8)	0.0000 (9)
C14	0.0253 (11)	0.0458 (14)	0.0358 (13)	-0.0036 (10)	0.0009 (10)	-0.0039 (11)
C15	0.0202 (10)	0.0241 (11)	0.0270 (11)	-0.0005 (8)	0.0056 (8)	-0.0020 (8)
C16	0.0233 (10)	0.0242 (10)	0.0235 (10)	0.0009 (8)	0.0064 (8)	-0.0021 (8)
C17	0.0188 (10)	0.0280 (11)	0.0269 (11)	0.0004 (8)	0.0061 (8)	-0.0012 (9)
C18	0.0236 (10)	0.0298 (12)	0.0228 (10)	-0.0011 (9)	0.0017 (8)	-0.0023 (9)
C19	0.0279 (11)	0.0319 (12)	0.0218 (10)	-0.0010 (9)	0.0100 (8)	-0.0027 (9)
C20	0.0192 (10)	0.0294 (11)	0.0280 (11)	0.0011 (8)	0.0079 (8)	-0.0018 (9)
C21	0.0217 (10)	0.0223 (10)	0.0238 (10)	0.0006 (8)	0.0048 (8)	-0.0035 (8)
C22	0.0233 (10)	0.0235 (10)	0.0225 (10)	-0.0018 (8)	0.0030 (8)	-0.0025 (8)
C23	0.0201 (10)	0.0312 (12)	0.0272 (11)	-0.0021 (9)	0.0056 (8)	-0.0012 (9)
C24	0.0311 (12)	0.0385 (13)	0.0231 (11)	-0.0034 (10)	0.0087 (9)	-0.0027 (9)
C25	0.0280 (11)	0.0346 (12)	0.0262 (11)	-0.0004 (9)	-0.0009 (9)	-0.0031 (9)
C26	0.0227 (10)	0.0282 (11)	0.0297 (11)	0.0011 (9)	0.0030 (9)	-0.0056 (9)
C27	0.0240 (10)	0.0299 (11)	0.0240 (10)	0.0006 (9)	0.0068 (8)	-0.0035 (9)
C28	0.0223 (11)	0.0455 (14)	0.0394 (13)	0.0029 (10)	0.0020 (9)	-0.0063 (11)

Geometric parameters (Å, °)

Cl1—C3	1.735 (2)	C11—C12	1.395 (3)
Cl2—C5	1.737 (2)	C11—H11	0.9500
Cl3—C17	1.732 (2)	C12—C13	1.389 (3)
Cl4—C19	1.743 (2)	C12—C14	1.510 (3)
O1—C2	1.274 (2)	C13—H13	0.9500
O2—C9	1.358 (2)	C14—H14A	0.9800
O2—H2	0.84 (3)	C14—H14B	0.9800
O3—C16	1.279 (2)	C14—H14C	0.9800
O4—C23	1.352 (2)	C15—C21	1.417 (3)
O4—H4	0.83 (3)	C15—H15	0.9500
N1C7	1.308 (3)	C16—C17	1.437 (3)
N1—C8	1.416 (3)	C16—C21	1.438 (3)
N1—H1	0.80 (2)	C17—C18	1.367 (3)
N2-C15	1.303 (3)	C18—C19	1.406 (3)
N2-C22	1.414 (3)	C18—H18	0.9500
N2—H3	0.87 (2)	C19—C20	1.362 (3)
C1—C6	1.414 (3)	C20—C21	1.413 (3)
C1—C7	1.415 (3)	C20—H20	0.9500
C1—C2	1.437 (3)	C22—C27	1.389 (3)
C2—C3	1.442 (3)	C22—C23	1.400 (3)
C3—C4	1.367 (3)	C23—C24	1.390 (3)
C4—C5	1.402 (3)	C24—C25	1.381 (3)
C4—H4A	0.9500	C24—H24	0.9500
C5—C6	1.364 (3)	C25—C26	1.396 (3)
С6—Н6	0.9500	C25—H25	0.9500
С7—Н7	0.9500	C26—C27	1.390 (3)
C8—C13	1.393 (3)	C26—C28	1.504 (3)

