ISSN 2414-3146

Received 17 December 2019
Accepted 28 January 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; caesium; tetrafluoridobromate(III); redetermination.

CCDC reference: 1980292
Structural data: full structural data are available from iucrdata.iucr.org

Redetermination of the crystal structure of caesium tetrafluoridobromate(III) from single-crystal X-ray diffraction data

Artem V. Malin, ${ }^{\text {a }}$ Sergei I. Ivlev, ${ }^{\mathbf{b}}$ Roman V. Ostvald ${ }^{\mathbf{a}}$ and Florian Kraus ${ }^{\text {b* }}$

${ }^{\text {a }}$ National Research Tomsk Polytechnic University, 30 Lenina avenue, 634050 Tomsk, Russian Federation, and ${ }^{\mathbf{b}}$ Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany. *Correspondence e-mail: f.kraus@uni-marburg.de

Caesium tetrafluoridobromate(III), CsBrF_{4}, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF_{4} was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846-2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF_{4} contains two squareplanar $\left[\mathrm{BrF}_{4}\right]^{-}$anions each with point group symmetry mmm , and a caesium cation (site symmetry mm 2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF_{4} is isotypic with CsAuF_{4}.

Structure description

The first report of unit-cell parameters of CsBrF_{4} from powder X-ray diffraction data was given by Popov et al. (1987). They indexed the powder pattern using a primitive tetragonal unit cell with lattice parameters of $a=9.828$ (3), $c=7.166$ (5) $\AA, V=692.2$ (3) \AA^{3} (temperature not given). These lattice parameters are quite different compared to those of other known alkali metal tetrafluoridobromates(III) that crystallize in the KBrF_{4} structure type $\left[\mathrm{KBrF}_{4}, I 4 / \mathrm{mcm}\right.$ (No. 140), $a=6.174$ (2), $c=11.103$ (2) $\AA, V=423 \AA^{3}$; Siegel, 1956], and consequently CsBrF_{4} is not isotypic with KBrF_{4} on basis of the data provided by Popov et al. (1987). However, neither the crystal structure nor other crystallographic details of CsBrF_{4} were given at that time.

Recently, we have determined the crystal structure of CsBrF_{4} from powder X-ray diffraction (PXRD) data where we could only refine the F atoms isotropically (Ivlev et al.,

Figure 1
The anticuboctahedron around the caesium cation. Displacement ellipsoids are shown at the 70% probability level. [Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y,-z+1$; (iii) $x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x-\frac{1}{2}$, $y+\frac{1}{2}, z+\frac{1}{2} ;(\mathrm{v})-x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;$ (vi) $-x+\frac{3}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;$ (vii) $-x+1$, $-y,-z+1$.]
2013). We have shown that CsBrF_{4} is isotypic with CsAuF_{4} (Schmidt \& Müller, 2004) and crystallizes in the space group Immm (No. 71) with lattice parameters $a=5.6413$ (8), $b=$ 6.8312 (9), $c=12.2687$ (17) $\AA, V=472.79$ (11) $\AA^{3}, Z=4$ at 293 K. These lattice parameters are not related to the unit cell reported by Popov et al. (1987). We assume that their powder pattern probably contained impurity lines, e.g. from possible hydrolysis products, which led to erroneous indexing. Here we present the results of a redetermination of the crystal structure of CsBrF_{4} from single-crystal X-ray diffraction data at 100 K , leading to bond lengths and angles with higher precision, and with all atoms refined with anisotropic displacement parameters.

