

ISSN 2414-3146

Received 8 October 2019 Accepted 11 October 2019

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: dihydroimidazo[5,1-a]isoquinoline; crystal structure; hydrogen bonding.

CCDC reference: 1958696

Structural data: full structural data are available from iucrdata.iucr.org

1-Isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihidroimidazo[5,1-*a*]isoquinolin-2-ium chloride

R. Ya. Okmanov,^a* D. B. Tukhtaev,^b A. Sh. Saidov^b and B. Tashkhodjaev^a

^aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 100170, Mirzo Ulugbek Str. 77, Tashkent City, Uzbekistan, and ^bSamarkand State University, 140104, University blv. 15, Samarkand City, Samarkand region, Uzbekistan. *Correspondence e-mail: raxul@mail.ru

The molecular salt, $C_{23}H_{26}N_2O_2^+\cdot Cl^-$, was obtained from 1-isobutyl-8,9dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-*a*]isoquinoline, which was synthesized by cyclocondensation of α -benzoylamino- γ -methyl-*N*-[2-(3,4-dimethoxyphenyl)ethyl]valeramide in the presence of phosphoryl chloride. The tetrahydropyridine ring adopts a twist-boat conformation. In the crystal structure, centrosymmetric dimers are formed by N-H···Cl and C-H···Cl hydrogen bonds.

Structure description

The relevance of a wide range of potent biological activities of natural and synthetic isoquinoline alkaloids is interesting for the synthesis of new isoquinoline compounds. In nature, there are compounds that contain condensed imidazole and isoquinoline rings, for example, cribrostatin 6.

Cyclization of α -benzoylamino- γ -methyl-*N*-[2-(3,4-dimethoxyphenyl)ethyl]valeramide with phosphoryl chloride based on the Bischler–Napieralski reaction results in a heterocyclic compound containing condensed imidazole and isoquinoline rings (Seganish *et al.*, 2012; Iaroshenko *et al.*, 2015; Allin *et al.*, 2005). In the reaction, phosphoryl chloride is used as a reagent and solvent (Fig. 1).

However, from the obtained 1-isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo-[5,1-a]isoquinoline we could not get suitable single crystals for X-ray diffraction analysis. Good crystals of the title compound were obtained by slow evaporation of a solution of 1-isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-a]isoquinoline treated with hydrochloric acid.

The molecular structure of the title compound is shown in Fig. 2. The dihydropyridine ring occurs in a twist-boat conformation. The C6, C6A, C10A and C10B atoms of the dihydropyridine ring are almost coplanar (r.m.s. deviation = 0.095 Å). The C5 and N4

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1\cdots Cl1$ $C20-H20A\cdots Cl1^{i}$ $C5-H5B\cdots Cl1^{ii}$	0.98 (3)	2.04 (3)	3.019 (2)	179
	0.93	2.89	3.650 (3)	140
	0.97	2.83	3.707 (3)	152

Symmetry codes: (i) -x + 1, -y + 3, -z; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Figure 1

Reaction scheme for the preparation of the title compound.

atoms deviate from this plane by 0.806(5) and 0.413(5) Å, respectively. The imidazole (C1/N2/C3/N4/C10*B*) and benzene

The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The $N-H\cdots$ Cl hydrogen bond is shown as a dashed line. (C17-C22) rings are essentially planar, the dihedral angle

Figure 3

Formation of a centrosymmetric dimer in the crystal structure of the title compound. $N-H\cdots Cl$ hydrogen bonds are shown as dashed lines.

Table	2	
Experin	mental	details.

Crystal data	
Chemical formula	$C_{23}H_{27}N_2O_2^+ \cdot Cl^-$
M _r	398.92
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	291
a, b, c (Å)	13.595 (3), 14.337 (3), 10.958 (2)
β (°)	92.23 (3)
$V(Å^3)$	2134.1 (7)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.74
Crystal size (mm)	$0.60 \times 0.53 \times 0.48$
Data collection	
Diffractometer	Rigaku Xcalibur Ruby
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.371, 0.434
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9283, 4347, 2990
Rint	0.036
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.629
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.142, 1.01
No. of reflections	4347
No. of parameters	261
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} \; { m \AA}^{-3})$	0.19, -0.20

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS7 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP (Bruker, 1998), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

between the planes being $41.4 (1)^{\circ}$. In the crystal, N2–H1···Cl1 and C20–H20A···Cl1 hydrogen bonds are observed, resulting in the formation of a centrosymmetric dimer consisting of two anions and two cations (Fig. 3 and Table 1). These dimers are linked by C5–H5B···Cl1 hydrogen bonds into a chain directed along [011].

