ISSN 2414-3146

Received 29 October 2020
Accepted 10 November 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; barium; picrate anion; one-dimensional coordination polymer.

CCDC reference: 2043610
Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[barium(II)- μ_{2}-(dimethyl sulfoxide)$\kappa^{2} O: O-b i s\left(\mu_{2}-2,4,6\right.$-trinitrophenolato$\left.\left.\kappa^{4} O^{2}, O^{1}: O^{1}, O^{6}\right)\right]$

Bikshandarkoil R. Srinivasan,* Neha U. Parsekar and Kedar U. Narvekar

School of Chemical Sciences, Goa University, Goa 403206, India. *Correspondence e-mail: srini@unigoa.ac.in
The asymmetric unit of the title barium coordination polymer, $\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]_{n}$, consists of a barium cation (site symmetry m) and a dimethyl sulfoxide (DMSO) ligand (point group symmetry m) and a $2,4,6$-trinitrophenolate anion located in general positions. The S atom and the methyl group of DMSO are disordered over two sets of sites. The DMSO ligand bridges a pair of $\mathrm{Ba}^{\mathrm{II}}$ atoms resulting in a chain extending parallel to the a axis. The unique 2,4,6-trinitrophenolate anion also bridges a pair of $\mathrm{Ba}^{\mathrm{II}}$ ions via the phenolic oxygen atom, with each $\mathrm{Ba}^{\text {II }}$ being additionally bonded to an oxygen atom of an adjacent nitro group. The μ_{2}-monoatomic bridging binding mode of both types of ligands results in the formation of an infinite chain of face-sharing $\left\{\mathrm{BaO}_{10}\right\}$ polyhedra flanked by the remaining parts of the 2,4,6-trinitrophenolato and DMSO ligands. In the one-dimensional coordination polymer, parallel chains are interlinked with the aid of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Chemical scheme

Structure description

As part of an ongoing research program, we were investigating the synthetic and structural aspects of bivalent metal salts of picric acid (also known as 2,4,6-trinitrophenol) containing zwitterionic glycine ligands (Srinivasan et al., 2019). During the course of these studies, the glycine-free title compound, $\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right](\mathbf{1})$, was obtained serendipitously.

Compound (1) contains a coordinating DMSO molecule but no glycine. A perusal of the Cambridge Structural Database (CSD, version 5.41, update November 2019; Groom et al., 2016) reveals examples of structurally characterized $\mathrm{Ba}^{\text {II }}$ picrates devoid of DMSO (Hughes \& Wingfield, 1977; Postma et al., 1983; Chandler et al., 1988; Harrowfield et al., 1995; Hong et al., 2007). In addition, $\mathrm{Ba}^{\mathrm{II}}$ compounds containing DMSO as solvent

Figure 1
The coordination environment of the $\mathrm{Ba}^{\text {II }}$ atom in the crystal structure of $\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. [Symmetry codes: (i) x, $-y+\frac{1}{2}, z$; (ii) $x-1, y, z$; (iii) $x,-y+\frac{1}{2}, z$; (iv) $x+1, y, z$.]
molecules (Studebaker et al., 2000; Fichtel et al., 2004; Ferrando-Soria et al., 2012), and as monodentate and/or bridging bidentate ligands (Harrowfield et al., 2004; Pi et al., 2009; Gschwind \& Jansen 2012) charge-balanced by anions other than picrate are also known. The title compound is a new example of a $\mathrm{Ba}^{\mathrm{II}}$ compound in which both the DMSO and picrate ligands function as μ_{2}-bridges.

The asymmetric unit of (1) consists of a barium(II) cation and the S and O atom of a dimethyl sulfoxide (DMSO) ligand located on a mirror plane. The 2,4,6-trinitrophenolate anion is located in a general position (Fig. 1). Atom S11 of the DMSO ligand and the attached methyl group (C11) are disordered over two sets of sites. Bond lengths and angles of the picrate anion and the DMSO ligand are in agreement with reported data (Srinivasan et al., 2019, 2020). The central $\mathrm{Ba}^{\mathrm{II}}$ atom exhibits ten-coordination and is bonded to eight oxygen atoms of four symmetry-related picrate anions and two oxygen atoms of two DMSO ligands resulting in a distorted $\left\{\mathrm{BaO}_{10}\right\}$ polyhedron (Fig. 2). The deviation of the $\left\{\mathrm{BaO}_{10}\right\}$ coordination