The unit-cell parameters of CsBrF_{4} obtained from singlecrystal X-ray diffraction data (Table 1) are expectedly smaller than those from the PXRD data at 293 K. The crystal structure contains two different square-planar $\left[\mathrm{BrF}_{4}\right]^{-}$anions, the planes of which are parallel and rotated by about 45° with respect to each other. The first anion consists of one bromi-

Figure 2
The crystal structure of CsBrF_{4} in a projection along the a axis. Displacement ellipsoids are shown at the 70% probability level.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
CsBrF_{4}
288.82

Orthorhombic, Immm
100
5.5075 (3), 6.7890 (3), 12.2572 (6)
458.30 (4)

4
Mo $K \alpha$
16.75
$0.11 \times 0.09 \times 0.06$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.012,0.022,1.12$
No. of reflections	669
No. of parameters	26
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$1.20,-0.88$

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2019) and publCIF (Westrip, 2010); coordinates taken from previous refinement.
ne(III) atom (Br 1) on the special $2 d$ (mmm) Wyckoff position and two fluorine atoms F1 and F3 on the special $4 j$ (mm 2) and $4 g(m 2 m)$ Wyckoff positions, respectively. As a result of symmetry restrictions, the $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angle is exactly 90°. The $\mathrm{Br} 1-\mathrm{F}$ bond lengths are 1.8852 (13) and 1.9020 (15) $\AA[c f$. 1.94 (4) and 1.97 (4) Å from PXRD data]. The second $\left[\mathrm{BrF}_{4}\right]^{-}$ anion contains one bromine(III) atom (Br2) on the special $2 b$ (mmm) Wyckoff position and one fluorine atom (F2) on the special $8 l$ ($m .$.$) Wyckoff position. The anion is slightly$ distorted in-plane, resulting in an almost rectangular structure with $\mathrm{F} 2-\mathrm{Br} 2-\mathrm{F} 2$ angles of 87.96 (7) and $92.04(7)^{\circ}$ and a $\mathrm{Br} 2-\mathrm{F} 2$ bond length of 1.8907 (10) \AA [cf. 87.6 (13) and 92.4 (13) ${ }^{\circ}, 1.96$ (3) A from PXRD data]. In general, the bond lengths and angles of the $\left[\mathrm{BrF}_{4}\right]^{-}$anions in CsBrF_{4} are in good correspondence with other known tetrafluoridobromates(III) [see Table 2 in Ivlev \& Kraus (2018), and references therein]. The caesium cation occupies the special $4 i$ (mm2) Wyckoff position and is coordinated by twelve fluorine atoms. The resulting coordination polyhedron is an anticuboctahedron (Fig. 1). The Cs.. F distances are in the range 2.9615 (11) to 3.4784 (4) \AA [cf. 3.011 (1) to 3.605 (1) from PXRD data].

The crystal structure of CsBrF_{4} is shown in Fig. 2.

Synthesis and crystallization

Caesium tetrafluoridobromate(III) was synthesized by direct reaction of bromine trifluoride with caesium chloride. The reaction was carried out under Freon-113, which acted as a protective layer against hydrolysis and as a heat absorber. The mixture of CsCl and BrF_{3} was kept in a closed Teflon vessel.

After three days the Freon was removed by vacuum distillation and CsBrF_{4} was obtained as a solid white residue. The powder was melted at 483 K and cooled down to room temperature. Single crystals of CsBrF_{4} were obtained as small blocks after crushing the solid lumps.

Refinement

Details of data collection and structure refinement are given in Table 1. Coordinates and atom labelling were taken from the previous refinement from PXRD data (Ivlev et al., 2013).

Acknowledgements

We thank the Russian Governmental Program 'Nauka' N 4.3967.2017/PCh for support. We thank the Deutsche Forschungsgemeinschaft for generous funding.

References

Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ivlev, S., Woidy, P., Sobolev, V., Gerin, I., Ostvald, R. \& Kraus, F. (2013). Z. Anorg. Allg. Chem. 639, 2846-2850.