Synthesis and crystallization

To a round-bottomed flask with 0.5 g (1.25 mmol) of α -benzoylamino- γ -methyl-N-[2-(3,4-dimethoxyphenyl)ethyl]-valeramide was added dropwise 0.7 ml (7.64 mmol) of POCl₃. The reaction mixture was heated for 4 h in a boiling water bath. The course of the reaction was monitored using thin-layer chromatography (TLC). After heating, the reaction tube was filled with crushed ice, the pH of the solution was adjusted to 9 with 25% ammonium hydroxide solution. The solution was extracted with chloroform (30 ml) and the organic layer was washed with water and distilled. When acetone was added to the residue, a precipitate was formed. The precipitate was filtered off and dried and giving 0.33 g (yield 74%) of product; $R_{\rm F} = 0.61$ (1:4 CH₃OH–CHCl₃ ν/ν); m.p. 433–436 K.

0.2 g of 1-isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-*a*]isoquinoline was dissolved in 25 ml of methanol and transferred to an acidic medium with 30% HCl (pH = 3). The methanol was distilled and a precipitate was obtained when acetone was added. The precipitate was filtered off, washed with acetone and dried in the open air. 0.18 g of 1-isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-*a*]-isoquinoline hydrochloride was obtained (yield 82%); $R_{\rm F} = 0.32$ (1:4 CH₃OH–CHCl₃ ν/ν); m.p. 475–477 K.

1-Isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-a]isoquinoline hydrochloride was dissolved in a 4:1 (v/v) acetone–methanol solvent mixture and allowed to evaporation at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained.

¹H NMR [400 MHz, CD₃OD, δ (p.p.m.), J (Hz)]: 7.69 (2H, dt, J = 1.9; 6.0, H18 and H22); 7.62 (2H, dd, J = 1.7; 6.6, H19 and H21); 7.60 (1H, dt, J = 1.4; 6.0, H20), 7.18 (1H, s, H7); 6.97 (1H, s, H10); 4.26 (2H, t, J = 6.4, CH₂-5); 3.85 (3H, s, CH₃-12); 3.83 (3H, s, CH₃-11), 3.01 (2H, t, J = 6.4, CH₂-6); 2.86 (2H, t, J = 7.3, CH₂-13); 2.09 (1H, q, J = 6.8, H14); 1.02 (6H, d, J = 6.6, CH₃-15,16).

¹³C NMR [100 MHz, CD₃OD, δ (p.p.m.)]: 23.02 (C15, C16); 29.62 (C14); 30.61 (C6); 36.02 (C13); 44.52 (C5); 57.05 (C11); 57.27 (C12); 109.98 (C10); 113.96 (C7); 119.63 (C10*A*); 125.95 (C6*A*; C1), 128.73 (C18, C22); 131.06 (C19, C21); 131.42 (C20); 133.72 (C10*B*, C17); 144.77 (C3); 150.99 (C9); 152.16 (C8).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by the Academy of Sciences of the Republic of Uzbekistan (grant No. VA-FA-F-6–010).