Figure 2

The distorted $\left\{\mathrm{BaO}_{10}\right\}$ coordination polyhedron in the crystal structure of $\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$. Symmetry codes are as in Fig. 1.
polyhedron from a regular shape can be evidenced by the $\mathrm{Ba}-\mathrm{O}$ bond lengths which range from 2.725 (2) to 2.970 (3) \AA and the $\mathrm{O}-\mathrm{Ba}-\mathrm{O}$ bond angles which vary between 57.15 (12) and 151.94 (9) ${ }^{\circ}$. Both DMSO and picrate ligands exhibit an μ_{2}-monoatomic bridging binding mode resulting in chains extending parallel to the a axis with an identical Ba••Ba separation of 4.1933 (2) \AA (Fig. 3). The oxygen O11 atom of DMSO binds with a $\mathrm{Ba}^{\mathrm{II}}$ atom at a $\mathrm{Ba} 1-\mathrm{O} 11$ distance of 2.906 (4) \AA and further coordinates with a symmetryrelated $\mathrm{Ba}^{\mathrm{iv}}$ [symmetry code: (iv) $x+1, y, z$] atom at a shorter distance of 2.783 (4) A.

Binding of the nitro oxygen atom(s) of the picrate ligand is well documented in the literature for potassium picrate (Maartmann-Moe, 1969) and for many alkaline-earth picrates (Harrowfield et al., 1995). In the molecular compounds, $\left[\mathrm{Ba}(L)(\mathrm{pic})_{2}\right] \quad(L=$ dibenzo-24-crown-8), $\quad[\mathrm{Ba}($ acetone $)-$ $\left.(\text { pic })_{2}(\text { phen })_{2}\right]($ pic $=$ picrate; phen $=1,10$-phenanthroline $)$ and $\left[\mathrm{Ba}\left(L^{\prime}\right)(\mathrm{pic})_{2}\right]\left(L^{\prime}=\right.$ diaza 21-crown-7 ether), the picrate anion functions as a bidentate and or monodentate ligand (Hughes \& Wingfield, 1977; Postma et al., 1983; Chandler et al., 1988). In the water-rich coordination polymer $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right.\right.$. $\left.\left.\mathrm{N}_{3} \mathrm{O}_{7}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, one picrate anion functions as a bidentate ligand via the phenolate oxygen and an adjacent nitro O atom, while the second independent picrate anion functions as a μ_{2}-bridging tridentate ligand (Harrowfield et al., 1995).

In the crystal structure of (1), the phenolate atom O1 makes a short $\mathrm{Ba}-\mathrm{O} 1$ bond of 2.730 (2) \AA and is further linked to a symmetry-related $\mathrm{Ba}^{\mathrm{ii}}$ [symmetry code: (ii) $x-1, y, z$] atom

Figure 3
(Top) $\mathrm{Ba}^{\mathrm{II}}$ cations bridged by O 11 of DMSO, which results in the formation of chains extending along the a-axis direction. For clarity, the disordered S atom and the methyl group of the DMSO ligands as well as the picrate ligands are not displayed; (bottom) the chain showing the μ_{2}-monoatomic bridging binding of the picrate and DMSO ligands. For clarity, only the bridging O11 atom of the DMSO ligands are shown. Each $\mathrm{Ba}^{\mathrm{II}}$ atom in the chain is bonded to ten O atoms (see Fig. 2).

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 $\cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.43	$3.283(5)$	153
C5-H5 $_{\text {vi }}{ }^{\text {vi }}$	$0.90(4)$	$2.63(4)$	$3.492(5)$	$159(3)$