Ivlev, S. I. \& Kraus, F. (2018). IUCrData, 3, x180646.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Popov, A. I., Kiselev, Y. M., Sukhoverkhov, V. F., Chumaevskii, N. A., Krasnyanskaya, O. A. \& Sadikova, A. T. (1987). Russ. J. Inorg. Chem. 32, 619-622.
Schmidt, R. \& Müller, B. G. (2004). Z. Anorg. Allg. Chem. 630, 23932397.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Siegel, S. (1956). Acta Cryst. 9, 493-495.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). 5, x200114 [https://doi.org/10.1107/S2414314620001145]

Redetermination of the crystal structure of caesium tetrafluoridobromate(III) from single-crystal X-ray diffraction data

Artem V. Malin, Sergei I. Ivlev, Roman V. Ostvald and Florian Kraus

Caesium tetrafluoridobromate(III)

Crystal data

CsBrF_{4}

$M_{r}=288.82$
Orthorhombic, Immm
$a=5.5075$ (3) A
$b=6.7890(3) \AA$
$c=12.2572(6) \AA$
$V=458.30(4) \AA^{3}$
$Z=4$
$F(000)=504$

Data collection

Bruker D8 QUEST
diffractometer
Radiation source: microfocus X-ray tube
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.330, T_{\max }=0.558$
8570 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.012$
$w R\left(F^{2}\right)=0.022$
$S=1.12$
669 reflections
26 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=4.186 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2913 reflections
$\theta=3.3-36.8^{\circ}$
$\mu=16.75 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.11 \times 0.09 \times 0.06 \mathrm{~mm}$

669 independent reflections

622 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=36.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-20 \rightarrow 20$

Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cs1	0.500000	0.500000	$0.71714(2)$	$0.01008(4)$
Br1	0.500000	0.000000	0.500000	$0.00720(6)$
Br2	0.500000	0.000000	0.000000	$0.00760(6)$
F1	0.500000	0.000000	$0.34482(12)$	$0.0155(3)$
F2	0.500000	$0.19339(16)$	$0.11100(9)$	$0.0169(2)$
F3	0.500000	$0.2777(2)$	0.500000	$0.0141(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	$0.01130(6)$	$0.01075(6)$	$0.00821(7)$	0.000	0.000	0.000
Br1	$0.00756(12)$	$0.00827(11)$	$0.00578(13)$	0.000	0.000	0.000
Br2	$0.00816(12)$	$0.00841(11)$	$0.00624(13)$	0.000	0.000	0.000
F1	$0.0179(7)$	$0.0216(7)$	$0.0069(6)$	0.000	0.000	0.000
F2	$0.0201(5)$	$0.0160(4)$	$0.0146(5)$	0.000	0.000	$-0.0073(4)$
F3	$0.0164(6)$	$0.0087(6)$	$0.0172(7)$	0.000	0.000	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Cs1-F2 ${ }^{\text {i }}$	2.9615 (11)	Cs1—F1 ${ }^{\text {vii }}$	3.4784 (4)
$\mathrm{Cs} 1-\mathrm{F} 2^{\text {ii }}$	2.9615 (11)	Cs1-F1 ${ }^{\text {i }}$	3.4784 (4)