data reports

C8—C9	1.396 (3)	С27—Н27	0.9500
C9—C10	1.388 (3)	C28—H28A	0.9800
C10—C11	1.384 (3)	C28—H28B	0.9800
C10—H10	0.9500	C28—H28C	0.9800
С9—О2—Н2	114 (2)	H14A—C14—H14B	109.5
C23—O4—H4	112 (2)	C12—C14—H14C	109.5
C7—N1—C8	127.17 (18)	H14A—C14—H14C	109.5
C7—N1—H1	114.9 (16)	H14B—C14—H14C	109.5
C8—N1—H1	117.8 (16)	N2—C15—C21	123.07 (19)
C15—N2—C22	127.43 (18)	N2—C15—H15	118.5
C15—N2—H3	116.1 (16)	C21—C15—H15	118.5
C22—N2—H3	116.4 (16)	Q3—C16—C17	123.15 (18)
C6—C1—C7	117.84 (18)	03-C16-C21	121.93 (18)
C6-C1-C2	121.77 (18)	C17 - C16 - C21	114.91 (18)
C7—C1—C2	120.38 (18)	C18 - C17 - C16	122.67 (18)
01-C2-C1	122.18 (18)	C18 - C17 - C13	119.61 (16)
01 - 02 - 03	123 47 (18)	$C_{16} - C_{17} - C_{13}$	117 70 (15)
C1 - C2 - C3	114 35 (18)	C17 - C18 - C19	119.83 (19)
C4-C3-C2	122 99 (19)	C17 - C18 - H18	120.1
C4-C3-C11	118 98 (16)	C19-C18-H18	120.1
$C_2 - C_3 - C_{11}$	118.03 (15)	C_{20} C_{19} C_{18}	121.09(19)
C_{3} C_{4} C_{5}	120 29 (19)	C_{20} C_{19} C_{16}	120.45 (16)
$C_3 - C_4 - H_4 \Delta$	110.0	C_{18} C_{19} C_{14}	118 42 (16)
$C_5 = C_4 = H_{4A}$	110.0	$C_{10} = C_{10} = C_{14}$	110.42(10) 110.58(10)
C6-C5-C4	120 24 (19)	C19 - C20 - C21 C19 - C20 - H20	120.2
$C_{0} = C_{0} = C_{1}$	120.24(19) 121.25(17)	$C_{1}^{2} = C_{2}^{2} = C_{12}^{2} = C_{2}^{2} = C_{$	120.2
$C_{1} = C_{2} = C_{12}$	121.23(17) 118 50 (16)	$C_{21} = C_{20} = C_{120}$	120.2 117.83(18)
$C_{4} = C_{5} = C_{12}$	120.32(10)	$C_{20} = C_{21} = C_{15}$	117.05(18) 121.75(18)
C_{5}	120.32 (19)	$C_{20} = C_{21} = C_{10}$	121.73(18) 120.40(18)
$C_{1} C_{6} H_{6}$	119.0	C13 - C21 - C10	120.40(18)
C1 - C0 - H0	119.8	$C_{27} = C_{22} = C_{23}$	120.75(19)
NIC7U7	123.73 (19)	$C_{27} = C_{22} = N_2$	123.10(18)
NI - C / - H /	118.1	$C_{23} = C_{22} = N_2$	110.09 (18)
$C_1 = C_2 = C_2$	118.1	04 - 023 - 022	124.8(2)
C13 - C8 - C9	120.40 (19)	04-023-022	110.94 (19)
C13 - C8 - N1	122.91(19)	$C_{24} = C_{23} = C_{22}$	118.29 (19)
$C_9 = C_8 = N_1$	110.08 (18)	$C_{25} = C_{24} = C_{25}$	120.4 (2)
02 - 02 - 010	124.10 (19)	C25—C24—H24	119.8
02-09-08	117.18 (19)	C23—C24—H24	119.8
C10-C9-C8	118.70 (19)	C24—C25—C26	122.1 (2)
C11—C10—C9	120.5 (2)	C24—C25—H25	119.0
C11—C10—H10	119.8	С26—С25—Н25	119.0
С9—С10—Н10	119.8	C27—C26—C25	117.34 (19)
C10—C11—C12	121.5 (2)	C27—C26—C28	121.0 (2)
C10—C11—H11	119.3	C25—C26—C28	121.6 (2)
C12—C11—H11	119.3	C22—C27—C26	121.20 (19)
C13—C12—C11	117.86 (19)	С22—С27—Н27	119.4
C13—C12—C14	120.5 (2)	С26—С27—Н27	119.4