Symmetry codes: (v) $-x+1,-y+1,-z$; (vi) $-x+3,-y+1,-z+1$.
accompanied by the shortest $\mathrm{Ba}-\mathrm{O}$ bond of 2.725 (2) \AA. Each of the $\mathrm{Ba}^{\mathrm{II}}$ atoms bridged by O 1 is further coordinated by an oxygen atom of the nitro group with longer bond lengths $\left[\mathrm{Ba} 1-\mathrm{O}^{\mathrm{ji}}=2.865(2) \AA\right.$; $\left.\mathrm{Ba} 1-\mathrm{O} 2=2.970(3) \AA\right]$. Thus, the unique 2,4,6-trinitrophenolate anion bridges a pair of $\mathrm{Ba}^{\mathrm{II}}$ ions via the phenolic oxygen atom, and each $\mathrm{Ba}^{\mathrm{II}}$ atom is bonded to an oxygen atom of an adjacent nitro group resulting in a $\mu_{2^{-}}$ monoatomic bridging bis-bidentate binding mode for this ligand. In the chain, each $\mathrm{Ba}^{\mathrm{II}}$ atom is bonded to eight oxygen atoms of four symmetry-related picrate anions, and a pair of adjacent $\mathrm{Ba}^{\mathrm{II}}$ atoms are bridged by two symmetry-related phenolate oxygen atoms (Fig. 3).
A polyhedral chain of face-sharing $\left\{\mathrm{BaO}_{9}\right\}$ units flanked by organic ligands was reported recently in the one-dimensional polymeric compound $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{NMF})_{2}(4-\mathrm{nba})_{2}\right] \quad(\mathrm{NMF}=$ N-methylformamide; 4-nba $=4$-nitrobenzoate) due to a μ_{2}-binding aqua ligand and a pair of symmetry-related μ_{2}-monoatomic bridging 4-nba ligands (Bhargao \& Srinivasan, 2019). Likewise, the monoatomic bridging binding modes of the unique DMSO and the phenolate oxygen atoms of the picrate ligands in the structure of (1) result in the formation of an infinite chain of face-sharing $\left\{\mathrm{BaO}_{10}\right\}$ polyhedra flanked by $2,4,6$-trinitrophenolate and dimethyl sulfoxide ligands (Fig. 4). In the reported water-rich compound $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, however, the central $\mathrm{Ba}^{\text {II }}$ atom exhibits ten-coordination and is bonded to five monodentate

Face sharing $\left\{\mathrm{BaO}_{10}\right\}$ polyhedra in the crystal structure of (1) (top) versus discrete $\left\{\mathrm{BaO}_{10}\right\}$ polyhedra in the crystal structure of $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{C}_{6} \mathrm{H}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{3} \mathrm{O}_{7}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (bottom).
aqua ligands and a bidentate picrate anion (Harrowfield et al., 1995). A second unique picrate anion is a μ_{2}-bridging tridentate ligand and binds to a $\mathrm{Ba}^{\mathrm{II}}$ atom via a phenolate oxygen atom. The cation is also linked to an oxygen atom of an ortho nitro group and is bridged to a second $\mathrm{Ba}^{\mathrm{II}}$ via an oxygen of the nitro group trans to the phenolate oxygen (Fig. 4). In this one-dimensional coordination polymer, discrete $\left\{\mathrm{BaO}_{10}\right\}$ polyhedra are bridged by a picrate anion due to the absence of any monoatomic bridge.

The aromatic hydrogen atoms H3 and H5 are attached to the C3 and C5 donor atoms while the nitro oxygen atoms O4 and O6 function as hydrogen acceptors, resulting in interchain $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions. In this way, each chain is linked on either side to two other chains (Table 1, Fig. 5) into a three-dimensional network.

Synthesis and crystallization

To a slurry of barium carbonate $(0.395 \mathrm{~g}, 2 \mathrm{mmol})$ in water, picric acid $(0.916 \mathrm{~g}, 4 \mathrm{mmol})$ in water (40 ml) was added and the reaction mixture was heated on a water bath. Brisk effervescence was observed resulting in dissolution of the insoluble carbonate. The reaction mixture was then filtered into a beaker containing glycine ($4 \mathrm{mmol}, 0.3002 \mathrm{~g}$) in water. The filtrate was left aside for crystallization. A yellow precipitate was filtered off and subsequently dissolved in DMSO $(10 \mathrm{ml})$; this solution was left undisturbed. The crystalline product, which separated after two days, was isolated by filtration, washed with dichloromethane and dried in air; yield 0.95 g . Compound (1) can also be obtained without addition of glycine in the reaction by dissolving barium carbonate in aqueous picric acid to obtain the dipicrate of barium in situ. Concentration of the reaction mixture to a small volume followed by addition of DMSO afforded (1) as above.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

The S11 atom of the DMSO ligand and the attached methyl group ($\mathrm{C} 11-\mathrm{H} 11$) are disordered over two positions in a 0.73:0.27 ratio.

Figure 5
Interchain $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, shown as broken pink lines for the $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{v}}$ interaction on the right and for the $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {vi }}$ interaction on the left, link adjacent polymeric chains. [Symmetry codes: (v) $1-x, 1-y,-z$; (vi) $3-x, 1-y, 1-z$.]

Acknowledgements

BRS acknowledges the Department of Science \& Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single crystal X-ray diffractometer under the DST-FIST program.