Cs1-F3 ${ }^{\text {i }}$	3.0597 (7)	Br1-F3	1.8852 (13)
Cs1-F3	3.0597 (7)	Br1—F3 ${ }^{\text {vii }}$	1.8853 (13)
Cs1-F1 ${ }^{\text {iii }}$	3.1674 (8)	Br1—F1 ${ }^{\text {vii }}$	1.9020 (15)
Cs1-F1 ${ }^{\text {iv }}$	3.1674 (8)	Brl-F1	1.9020 (15)
$\mathrm{Cs} 1-\mathrm{F} 2^{\text {v }}$	3.3166 (7)	Br2-F2 ${ }^{\text {viii }}$	1.8907 (10)
Cs1-F2 ${ }^{\text {iii }}$	3.3166 (7)	$\mathrm{Br} 2-\mathrm{F} 2^{\text {ix }}$	1.8907 (10)
Cs1-F2 ${ }^{\text {iv }}$	3.3166 (7)	$\mathrm{Br} 2-\mathrm{F} 2^{\text {x }}$	1.8907 (10)
Cs1-F2 ${ }^{\text {vi }}$	3.3166 (7)	Br 2 -F2	1.8907 (10)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {ii }}$	89.32 (4)	F1 ${ }^{\text {iv }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	96.194 (16)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 3^{\text {i }}$	105.79 (3)	$\mathrm{F} 2^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	107.50 (2)
F2 ${ }^{\text {ii- }}$ - $\mathrm{Cs} 1-\mathrm{F} 3{ }^{\text {i }}$	164.90 (3)	F2 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	61.838 (19)
F2 - ${ }^{\text {i }}$ - $1-\mathrm{F} 3$	164.90 (3)	F2iv ${ }^{\text {iv }} \mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	61.838 (19)
F2ii-Cs1-F3	105.79 (3)	F2 ${ }^{\text {vi }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	107.50 (2)
F3 ${ }^{\text {- }}$ Cs1-F3	59.11 (4)	F1 ${ }^{\text {vii }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	154.77 (5)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {iii }}$	69.423 (18)	F3-Br1-F3 ${ }^{\text {vii }}$	180.0
F2i- ${ }^{\text {ii }}$ - $1-\mathrm{F} 1^{\text {iii }}$	69.423 (18)	F3-Br1-F1 ${ }^{\text {vii }}$	90.0
F3 ${ }^{\text {i }}$ Cs1-F1 $1^{\text {iii }}$	115.46 (2)	F3 ${ }^{\text {vii }}$ - $\mathrm{Br} 1-\mathrm{F} 1^{\text {vii }}$	90.0
F3-Cs1-F1 ${ }^{\text {iii }}$	115.46 (2)	F3-Br1-F1	90.0
F2 ${ }^{\text {i }}$ Cs $1-\mathrm{F} 1^{\text {iv }}$	69.423 (18)	F3 ${ }^{\text {vii }}$ - $\mathrm{Br} 1-\mathrm{F} 1$	90.0
$\mathrm{F} 2^{\text {ii }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {iv }}$	69.423 (18)	$\mathrm{F} 1{ }^{\text {vii }}$ - $\mathrm{Br} 1-\mathrm{F} 1$	180.0
F3 - Cs $1-\mathrm{F} 1^{\text {iv }}$	115.46 (2)	$\mathrm{F} 2{ }^{\text {viii }}-\mathrm{Br} 2-\mathrm{F} 2{ }^{\text {ix }}$	87.96 (7)
F3-Cs1-F1 ${ }^{\text {iv }}$	115.46 (2)	$\mathrm{F} 2^{\text {viii }}-\mathrm{Br} 2-\mathrm{F} 2^{\mathrm{x}}$	92.04 (7)
F1ii- ${ }^{\text {iii }}$ ($1-\mathrm{F} 1^{\text {iv }}$	120.78 (5)	$\mathrm{F} 2{ }^{\mathrm{ix}}-\mathrm{Br} 2-\mathrm{F} 2^{\mathrm{x}}$	180.00 (6)

