ISSN 2414-3146

Received 18 September 2019
Accepted 27 September 2019

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; cyanation; 2,3-dibromopyridine; 3-bromopicolinonitrile.

CCDC reference: 1956264
Structural data: full structural data are available from iucrdata.iucr.org

3-Bromopyridine-2-carbonitrile

Muhammad Sharif, ${ }^{\text {a }}{ }^{*}$ Rauf Razzaq, ${ }^{\text {b }}$ Ralf Jackstell ${ }^{\text {b }}$ and Anke Spannenberg ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Kingdom of Saudi Arabia, and ${ }^{\mathbf{b}}$ Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. ${ }^{*}$ Correspondence e-mail: msharif@kfupm.edu.sa

The title compound, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrN}_{2}$, also known as 3-bromopicolinonitrile, was synthesized by cyanation of 2,3-dibromopyridine. In the solid state, short intermolecular $\mathrm{Br} \cdots \mathrm{N}$ contacts are observed. Additionally, the crystal packing is consolidated by $\pi-\pi$ stacking interactions with centroid-centroid distances of 3.7893 (9) Å.

Chemical scheme

Structure description

The new title compound is a pyridine derivative with a cyano group in the ortho and a bromine atom in the meta position. Its molecular structure is shown in Fig. 1. Non-H short intermolecular contacts along the b axis are observed $[\operatorname{Br} 1 \cdots \mathrm{~N} 2=3.1237$ (17) Å, Fig. 2]. Additionally the crystal packing is stabilized by $\pi-\pi$ stacking interactions between the pyridine rings along the c axis [centroid-centroid distance: 3.7893 (9) A, dihedral angle between the planes of the pyridine rings: $4.01(7)^{\circ}$, ring slippage 1.32 and $1.16 \AA$, respectively; Fig. 3].

Synthesis and crystallization

The title compound was obtained as the main product by synthesizing the mono- and dicyano derivatives of 2,3-dibromopyridine. The reaction was carried out in an Ace pressure tube. A mixture of 2,3-dibromopyridine $(1.0 \mathrm{mmol}, 237 \mathrm{mg})$, $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol}, 169 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.2 \mathrm{mmol}, 127 \mathrm{mg}), \mathrm{CuI}(0.1 \mathrm{mmol}$, 19 mg), 1-butyl-imidazole ($2.0 \mathrm{mmol}, 248 \mathrm{mg}$) and o-xylene (2 ml) was stirred at $160^{\circ} \mathrm{C}$ for 24 h . Afterwards the reaction mixture was quenched with water and diluted with dichloromethane. The organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 20 \mathrm{ml})$. The combined organic layers were dried on anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtering, the solvent was removed in vacuo, and the product was purified

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
by column chromatography (silica gel, ethyl acetate $/ n$-hexane $1: 1 \mathrm{v} / \mathrm{v}$; yield: $20 \%, 37 \mathrm{mg}$). Crystals suitable for X-ray analysis were obtained by recrystallization from an ethyl acetate $/ n$ -

Figure 2
Partial packing diagram of the title compound showing the intermolecular $\mathrm{Br} \cdots \mathrm{N}$ contacts as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3
Packing diagram of the title compound showing the $\pi-\pi$ stacking interactions (dashed lines). Displacement ellipsoids are drawn at the 30\% probability level.

Table 1
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}$
$\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.016,0.042,1.16$
No. of reflections
1637
No. of parameters
H -atom treatment
82
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrN}_{2}$
 183.01

Monoclinic, $P 2_{1} / c$
150
113.906 (1)
627.88 (3)

4
Mo $K \alpha$
6.44
$0.43 \times 0.39 \times 0.22$ 2014)
0.17, 0.34

18621, 1637, 1577
0.020
0.679
7.8821 (2), 11.7480 (3), 7.4169 (2)

Bruker Kappa APEXII DUO
Multi-scan (SADABS; Bruker,

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
heptane ($1: 1 \mathrm{v} / \mathrm{v}$) solution. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.43(d d, 1 \mathrm{H}, J=744 \mathrm{~Hz}), 2.09(s, 3 \mathrm{H}), 8.03(d d, 1 \mathrm{H}, J=$ $8.03 \mathrm{~Hz}), 8.63(d d, 1 \mathrm{H}, J=744 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 115.7 (C), 124.6 (C), 127.8 (CH), 135.1 (C), 149.2 (CH), 149.2 (CH); GC-MS (EI, 70 eV$): m / z=184\left(M^{+}, 96\right), 181(100)$, 103 (99), 76 (49), 75 (29), 51 (22), 50 (21).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. One outlier (100) was omitted in the last cycles of refinement.

Funding information

The authors acknowledge research funding from the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) via project No. IN161012.