References

Bhargao, P. H. \& Srinivasan, B. R. (2019). J. Coord. Chem. 72, $2599-$ 2615.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandler, C. J., Gable, R. W., Gulbis, J. M. \& Mackay, M. F. (1988). Aust. J. Chem. 41, 799-806.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Ferrando-Soria, J., Rood, M. T. M., Julve, M., Lloret, F., Journaux, Y., Pasán, J., Ruiz-Pérez, C., Fabelo, O. \& Pardo, E. (2012). CrystEngComm, 14, 761-764.
Fichtel, K., Hofmann, K. \& Behrens, U. (2004). Organometallics, 23, 4166-4168.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gschwind, F. \& Jansen, M. (2012). Acta Cryst. E68, m1319.
Harrowfield, J. M., Richmond, W. R., Skelton, B. W. \& White, A. H. (2004). Eur. J. Inorg. Chem. pp. 227-230.

Harrowfield, J. M., Skelton, B. W. \& White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.
Hong, P.-Z., Song, W.-D. \& Wu, Z.-H. (2007). Acta Cryst. E63, m2296.
Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.
Hughes, D. L. \& Wingfield, J. N. (1977). J. Chem. Soc. Chem. Commun. pp. 804-805.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.
Pi, C., Wan, L., Liu, W., Pan, Z., Wu, H., Wang, Y., Zheng, W., Weng, L., Chen, Z. \& Wu, L. (2009). Inorg. Chem. 48, 2967-2975.

Postma, R., Kanters, J. A., Duisenberg, A. J. M., Venkatasubramanian, K. \& Poonia, N. S. (1983). Acta Cryst. C39, 1221-1225.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Table 2
Experimental details.
Crystal data Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
671.68
Monoclinic, $P 2_{1} / m$
293
$4.1933(2), 24.1526(13)$,
$11.0917(7)$
$95.775(2)$
$1117.66(11)$
2
Mo K α
1.96
$0.23 \times 0.16 \times 0.05$

Bruker D8 Quest Eco
Multi-scan $(S A D A B S ;$ Krause et
al., 2015)
$0.537,0.746$
$15884,2860,2696$
0.045
0.667

$0.033,0.087,1.09$
2860
182
H atoms treated by a mixture of
independent and constrained
refinement
$1.73,-1.10$
$\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
Monoclinic, $P 2_{1} / m$
293
4.1933 (2), 24.1526 (13),
11.0917 (7)
95.775 (2)
1117.66 (11)

Mo $K \alpha$
1.96
$0.23 \times 0.16 \times 0.05$

Bruker D8 Quest Eco
Multi-scan (SADABS; Krause et al., 2015)

15884, 2860, 2696
0.045
0.667
0.033, 0.087, 1.09

2860
H atoms treated by a mixture of independent and constrained
$1.73,-1.10$

Computer programs: APEX3 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a),
SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), DIAMOND (Branden-
burg, 1999), shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Srinivasan, B. R., Parsekar, N. U., Apreyan, R. A. \& Petrosyan, A. M. (2019). Mol. Cryst. Liq. Cryst. 680, 75-84.

Srinivasan, B. R., Tari, S. P., Parsekar, N. U. \& Narvekar, K. U. (2020). Indian J Chem, 59A, 51-56.
Studebaker, D. B., Neumayer, D. A., Hinds, B. J., Stern, C. L. \& Marks, T. J. (2000). Inorg. Chem. 39, 3148-3157.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). 5, x201498 [https://doi.org/10.1107/S2414314620014984]

catena-Poly[barium(II)- μ_{2}-(dimethyl sulfoxide)- $\kappa^{2} \mathrm{O}$:O-bis(μ_{2}-2,4,6-trinitro-phenolato- $\left.\left.\kappa^{4} O^{2}, O^{1}: O^{1}, O^{6}\right)\right]$

Bikshandarkoil R. Srinivasan, Neha U. Parsekar and Kedar U. Narvekar

catena-Poly[barium(II)- μ_{2-}-(dimethyl sulfoxide)- $\kappa^{2} O: O-b i s\left(\mu_{2}-2,4,6\right.$-trinitrophenolato- $\left.\left.\kappa^{4} O^{2}, O^{1}: O^{1}, O^{6}\right)\right]$

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
$M_{r}=671.68$
Monoclinic, $P 2_{1} / m$
$a=4.1933$ (2) \AA
$b=24.1526(13) \AA$
$c=11.0917$ (7) \AA
$\beta=95.775(2)^{\circ}$
$V=1117.66$ (11) \AA^{3}
$Z=2$