References

- Allin, S. M., Bowman, W. R., Elsegood, M. R. J., McKee, V., Karim, R. & Rahman, Sh. S. (2005). *Tetrahedron*, **61**, 2689–2696.
- Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Iaroshenko, V. O., Gevorgyan, A., Mkrtchyan, S., Arakelyan, K., Grigoryan, T., Yedoyan, J., Villinger, A. & Langer, P. (2015). J. Org. Chem. 80, 2103–2119.
- Rigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.
- Seganish, W. M., Bercovici, A., Ho, G. D., Loozen, H. J. J., Timmers, C. M. & Tulshian, D. (2012). *Tetrahedron Lett.* **53**, 903–905.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). **4**, x191390 [https://doi.org/10.1107/S2414314619013907]

1-Isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihidroimidazo[5,1-a]isoquinolin-2-ium chloride

R. Ya. Okmanov, D. B. Tukhtaev, A. Sh. Saidov and B. Tashkhodjaev

1-Isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-a]isoquinolin-2-ium chloride

Crystal data

C₂₃H₂₇N₂O₂+·Cl⁻ $M_r = 398.92$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.595 (3) Å b = 14.337 (3) Å c = 10.958 (2) Å $\beta = 92.23$ (3)° V = 2134.1 (7) Å³ Z = 4

Data collection

Rigaku Xcalibur Ruby diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.2576 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.371, T_{\max} = 0.434$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.142$ S = 1.014347 reflections 261 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 848 $D_x = 1.242 \text{ Mg m}^{-3}$ Melting point: 475(2) K Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2082 reflections $\theta = 4.5-75.8^{\circ}$ $\mu = 1.74 \text{ mm}^{-1}$ T = 291 KPrizmatic, colorless $0.60 \times 0.53 \times 0.48 \text{ mm}$