$\mathrm{F} 2-\mathrm{Cs} 1-\mathrm{F} 2^{\text {v }}$	123.869 (16)
F2ii ${ }^{\text {ii }} \mathrm{Cs} 1-\mathrm{F} 2{ }^{\text {v }}$	90.05 (2)
F3i-Cs1-F2 ${ }^{\text {v }}$	81.61 (2)
F3-Cs1-F2 ${ }^{\text {v }}$	57.553 (17)
F1 ${ }^{\text {iii- }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {v }}$	156.305 (19)
$\mathrm{F} 1^{\mathrm{iv}}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {v }}$	58.13 (3)
F 2 - ${ }^{\text {i }}$ - $1-\mathrm{F} 2{ }^{\text {iii }}$	90.05 (2)
F2iil ${ }^{\text {iid }} 1-\mathrm{F} 2{ }^{\text {iii }}$	123.868 (16)
F3 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iii }}$	57.553 (17)
F3-Cs1-F2 ${ }^{\text {iii }}$	81.61 (2)
F1iii-Cs1-F2 ${ }^{\text {iii }}$	58.13 (3)
F1 $1^{\text {iv }}-\mathrm{Cs} 1-\mathrm{F} 2^{\text {iii }}$	156.305 (19)
F2 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iii }}$	133.81 (3)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	90.05 (2)
F2 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	123.868 (17)
F3 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	57.553 (17)
F3-Cs1-F2 ${ }^{\text {iv }}$	81.61 (2)
F1 ${ }^{\text {iii- }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	156.305 (19)
$\mathrm{F} 1^{\text {iv }}-\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	58.13 (3)
F2 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	46.64 (4)
F2 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {iv }}$	112.26 (3)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {vi }}$	123.868 (17)
F2iil ${ }^{\text {ii }}$ - $1-\mathrm{F} 2^{\text {vi }}$	90.05 (2)
F3- ${ }^{\text {i }}$ - $1-\mathrm{F} 2^{\text {vi }}$	81.61 (2)
F3-Cs1-F2 ${ }^{\text {vi }}$	57.553 (17)
F1iii-Cs1-F2 ${ }^{\text {vi }}$	58.13 (3)
F1 ${ }^{\text {iv }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {vi }}$	156.305 (19)
F2 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {vi }}$	112.26 (3)
F2 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{F} 2^{\text {vi }}$	46.64 (4)
$\mathrm{F} 2^{\text {iv }}-\mathrm{Cs} 1-\mathrm{F} 2^{\text {vi }}$	133.81 (3)
F2 ${ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {vii }}$	147.27 (3)
F2iil ${ }^{\text {iid }} 1-\mathrm{F} 1^{\text {vii }}$	57.95 (3)
F3 - ${ }^{\text {i }}$ ($1-\mathrm{F} 1^{\text {vii }}$	106.94 (3)
F3-Cs1-F1 ${ }^{\text {vii }}$	47.83 (3)
F1 ${ }^{\text {iii- }}$ Cs1-F1 ${ }^{\text {vii }}$	96.194 (16)
F1 ${ }^{\text {iv }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {vii }}$	96.194 (16)
F2 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {vii }}$	61.838 (19)
F2 ${ }^{\text {iii- }}$ Cs1-F1 ${ }^{\text {vii }}$	107.50 (2)
F2 ${ }^{\text {iv }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {vii }}$	107.50 (2)
F2 ${ }^{\text {vi }}$ - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {vii }}$	61.838 (19)
F2 - $\mathrm{Cs} 1-\mathrm{F} 1^{\text {i }}$	57.95 (3)
F2i- ${ }^{\text {ii }}$ Cs1-F1 ${ }^{\text {i }}$	147.27 (3)
F3 - ${ }^{\text {Cs }} 1-\mathrm{F} 1^{\text {i }}$	47.83 (3)
F3-Cs1-F1 ${ }^{\text {i }}$	106.94 (3)
	96.194 (16)