Data collection

Bruker D8 Quest Eco diffractometer
Radiation source: Sealed Tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.537, T_{\max }=0.746$
15884 measured reflections

$$
F(000)=656
$$

$D_{\mathrm{x}}=1.996 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9959 reflections
$\theta=3.4-28.3^{\circ}$
$\mu=1.96 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, yellow
$0.23 \times 0.16 \times 0.05 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.087$
$S=1.09$
2860 reflections
182 parameters
0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.055 P)^{2}+0.7054 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.10 \mathrm{e}_{\AA^{-3}}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ba1	0.45109 (5)	0.250000	0.41165 (2)	0.02648 (9)	
O1	0.9359 (5)	0.31686 (8)	0.3517 (2)	0.0342 (4)	
O2	0.4249 (7)	0.30881 (12)	0.1757 (3)	0.0558 (7)	
O3	0.6121 (10)	0.33930 (17)	0.0155 (3)	0.0842 (12)	
O4	0.7913 (9)	0.54083 (14)	0.0692 (4)	0.0824 (11)	
O5	1.1509 (12)	0.56275 (15)	0.2103 (4)	0.1123 (17)	
O6	1.3008 (10)	0.44197 (13)	0.5598 (3)	0.0835 (12)	
O7	1.4143 (7)	0.35863 (10)	0.5130 (2)	0.0522 (6)	
O11	-0.0224 (9)	0.250000	0.5858 (3)	0.0470 (8)	
N1	0.5951 (7)	0.33983 (13)	0.1240 (3)	0.0433 (6)	
N2	0.9650 (10)	0.52998 (14)	0.1609 (4)	0.0628 (9)	
N3	1.2850 (7)	0.40289 (11)	0.4887 (3)	0.0435 (6)	
C1	0.9409 (7)	0.36577 (11)	0.3105 (3)	0.0312 (5)	
C2	0.7786 (7)	0.38185 (13)	0.1958 (3)	0.0356 (6)	
C3	0.7865 (9)	0.43382 (14)	0.1459 (3)	0.0435 (7)	
H3	0.682230	0.441196	0.069627	0.052*	
C4	0.9522 (9)	0.47457 (14)	0.2118 (4)	0.0465 (8)	
C5	1.1114 (9)	0.46442 (14)	0.3244 (3)	0.0438 (7)	
H5	1.219 (10)	0.4924 (19)	0.364 (4)	0.053*	
C6	1.1081 (8)	0.41125 (12)	0.3708 (3)	0.0363 (6)	
S11	0.1576 (5)	0.250000	0.70846 (17)	0.0577 (7)	0.729 (6)
C11	0.031 (2)	0.3077 (4)	0.7858 (7)	0.156 (4)	0.73
H11A	0.143280	0.308937	0.865642	0.187*	0.73
H11B	0.076199	0.340762	0.742520	0.187*	0.73
H11C	-0.195036	0.305151	0.791823	0.187*	0.73
S11'	-0.079 (3)	0.250000	0.7161 (8)	0.143 (6)	0.271 (6)
C11'	0.031 (2)	0.3077 (4)	0.7858 (7)	0.156 (4)	0.27
H11D	-0.010490	0.305316	0.869186	0.187*	0.27
H11E	0.256229	0.313593	0.781421	0.187*	0.27
H11F	-0.087455	0.338061	0.747709	0.187*	0.27

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.02267(13)$	$0.02134(13)$	$0.03503(14)$	0.000	$0.00095(8)$	0.000
O1	$0.0308(10)$	$0.0254(9)$	$0.0463(12)$	$0.0007(8)$	$0.0035(8)$	$0.0095(8)$
O2	$0.0552(16)$	$0.0523(16)$	$0.0588(15)$	$-0.0154(12)$	$0.0002(12)$	$0.0058(12)$
O3	$0.125(3)$	$0.088(3)$	$0.0385(14)$	$-0.033(2)$	$0.0037(17)$	$0.0009(15)$
O4	$0.102(3)$	$0.0507(18)$	$0.092(2)$	$0.0103(17)$	$-0.003(2)$	$0.0391(17)$
O5	$0.153(4)$	$0.0435(19)$	$0.131(4)$	$-0.034(2)$	$-0.032(3)$	$0.034(2)$
O6	$0.138(3)$	$0.0460(17)$	$0.0609(18)$	$0.0187(19)$	$-0.0173(19)$	$-0.0189(14)$
O7	$0.0638(16)$	$0.0344(12)$	$0.0545(14)$	$0.0111(11)$	$-0.0133(12)$	$-0.0060(10)$
O11	$0.056(2)$	$0.048(2)$	$0.0360(16)$	0.000	$-0.0012(14)$	0.000
N1	$0.0485(16)$	$0.0407(15)$	$0.0395(13)$	$0.0030(12)$	$-0.0011(11)$	$0.0068(12)$
N2	$0.081(3)$	$0.0332(16)$	$0.076(2)$	$0.0000(16)$	$0.013(2)$	$0.0194(16)$