9283 measured reflections 4347 independent reflections 2990 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 76.0^{\circ}, \theta_{min} = 4.5^{\circ}$ $h = -16 \rightarrow 17$ $k = -18 \rightarrow 16$ $l = -9 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0678P)^2 + 0.2438P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH₂, 0.96 Å for CH₃ and 0.93 Å for C_{ar}) and included in the refinement in a riding motion approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$ [$U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms]. The H atom of N2 was located in a difference Fourier synthesis and refined with a N2—H1 distance = 0.79 (3) Å.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.85755 (14)	0.77486 (11)	0.41517 (17)	0.0640 (5)	
O2	0.89458 (14)	0.91068 (12)	0.56498 (16)	0.0623 (5)	
N2	0.66229 (14)	1.27667 (13)	0.26859 (17)	0.0478 (4)	
N4	0.63568 (14)	1.13705 (12)	0.20336 (17)	0.0452 (4)	
C1	0.72530 (17)	1.21988 (15)	0.3370 (2)	0.0457 (5)	
C3	0.60827 (16)	1.22675 (15)	0.1889 (2)	0.0459 (5)	
C5	0.5983 (2)	1.05567 (16)	0.1344 (2)	0.0569 (6)	
H5A	0.5742	1.0748	0.0537	0.068*	
H5B	0.5443	1.0273	0.1763	0.068*	
C6	0.6813 (2)	0.98620 (19)	0.1235 (3)	0.0692 (8)	
H6A	0.6550	0.9283	0.0901	0.083*	
H6B	0.7283	1.0103	0.0670	0.083*	
C6A	0.7336 (2)	0.96661 (16)	0.2439 (2)	0.0545 (6)	
C7	0.7699 (2)	0.87809 (16)	0.2724 (2)	0.0589 (6)	
H7A	0.7587	0.8298	0.2169	0.071*	
C8	0.82169 (18)	0.85996 (15)	0.3799 (2)	0.0503 (5)	
C9	0.83978 (17)	0.93362 (15)	0.4627 (2)	0.0474 (5)	
C10	0.80171 (17)	1.02087 (15)	0.4369 (2)	0.0467 (5)	
H10A	0.8115	1.0688	0.4932	0.056*	
C10A	0.74883 (17)	1.03854 (14)	0.3279 (2)	0.0451 (5)	
C10B	0.70861 (17)	1.13078 (15)	0.29649 (19)	0.0443 (5)	
C11	0.8322 (2)	0.69713 (18)	0.3379 (3)	0.0744 (8)	
H11A	0.8595	0.6411	0.3732	0.112*	
H11B	0.8584	0.7067	0.2588	0.112*	
H11C	0.7619	0.6915	0.3301	0.112*	
C12	0.9174 (2)	0.98354 (18)	0.6494 (2)	0.0648 (7)	
H12A	0.9622	0.9607	0.7123	0.097*	
H12B	0.8580	1.0047	0.6853	0.097*	
H12C	0.9472	1.0344	0.6076	0.097*	
C13	0.79478 (19)	1.26228 (17)	0.4306 (2)	0.0551 (6)	
H13A	0.8276	1.2126	0.4764	0.066*	
H13B	0.7571	1.2983	0.4874	0.066*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	0.8726 (2)	1.32535 (19)	0.3772 (3)	0.0671 (7)
H14A	0.8384	1.3731	0.3277	0.080*
C15	0.9379 (3)	1.2716 (3)	0.2951 (4)	0.1234 (15)
H15A	0.8984	1.2425	0.2313	0.185*
H15B	0.9728	1.2246	0.3417	0.185*
H15C	0.9841	1.3133	0.2598	0.185*
C16	0.9321 (3)	1.3745 (3)	0.4774 (4)	0.1160 (15)
H16A	0.9796	1.4147	0.4418	0.174*
H16B	0.9654	1.3291	0.5284	0.174*
H16C	0.8889	1.4110	0.5257	0.174*
C17	0.53556 (17)	1.26476 (16)	0.1005 (2)	0.0479 (5)
C18	0.44587 (19)	1.22054 (18)	0.0757 (2)	0.0583 (6)
H18A	0.4311	1.1652	0.1153	0.070*
C19	0.3789 (2)	1.2590 (2)	-0.0080 (3)	0.0668 (7)
H19A	0.3185	1.2299	-0.0232	0.080*
C20	0.4007 (2)	1.34047 (19)	-0.0695 (2)	0.0653 (7)
H20A	0.3561	1.3651	-0.1273	0.078*
C21	0.4889 (2)	1.38447 (18)	-0.0442 (2)	0.0648 (7)
H21A	0.5035	1.4395	-0.0847	0.078*
C22	0.5564 (2)	1.34783 (17)	0.0408 (2)	0.0558 (6)
H22A	0.6155	1.3786	0.0580	0.067*
C11	0.65752 (5)	1.48541 (4)	0.30437 (6)	0.0602 (2)
H1	0.661 (2)	1.345 (2)	0.280 (3)	0.076 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0725 (11)	0.0376 (8)	0.0803 (12)	0.0105 (8)	-0.0194 (9)	-0.0055 (8)
O2	0.0825 (12)	0.0436 (9)	0.0588 (10)	0.0087 (8)	-0.0214 (9)	-0.0025 (8)
N2	0.0565 (11)	0.0344 (9)	0.0520 (11)	0.0013 (8)	-0.0040 (9)	-0.0001 (8)
N4	0.0521 (10)	0.0357 (9)	0.0472 (10)	-0.0002 (8)	-0.0038 (8)	0.0003 (8)
C1	0.0519 (12)	0.0374 (11)	0.0475 (12)	-0.0005 (9)	-0.0018 (10)	0.0013 (9)
C3	0.0508 (12)	0.0376 (11)	0.0492 (12)	0.0021 (9)	0.0012 (10)	0.0027 (9)
C5	0.0723 (16)	0.0405 (12)	0.0565 (14)	-0.0001 (11)	-0.0169 (12)	-0.0052 (11)
C6	0.095 (2)	0.0496 (14)	0.0608 (16)	0.0164 (14)	-0.0204 (15)	-0.0142 (12)
C6A	0.0677 (15)	0.0418 (12)	0.0532 (14)	0.0064 (11)	-0.0093 (12)	-0.0053 (10)
C7	0.0737 (16)	0.0394 (12)	0.0624 (15)	0.0062 (11)	-0.0145 (13)	-0.0113 (11)
C8	0.0542 (13)	0.0351 (11)	0.0612 (14)	0.0045 (9)	-0.0050 (11)	-0.0011 (10)
C9	0.0511 (12)	0.0400 (11)	0.0508 (12)	0.0007 (10)	-0.0030 (10)	0.0025 (10)
C10	0.0537 (12)	0.0376 (11)	0.0484 (12)	0.0001 (9)	-0.0040 (10)	-0.0032 (10)
C10A	0.0509 (12)	0.0360 (11)	0.0481 (12)	0.0006 (9)	-0.0017 (10)	-0.0006 (9)
C10B	0.0509 (12)	0.0389 (11)	0.0428 (11)	0.0002 (9)	-0.0018 (10)	-0.0008 (9)
C11	0.0809 (19)	0.0387 (13)	0.102 (2)	0.0087 (13)	-0.0182 (17)	-0.0127 (14)
C12	0.0815 (18)	0.0543 (14)	0.0567 (15)	0.0021 (13)	-0.0198 (13)	-0.0041 (12)
C13	0.0684 (15)	0.0421 (12)	0.0540 (13)	-0.0063 (11)	-0.0065 (11)	-0.0041 (11)
C14	0.0576 (15)	0.0552 (15)	0.087 (2)	-0.0029 (12)	-0.0157 (14)	0.0146 (14)
C15	0.092 (3)	0.142 (4)	0.139 (4)	-0.012 (3)	0.043 (3)	-0.017 (3)
C16	0.093 (3)	0.093 (3)	0.159 (4)	-0.036 (2)	-0.035 (3)	-0.009 (3)