C11—C12—C14	121.61 (19)	C26—C28—H28A	109.5
C12—C13—C8	121.09 (19)	C26—C28—H28B	109.5
C12—C13—H13	119.5	H28A—C28—H28B	109.5
C8—C13—H13	119.5	C26—C28—H28C	109.5
C12—C14—H14A	109.5	H28A—C28—H28C	109.5
C12—C14—H14B	109.5	H28B—C28—H28C	109.5
C6—C1—C2—O1	179.81 (19)	C22—N2—C15—C21	-179.03 (19)
C7—C1—C2—O1	0.6 (3)	O3—C16—C17—C18	176.6 (2)
C6—C1—C2—C3	0.1 (3)	C21—C16—C17—C18	-4.1 (3)
C7—C1—C2—C3	-179.18 (19)	O3—C16—C17—Cl3	-4.7 (3)
O1—C2—C3—C4	178.8 (2)	C21—C16—C17—Cl3	174.60 (15)
C1—C2—C3—C4	-1.4 (3)	C16—C17—C18—C19	1.1 (3)
O1—C2—C3—C11	-1.3 (3)	Cl3—C17—C18—C19	-177.52 (16)
C1—C2—C3—Cl1	178.49 (15)	C17—C18—C19—C20	2.6 (3)
C2—C3—C4—C5	1.1 (3)	C17—C18—C19—Cl4	-179.65 (17)
Cl1—C3—C4—C5	-178.84 (16)	C18—C19—C20—C21	-3.0 (3)
C3—C4—C5—C6	0.8 (3)	Cl4—C19—C20—C21	179.27 (16)
C3—C4—C5—Cl2	179.56 (16)	C19—C20—C21—C15	178.05 (19)
C4—C5—C6—C1	-2.1 (3)	C19—C20—C21—C16	-0.2 (3)
Cl2—C5—C6—C1	179.16 (16)	N2-C15-C21-C20	-178.05 (19)
C7—C1—C6—C5	-179.09 (19)	N2-C15-C21-C16	0.2 (3)
C2-C1-C6-C5	1.7 (3)	O3—C16—C21—C20	-177.08 (19)
C8—N1—C7—C1	179.40 (19)	C17—C16—C21—C20	3.6 (3)
C6-C1-C7-N1	179.33 (19)	O3—C16—C21—C15	4.7 (3)
C2-C1-C7-N1	-1.4 (3)	C17—C16—C21—C15	-174.60 (19)
C7—N1—C8—C13	0.6 (3)	C15—N2—C22—C27	10.8 (3)
C7—N1—C8—C9	-178.1 (2)	C15—N2—C22—C23	-170.8 (2)
C13—C8—C9—O2	177.48 (18)	C27—C22—C23—O4	179.84 (19)
N1—C8—C9—O2	-3.8 (3)	N2-C22-C23-O4	1.4 (3)
C13—C8—C9—C10	-1.1 (3)	C27—C22—C23—C24	-0.1 (3)
N1—C8—C9—C10	177.64 (19)	N2-C22-C23-C24	-178.47 (19)
O2—C9—C10—C11	-177.9 (2)	O4—C23—C24—C25	-179.8 (2)
C8—C9—C10—C11	0.5 (3)	C22—C23—C24—C25	0.1 (3)
C9—C10—C11—C12	0.4 (3)	C23—C24—C25—C26	-0.1 (3)
C10-C11-C12-C13	-0.7 (3)	C24—C25—C26—C27	0.2 (3)
C10-C11-C12-C14	179.9 (2)	C24—C25—C26—C28	179.5 (2)
C11—C12—C13—C8	0.1 (3)	C23—C22—C27—C26	0.1 (3)
C14—C12—C13—C8	179.5 (2)	N2—C22—C27—C26	178.4 (2)
C9—C8—C13—C12	0.8 (3)	C25—C26—C27—C22	-0.2 (3)
N1-C8-C13-C12	-177.85 (19)	C28—C26—C27—C22	-179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2···O3	0.84 (3)	1.87 (3)	2.693 (2)	168 (3)
O4—H4…O1	0.83 (3)	1.89 (3)	2.685 (2)	160 (3)
N1—H1…O1	0.80 (2)	1.96 (2)	2.617 (2)	139 (2)

				data reports
N2—H3····O3	0.87 (2)	1.90 (2)	2.603 (2)	137 (2)
C10—H10····Cl3	0.95	2.88	3.660 (2)	140
C24—H24…Cl1	0.95	2.72	3.661 (2)	172