N3	$0.0575(17)$	$0.0280(13)$	$0.0444(14)$	$0.0025(12)$	$0.0019(12)$	$-0.0029(11)$
C1	$0.0303(13)$	$0.0235(12)$	$0.0408(14)$	$0.0041(10)$	$0.0086(11)$	$0.0049(10)$
C2	$0.0379(15)$	$0.0301(14)$	$0.0393(14)$	$0.0025(11)$	$0.0062(11)$	$0.0070(11)$
C3	$0.0506(19)$	$0.0359(16)$	$0.0447(16)$	$0.0058(14)$	$0.0078(14)$	$0.0135(13)$
C4	$0.056(2)$	$0.0278(15)$	$0.057(2)$	$0.0052(14)$	$0.0117(16)$	$0.0147(14)$
C5	$0.055(2)$	$0.0252(14)$	$0.0520(18)$	$-0.0005(13)$	$0.0081(15)$	$0.0026(13)$
C6	$0.0420(16)$	$0.0259(13)$	$0.0415(15)$	$0.0033(11)$	$0.0070(12)$	$0.0023(11)$
S11	$0.0417(12)$	$0.0901(16)$	$0.0403(9)$	0.000	$-0.0005(7)$	0.000
C11	$0.141(7)$	$0.213(10)$	$0.110(5)$	$0.007(7)$	$-0.005(5)$	$-0.117(7)$
S11'	$0.092(9)$	$0.285(19)$	$0.054(4)$	0.000	$0.011(4)$	0.000
C11'	$0.141(7)$	$0.213(10)$	$0.110(5)$	$0.007(7)$	$-0.005(5)$	$-0.117(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ba}-\mathrm{Ol}^{\text {i }}$	2.725 (2)	N1-C2	1.461 (4)
$\mathrm{Ba}-\mathrm{O} 1^{\text {ii }}$	2.725 (2)	N2-C4	1.456 (4)
$\mathrm{Ba}-\mathrm{O} 1$	2.730 (2)	N3-C6	1.451 (4)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.730 (2)	C1-C6	1.432 (4)
$\mathrm{Ba}-\mathrm{O} 11^{\text {iv }}$	2.783 (4)	C1-C2	1.435 (4)
$\mathrm{Ba} 1-\mathrm{O} 7^{\text {ii }}$	2.865 (2)	C2-C3	1.373 (4)
$\mathrm{Ba}-\mathrm{O}^{\text {i }}$	2.865 (2)	C3-C4	1.372 (5)
Ba1-O11	2.906 (4)	C3-H3	0.9300
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.970 (3)	C4-C5	1.379 (5)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.970 (3)	C5-C6	1.384 (4)
Ba1-S11	3.629 (2)	C5-H5	0.90 (4)
$\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	4.1933 (2)	$\mathrm{S} 11-\mathrm{C} 11^{\text {iii }}$	1.747 (7)
$\mathrm{O} 1-\mathrm{C} 1$	1.268 (3)	S11-C11	1.747 (7)
$\mathrm{O} 2-\mathrm{N} 1$	1.218 (4)	C11-H11A	0.9600
$\mathrm{O} 3-\mathrm{N} 1$	1.212 (4)	C11-H11B	0.9600
$\mathrm{O} 4-\mathrm{N} 2$	1.218 (5)	C11-H11C	0.9600
O5-N2	1.204 (6)	S11'-C11'	1.637 (9)
O6-N3	1.228 (4)	C11'-H11D	0.9600
O7-N3	1.217 (4)	C11'-H11E	0.9600
O11-S11	1.488 (4)	C11'-H11F	0.9600
O11-S11'	1.488 (9)		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	72.68 (9)	O7- ${ }^{\text {i }}$ - ${ }^{\text {a }} 1-\mathrm{Ba} 1^{\text {iv }}$	95.35 (6)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 1$	151.94 (9)	O11-Ba1-Ba1 ${ }^{\text {iv }}$	138.60 (7)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1$	100.46 (6)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	87.04 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O}^{\text {iii }}$	100.46 (6)	$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	87.04 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	151.94 (9)	S11-Bal-Ba1 ${ }^{\text {iv }}$	115.50 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	72.52 (9)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {iv }}$	126.78 (18)
O 1 - $\mathrm{Ba}-\mathrm{O} 11^{\mathrm{iv}}$	136.32 (6)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1$	132.75 (18)
$\mathrm{O} 1^{\mathrm{ii}}$ - $\mathrm{Ba}-\mathrm{O} 11^{\mathrm{iv}}$	136.32 (6)	$\mathrm{Ba} 1^{\text {iv }}-\mathrm{O} 1-\mathrm{Ba} 1$	100.46 (6)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 11^{\text {iv }}$	67.10 (7)	N1-O2-Ba1	137.6 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 11^{\text {iv }}$	67.10 (7)	N3-O7-Ba1 ${ }^{\text {iv }}$	139.3 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 7^{\text {ii }}$	124.46 (7)	S11-O11-Ba1 ${ }^{\text {ii }}$	158.2 (2)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 7^{\mathrm{ii}}$	58.69 (7)	S11-O11-Ba1	106.9 (2)