References

Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). 4, x191326 [https://doi.org/10.1107/S2414314619013269]

3-Bromopyridine-2-carbonitrile

Muhammad Sharif, Rauf Razzaq, Ralf Jackstell and Anke Spannenberg

3-Bromopyridine-2-carbonitrile

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrN}_{2}$
$M_{r}=183.01$
Monoclinic, $P 2_{1} / c$
$a=7.8821$ (2) \AA
$b=11.7480(3) \AA$
$c=7.4169(2) \AA$
$\beta=113.906(1)^{\circ}$
$V=627.88(3) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII DUO

 diffractometerRadiation source: fine-focus sealed tube Curved graphite monochromator Detector resolution: 8.3333 pixels mm^{-1}
ω and phi scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.17, T_{\text {max }}=0.34$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.042$
$S=1.16$
1637 reflections
82 parameters
0 restraints

$$
F(000)=352
$$

$D_{\mathrm{x}}=1.936 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9981 reflections
$\theta=2.8-28.8^{\circ}$
$\mu=6.44 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Part of a needle, colourless
$0.43 \times 0.39 \times 0.22 \mathrm{~mm}$

18621 measured reflections
1637 independent reflections
1577 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.8^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-10 \rightarrow 8$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The H atoms were refined as riding, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=-1.2 U_{\text {eq }}(\mathrm{C})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
Br1	$0.30145(2)$	$0.36783(2)$	$0.19853(2)$	$0.02306(6)$
C1	$0.0879(2)$	$0.16246(12)$	$0.1697(2)$	$0.0229(3)$
C2	$0.08389(19)$	$0.28060(12)$	$0.1631(2)$	$0.0219(3)$
C3	$-0.0811(2)$	$0.33623(13)$	$0.1323(2)$	$0.0272(3)$
H3	-0.0885	0.4170	0.1274	0.033^{*}
C4	$-0.2344(2)$	$0.27070(14)$	$0.1088(2)$	$0.0286(3)$
H4	-0.3499	0.3058	0.0860	0.034^{*}
C5	$-0.2173(2)$	$0.15295(14)$	$0.1192(3)$	$0.0287(3)$
H5	-0.3235	0.1090	0.1037	0.034^{*}
C6	$0.2574(2)$	$0.10001(14)$	$0.2049(2)$	$0.0274(3)$
N1	$-0.05951(18)$	$0.09830(12)$	$0.1497(2)$	$0.0280(3)$
N2	$0.3907(2)$	$0.05012(14)$	$0.2363(2)$	$0.0384(3)$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Br 1	$0.02029(8)$	$0.02140(8)$	$0.02829(9)$	$-0.00458(5)$	$0.01069(6)$	$-0.00295(5)$
C 1	$0.0233(6)$	$0.0217(6)$	$0.0235(7)$	$0.0023(5)$	$0.0094(5)$	$0.0002(5)$
C 2	$0.0219(6)$	$0.0213(6)$	$0.0222(6)$	$-0.0009(5)$	$0.0087(5)$	$-0.0011(5)$
C 3	$0.0277(7)$	$0.0211(6)$	$0.0314(8)$	$0.0040(5)$	$0.0104(6)$	$0.0003(6)$
C 4	$0.0226(6)$	$0.0301(8)$	$0.0330(8)$	$0.0053(6)$	$0.0110(6)$	$0.0015(6)$
C 5	$0.0231(7)$	$0.0278(7)$	$0.0354(8)$	$0.0006(6)$	$0.0121(6)$	$0.0022(6)$
C 6	$0.0273(7)$	$0.0238(7)$	$0.0320(8)$	$0.0017(6)$	$0.0129(6)$	$-0.0017(6)$
N 1	$0.0255(6)$	$0.0233(6)$	$0.0362(7)$	$0.0013(5)$	$0.0136(5)$	$0.0023(5)$
N2	$0.0311(7)$	$0.0354(8)$	$0.0485(9)$	$0.0077(6)$	$0.0161(7)$	$-0.0040(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 2$	$1.9220(14)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 1-\mathrm{N} 1$	$1.3418(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.389(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(2)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 1-\mathrm{C} 6$	$1.452(2)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.335(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.390(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.382(2)$	$\mathrm{C} 6-\mathrm{N} 2$	$1.141(2)$
			$119.18(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.46(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6$	$115.37(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.15(14)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	$123.44(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.83(13)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	118.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$121.45(11)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	118.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	$119.71(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	$178.55(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.08(14)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$117.00(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.0	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.0		

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$-0.6(2)$
$-178.91(14)$
$178.61(11)$
$0.3(2)$
$-0.3(2)$
$-179.52(12)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-0.4(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$-0.5(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$1.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$179.35(14)$