data reports

C17 C18	0.0572 (13)	0.0414 (12) 0.0484 (13)	0.0449 (12) 0.0627 (15)	0.0057 (10)	-0.0011(10) -0.0067(12)	-0.0003(9) 0.0042(11)
C19	0.0687 (16)	0.0615 (16)	0.0689 (17)	0.0069 (13)	-0.0158 (13)	-0.0083 (14)
C20 C21	0.0848 (19) 0.097 (2)	0.0565 (15) 0.0451 (13)	0.0534 (15) 0.0514 (14)	0.0194 (14) 0.0094 (14)	-0.0134(14) -0.0001(14)	-0.0014 (12) 0.0068 (11)
C22	0.0710 (15)	0.0434 (12)	0.0531 (14)	0.0017 (11)	0.0012 (12)	0.0017 (11)
C11	0.0777 (4)	0.0391 (3)	0.0627 (4)	0.0086 (3)	-0.0097 (3)	-0.0026 (3)

Geometric parameters (Å, °)

O1—C8	1.364 (3)	C11—H11B	0.9600	
01—C11	1.433 (3)	C11—H11C	0.9600	
О2—С9	1.362 (3)	C12—H12A	0.9600	
O2—C12	1.421 (3)	C12—H12B	0.9600	
N2—C3	1.328 (3)	C12—H12C	0.9600	
N2-C1	1.381 (3)	C13—C14	1.526 (4)	
N2—H1	0.98 (3)	C13—H13A	0.9700	
N4—C3	1.346 (3)	C13—H13B	0.9700	
N4—C10B	1.398 (3)	C14—C15	1.501 (5)	
N4—C5	1.470 (3)	C14—C16	1.512 (4)	
C1C10B	1.368 (3)	C14—H14A	0.9800	
C1-C13	1.497 (3)	C15—H15A	0.9600	
C3—C17	1.462 (3)	C15—H15B	0.9600	
C5—C6	1.513 (4)	C15—H15C	0.9600	
С5—Н5А	0.9700	C16—H16A	0.9600	
С5—Н5В	0.9700	C16—H16B	0.9600	
C6—C6A	1.500 (3)	C16—H16C	0.9600	
С6—Н6А	0.9700	C17—C18	1.392 (3)	
C6—H6B	0.9700	C17—C22	1.393 (3)	
C6A-C10A	1.393 (3)	C18—C19	1.381 (3)	
C6A—C7	1.393 (3)	C18—H18A	0.9300	
C7—C8	1.374 (3)	C19—C20	1.387 (4)	
С7—Н7А	0.9300	C19—H19A	0.9300	
C8—C9	1.408 (3)	C20—C21	1.373 (4)	
C9—C10	1.379 (3)	C20—H20A	0.9300	
C10-C10A	1.393 (3)	C21—C22	1.385 (4)	
C10—H10A	0.9300	C21—H21A	0.9300	
C10A—C10B	1.467 (3)	C22—H22A	0.9300	
C11—H11A	0.9600	Cl1—Cl1	0.0000 (19)	
C8-01-C11	116 95 (19)	H11A_C11_H11C	109.5	
C9-02-C12	117.16(18)	H11B-C11-H11C	109.5	
$C^{3} = N^{2} = C^{1}$	110 75 (18)	Ω^2 C12 H12A	109.5	
C3_N2_H1	127.1 (16)	02 - C12 - H12R	109.5	
C1—N2—H1	122.1 (16)	H12A - C12 - H12B	109.5	
C3 - N4 - C10B	109 42 (18)	$\Omega^2 - C_{12} - H_{12}C_{12}$	109.5	
C3-N4-C5	127.51 (19)	H12A-C12-H12C	109.5	
C10B—N4—C5	123.07 (18)	H12B—C12—H12C	109.5	
	· /			