$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 7{ }^{\text {ii }}$	67.95 (8)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	135.08 (7)
$\mathrm{O} 11^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 7{ }^{\text {ii }}$	78.34 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-7^{\text {i }}$	58.69 (7)
$\mathrm{O}{ }^{1 i}-\mathrm{Ba}-\mathrm{O}^{\text {i }}$	124.46 (7)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	135.08 (7)
$\mathrm{O} 1^{\text {iiii- }}-\mathrm{Ba} 1-\mathrm{O}^{\mathrm{i}}$	67.95 (8)
$\mathrm{O} 11^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 7^{\mathrm{i}}$	78.34 (6)
$\mathrm{O} 7^{\text {ii- }}-\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	132.66 (11)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 11$	65.44 (7)
$\mathrm{O1}{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 11$	65.44 (7)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 11$	137.49 (6)
$\mathrm{O} 1{ }^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 11$	137.48 (6)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 11$	94.94 (9)
O7ii- ${ }^{\text {ii }}$ - $1-\mathrm{O} 11$	70.84 (6)
O7- ${ }^{\text {i }}$ - ${ }^{\text {a }}-\mathrm{O} 11$	70.84 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	62.84 (7)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	96.33 (7)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	91.77 (8)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	57.66 (7)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	124.61 (8)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	141.74 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	84.78 (8)
$\mathrm{O} 11-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	128.20 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2$	96.33 (7)
$\mathrm{O} 1^{\text {ii] }} \mathrm{Ba} 1-\mathrm{O} 2$	62.84 (7)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	57.66 (7)
$\mathrm{O}{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2$	91.77 (8)
$\mathrm{O} 11^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 2$	124.61 (8)
$\mathrm{O} 7{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 2$	84.78 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2$	141.74 (8)
$\mathrm{O} 11-\mathrm{Ba} 1-\mathrm{O} 2$	128.20 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2$	57.15 (12)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{S} 11$	83.59 (5)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Ba}-\mathrm{S} 11$	83.59 (5)
O1-Ba1-S11	123.35 (5)
O1iii-Ba1-S11	123.35 (5)
$\mathrm{O} 11^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{S} 11$	71.83 (8)
	66.89 (6)
O7- ${ }^{\text {i }}$ - ${ }^{\text {a }}$	66.89 (6)
O11-Ba1-S11	23.10 (8)
$\mathrm{O} 2{ }^{\text {iii- }} \mathrm{Ba} 1-\mathrm{S} 11$	144.44 (6)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{S} 11$	144.44 (6)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	140.18 (4)
$\mathrm{O} 1{ }^{\text {ii] }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	140.18 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	39.73 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	39.73 (4)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	43.66 (7)