F2 ${ }^{\text {viii- }} \mathrm{Br} 2-\mathrm{F} 2$	180.0
$\mathrm{F} 2{ }^{\mathrm{ix}}$ - $\mathrm{Br} 2-\mathrm{F} 2$	92.04 (7)
$\mathrm{F} 2 \mathrm{x}-\mathrm{Br} 2-\mathrm{F} 2$	87.96 (7)
F2 ${ }^{\text {viii }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xi }}$	120.01 (2)
$\mathrm{F} 2{ }^{\mathrm{ix}}-\mathrm{Br} 2-\mathrm{Cs} 1^{\mathrm{xi}}$	120.005 (19)
$\mathrm{F} 2^{\mathrm{x}}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xi }}$	59.995 (19)
$\mathrm{F} 2-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xi }}$	59.99 (2)
$\mathrm{F} 2{ }^{\text {viii }}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xii }}$	59.99 (2)
$\mathrm{F} 2{ }^{\text {ix }}-\mathrm{Br} 2-\mathrm{Cs} 1^{1 \times 1}$	59.995 (19)
$\mathrm{F} 2{ }^{\mathrm{x}}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xii }}$	120.005 (19)
$\mathrm{F} 2-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xii }}$	120.01 (2)
$\mathrm{Cs} 1{ }^{\text {xi }}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xii }}$	180.0
F2 ${ }^{\text {viii }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	120.01 (2)
$\mathrm{F} 2^{\text {ix }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	120.005 (19)
$\mathrm{F} 2{ }^{\mathrm{x}}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	59.995 (19)
$\mathrm{F} 2-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	59.99 (2)
$\mathrm{Cs} 1^{\text {xi }}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	91.951 (5)
$\mathrm{Cs} 1^{\text {xii }}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiii }}$	88.049 (5)
F2 ${ }^{\text {viii- }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	59.99 (2)
$\mathrm{F} 2^{\mathrm{ix}}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	59.995 (19)
$\mathrm{F} 2{ }^{\mathrm{x}}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	120.005 (19)
$\mathrm{F} 2-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	120.01 (2)
Cs1 ${ }^{\text {xi }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	88.049 (5)
$\mathrm{Cs} 1^{\text {xii }}-\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	91.951 (5)
Cs1 ${ }^{\text {xiii }}$ - $\mathrm{Br} 2-\mathrm{Cs} 1^{\text {xiv }}$	180.0
$\mathrm{Br} 1-\mathrm{F} 1-\mathrm{Cs} 1^{\text {xiii }}$	119.61 (2)
Brl-F1-Cs1 ${ }^{\text {xi }}$	119.61 (2)
Cs1 ${ }^{\text {xiii- }}$ F1-Cs1 ${ }^{\text {xi }}$	120.78 (5)
$\mathrm{Br} 1-\mathrm{F} 1-\mathrm{Cs} 1^{\text {vii }}$	102.61 (2)
Cs1 ${ }^{\text {xiii }}$-F1-Cs1 ${ }^{\text {vii }}$	83.807 (16)
Cs1 ${ }^{\text {xi }}$ - $\mathrm{F} 1-\mathrm{Cs} 1^{\text {vii }}$	83.807 (16)
Br1-F1-Cs1 ${ }^{\text {i }}$	102.61 (2)
Cs1 ${ }^{\text {xiii }}$ - $\mathrm{F} 1-\mathrm{Cs} 1^{\text {i }}$	83.807 (16)
Cs1 ${ }^{\text {xi }}$-F1- $\mathrm{Cs}^{1}{ }^{\mathrm{i}}$	83.807 (16)
Cs1 ${ }^{\text {vii }}$-F1-Cs1 ${ }^{\text {i }}$	154.78 (5)
$\mathrm{Br} 2-\mathrm{F} 2-\mathrm{Cs} 1^{\mathrm{i}}$	179.32 (6)
$\mathrm{Br} 2-\mathrm{F} 2-\mathrm{Cs} 1^{\text {xiii }}$	90.42 (3)
Cs1 ${ }^{\text {i }}$-F2-Cs1 ${ }^{\text {xiii }}$	89.95 (2)
Br2-F2-Cs1 ${ }^{\text {xi }}$	90.42 (3)
Cs1--F2-Cs1 ${ }^{\text {xi }}$	89.95 (2)
Cs1 ${ }^{\text {xiii }}$-F2-Cs1 ${ }^{\text {xi }}$	112.26 (3)
Br1-F3-Cs1 ${ }^{\text {i }}$	119.56 (2)
Br1-F3-Cs1	119.56 (2)
Cs1-F3-Cs1	120.89 (4)

[^0]
[^0]: Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y,-z+1$; (iii) $x+1 / 2, y+1 / 2, z+1 / 2$; (iv) $x-1 / 2, y+1 / 2, z+1 / 2$; (v) $-x+1 / 2,-y+1 / 2, z+1 / 2$; (vi) $-x+3 / 2,-y+1 / 2$, $z+1 / 2$; (vii) $-x+1,-y,-z+1$; (viii) $-x+1,-y,-z$; (ix) $x, y,-z$; (x) $-x+1,-y, z$; (xi) $x+1 / 2, y-1 / 2, z-1 / 2$; (xii) $-x+1 / 2,-y+1 / 2,-z+1 / 2$; (xiii) $x-1 / 2, y-1 / 2$,
 $z-1 / 2$; (xiv) $-x+3 / 2,-y+1 / 2,-z+1 / 2$.