C10B—C1—N2	106.43 (19)	C1—C13—C14	114.0 (2)
C10B—C1—C13	133.9 (2)	C1—C13—H13A	108.8
N2—C1—C13	119.61 (19)	C14—C13—H13A	108.8
N2—C3—N4	107.08 (19)	C1-C13-H13B	108.8
N2—C3—C17	125.23 (19)	C14—C13—H13B	108.8
N4—C3—C17	127.7 (2)	H13A—C13—H13B	107.7
N4—C5—C6	108.6 (2)	C15—C14—C16	111.3 (3)
N4—C5—H5A	110.0	C15—C14—C13	111.1 (3)
С6—С5—Н5А	110.0	C16—C14—C13	110.9 (3)
N4—C5—H5B	110.0	C15—C14—H14A	107.8
С6—С5—Н5В	110.0	C16—C14—H14A	107.8
H5A—C5—H5B	108.4	C13—C14—H14A	107.8
C6A—C6—C5	112.5 (2)	C14—C15—H15A	109.5
C6A—C6—H6A	109.1	C14—C15—H15B	109.5
C5—C6—H6A	109.1	H15A—C15—H15B	109.5
C6A—C6—H6B	109.1	C14—C15—H15C	109.5
C5—C6—H6B	109.1	H15A—C15—H15C	109.5
H6A—C6—H6B	107.8	H15B-C15-H15C	109.5
C10A - C6A - C7	118.9 (2)	C14—C16—H16A	109.5
C10A - C6A - C6	119.7 (2)	C14—C16—H16B	109.5
C7-C6A-C6	121 3 (2)	H_{16A} C_{16} H_{16B}	109.5
C8-C7-C6A	121.0(2) 122.0(2)	C14 - C16 - H16C	109.5
C8-C7-H7A	119.0	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
C6A - C7 - H7A	119.0	H16B—C16—H16C	109.5
01 - C8 - C7	125 3 (2)	C18 - C17 - C22	119.3(2)
01 - C8 - C9	115.9(2)	C18 - C17 - C3	121.6(2)
C7-C8-C9	118.8 (2)	C^{22} C^{17} C^{3}	121.0(2) 1190(2)
02-09-010	125.2(2)	C19 - C18 - C17	119.0(2) 119.9(2)
02 - C9 - C8	115 19 (19)	C19—C18—H18A	120.1
C10-C9-C8	119.6 (2)	C17—C18—H18A	120.1
C9-C10-C10A	1212(2)	C18 - C19 - C20	120.1 120.7(3)
C9-C10-H10A	119.4	C18 - C19 - H19A	119.7
C10A - C10 - H10A	119.1	C_{20} C_{19} H_{19A}	119.7
C10-C10A-C6A	119.4 (2)	$C_{20} = C_{10} = C_{19}$	119.7 119.4(2)
C10 $C10A$ $C10B$	122.7(2)	$C_{21} = C_{20} = H_{20A}$	120.3
C6A - C10A - C10B	1179(2)	C19 - C20 - H20A	120.3
C1-C10B-N4	106 30 (18)	C_{20} C_{21} C_{22}	120.3 120.7(3)
C1 - C10B - C10A	135.2(2)	C_{20} C_{21} C_{22}	119.6
N4-C10B-C10A	118 47 (19)	$C_{22} = C_{21} = H_{21A}$	119.6
01-C11-H11A	109.5	$C_{21} = C_{22} = C_{17}$	119.0 119.9(3)
01-C11-H11B	109.5	$C_{21} = C_{22} = C_{17}$	120.0
H11A—C11—H11B	109.5	C17 - C22 - H22A	120.0
01-C11-H11C	109.5		120.0
of eff fille	107.5		
C3—N2—C1—C10B	0.0 (3)	C7—C6A—C10A—C10B	-179.1 (2)
C3—N2—C1—C13	178.6 (2)	C6—C6A—C10A—C10B	2.7 (4)
C1—N2—C3—N4	-0.5 (3)	N2-C1-C10B-N4	0.4 (3)
C1—N2—C3—C17	-178.7 (2)	C13—C1—C10B—N4	-177.8 (3)