S11'-O11-Ba1	146.2 (5)
$\mathrm{Ba} 1{ }^{\mathrm{ii}}-\mathrm{O} 11-\mathrm{Ba} 1$	94.94 (9)
O3-N1-O2	123.9 (3)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2$	117.9 (3)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 2$	118.2 (3)
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{O} 4$	123.0 (4)
O5-N2-C4	118.4 (4)
O4-N2- C 4	118.6 (4)
O7-N3-O6	122.6 (3)
O7-N3-C6	119.9 (3)
O6-N3-C6	117.5 (3)
O1-C1-C6	124.8 (3)
O1-C1-C2	123.3 (3)
C6-C1-C2	111.9 (3)
C3-C2-C1	125.2 (3)
C3-C2-N1	116.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	118.2 (3)
C4-C3-C2	118.2 (3)
C4-C3-H3	120.9
C2-C3-H3	120.9
C3-C4-C5	121.9 (3)
C3-C4-N2	119.3 (3)
C5-C4-N2	118.8 (4)
C4-C5-C6	118.7 (3)
C4-C5-H5	119 (3)
C6-C5-H5	123 (3)
C5-C6-C1	124.1 (3)
C5-C6-N3	116.1 (3)
C1-C6-N3	119.7 (3)
O11-S11-C11 ${ }^{\text {iii }}$	107.4 (3)
O11-S11-C11	107.4 (3)
C11iii-S11-C11	105.9 (7)
O11-S11-Ba1	50.03 (16)
C11iii-S11-Ba1	126.4 (4)
C11-S11-Ba1	126.4 (4)
S11-C11-H11A	109.5
S11-C11-H11B	109.5
H11A-C11-H11B	109.5
S11-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
O11-S11'-C11'	113.2 (5)
S11'-C11'-H11D	109.5
S11'-C11'-H11E	109.5
H11D-C11-H11E	109.5
S11'-C11'-H11F	109.5
H11D-C11- H11F	109.5
H11E-C11'-H11F	109.5

$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{iv}}$	$95.35(6)$
$\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	$144.7(4)$
$\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 2$	$-38.2(5)$
$\mathrm{Ba} 1^{\mathrm{iv}}-\mathrm{O} 7-\mathrm{N} 3-\mathrm{O} 6$	$173.9(3)$
$\mathrm{Ba} 1^{\mathrm{iv}}-\mathrm{O} 7-\mathrm{N} 3-\mathrm{C} 6$	$-7.2(6)$
$\mathrm{Ba} 1^{\mathrm{iv}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$-58.8(4)$
$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$119.2(3)$
$\mathrm{Ba} 1^{\mathrm{iv}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$120.7(3)$
$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-61.3(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.9(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$0.9(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-179.5(3)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$39.9(5)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-137.3(3)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-138.8(4)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$44.0(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-2.5(5)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.7(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$179.8(3)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-168.4(5)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$10.4(6)$

$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$10.7(7)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$-170.5(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.3(6)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-177.8(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.9(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 3$	$178.8(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.9(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.3(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 3$	$-0.8(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 3$	$179.6(3)$
$\mathrm{O} 7-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$	$-147.6(3)$
$\mathrm{O} 6-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$	$31.4(5)$
$\mathrm{O} 7-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 1$	$33.0(5)$
$\mathrm{O} 6-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 1$	$-148.0(4)$
$\mathrm{Ba} 1 \mathrm{ii}-\mathrm{O} 11-\mathrm{S} 11-\mathrm{C} 11^{\mathrm{iii}}$	$56.7(4)$
$\mathrm{Ba} 1-\mathrm{O} 11-\mathrm{S} 11-\mathrm{C} 11^{\mathrm{iii}}$	$-123.3(4)$
$\mathrm{Ba} 1 \mathrm{ii}-\mathrm{O} 11-\mathrm{S} 11-\mathrm{C} 11$	$-56.7(4)$
$\mathrm{Ba} 1-\mathrm{O} 11-\mathrm{S} 11-\mathrm{C} 11$	$123.3(4)$
$\mathrm{Ba} 1 \mathrm{ii}-\mathrm{O} 11-\mathrm{S} 11-\mathrm{Ba} 1$	$180.000(2)$
$\mathrm{Ba} 1^{\mathrm{ii}}-\mathrm{O} 11-\mathrm{S} 11^{\prime}-\mathrm{C} 11^{\prime}$	$-112.1(7)$
$\mathrm{Ba} 1-\mathrm{O} 11-\mathrm{S} 11^{\prime}-\mathrm{C} 11^{\prime}$	$67.9(7)$

Symmetry codes: (i) $x-1,-y+1 / 2, z$; (ii) $x-1, y, z$; (iii) $x,-y+1 / 2, z$; (iv) $x+1, y, z$.
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.43	$3.283(5)$	153
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O}^{\text {vi }}$	$0.90(4)$	$2.63(4)$	$3.492(5)$	$159(3)$

Symmetry codes: (v) $-x+1,-y+1,-z$; (vi) $-x+3,-y+1,-z+1$.