C10B—N4—C3—N2	0.7 (3)	N2-C1-C10B-C10A	179.9 (3)
C5—N4—C3—N2	-178.7 (2)	C13-C1-C10B-C10A	1.7 (5)
C10B—N4—C3—C17	178.9 (2)	C3—N4—C10B—C1	-0.7 (3)
C5—N4—C3—C17	-0.6 (4)	C5—N4—C10B—C1	178.8 (2)
C3—N4—C5—C6	146.8 (2)	C3—N4—C10B—C10A	179.7 (2)
C10B—N4—C5—C6	-32.6 (3)	C5—N4—C10B—C10A	-0.8 (3)
N4—C5—C6—C6A	49.5 (3)	C10-C10A-C10B-C1	17.4 (4)
C5-C6-C6A-C10A	-37.4 (4)	C6A-C10A-C10B-C1	-162.0 (3)
C5—C6—C6A—C7	144.4 (3)	C10-C10A-C10B-N4	-163.1 (2)
C10A—C6A—C7—C8	-1.1 (4)	C6A—C10A—C10B—N4	17.4 (3)
C6—C6A—C7—C8	177.1 (3)	C10B-C1-C13-C14	112.9 (3)
C11—O1—C8—C7	-5.2 (4)	N2-C1-C13-C14	-65.2 (3)
C11—O1—C8—C9	174.3 (2)	C1—C13—C14—C15	-62.4 (3)
C6A-C7-C8-O1	178.5 (3)	C1—C13—C14—C16	173.2 (3)
C6A—C7—C8—C9	-1.0 (4)	N2-C3-C17-C18	-139.6 (3)
C12—O2—C9—C10	-2.6 (4)	N4—C3—C17—C18	42.6 (4)
C12—O2—C9—C8	178.1 (2)	N2—C3—C17—C22	39.8 (3)
01	2.7 (3)	N4—C3—C17—C22	-138.0 (3)
C7—C8—C9—O2	-177.7 (2)	C22-C17-C18-C19	0.3 (4)
O1-C8-C9-C10	-176.7 (2)	C3—C17—C18—C19	179.7 (2)
C7—C8—C9—C10	2.8 (4)	C17—C18—C19—C20	1.2 (4)
O2-C9-C10-C10A	178.1 (2)	C18—C19—C20—C21	-1.7 (4)
C8—C9—C10—C10A	-2.6 (4)	C19—C20—C21—C22	0.7 (4)
C9—C10—C10A—C6A	0.4 (4)	C20-C21-C22-C17	0.9 (4)
C9-C10-C10A-C10B	-179.0 (2)	C18—C17—C22—C21	-1.4 (4)
C7—C6A—C10A—C10	1.4 (4)	C3—C17—C22—C21	179.3 (2)
C6—C6A—C10A—C10	-176.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
N2—H1…Cl1	0.98 (3)	2.04 (3)	3.019 (2)	179	
C20—H20A···Cl1 ⁱ	0.93	2.89	3.650 (3)	140	
C5—H5B···Cl1 ⁱⁱ	0.97	2.83	3.707 (3)	152	

Symmetry codes: (i) -*x*+1, -*y*+3, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1/2.