ISSN 2414-3146

Received 13 May 2021 Accepted 25 May 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

¹ This paper is dedicated to the late Professor Michael R. Detty.

‡ Both authors contributed equally to this work

Keywords: xanthene; dye; rhodamine; telluroxanthene; crystal structure; polymorph.

CCDC reference: 2085596

Structural data: full structural data are available from iucrdata.iucr.org

N-[6-(Dimethylamino)-9-phenyl-3*H*-telluroxanthen-3-ylidene]-*N*-methylmethanaminium hexafluorophosphate monoclinic polymorph¹

Shea Myers,^a[‡] Patrick Johnson^a[‡] and Jason B. Benedict^b*

^a730 Natural Sciences Complex, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA, and ^b771 Natural Sciences Complex, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA. *Correspondence e-mail: jbb6@buffalo.edu

The title compound $C_{23}H_{23}N_2Te^+ \cdot PF_6^-$, is a monoclinic polymorph of the previously reported triclinic structure [Calitree *et al.* (2007). *Organometallics*, **26**, 6248–6257]. In the crystal, parallel offset $\pi - \pi$ stacking [shortest centroid-centroid separation = 3.9620 (9) Å] and ionic interactions help to establish the packing.

Structure description

Chalcogen dyes with near-infrared absorption are used in the targeting of mitochondria of tumors (Detty *et al.*, 1990; Leonard *et al.*, 1999) and enhancing the sensitivity of medical imaging (Bedics *et al.*, 2015; Kryman *et al.*, 2016). The title compound crystallizes with a single $C_{23}H_{23}N_2Te^+$ telluroxanthene cation and its PF_6^- counter-ion in the asymmetric unit (Fig. 1). The present monoclinic structure is a polymorph of the previously reported triclinic phase (Calitree *et al.*, 2007; Cambridge Structural Database refcode CIRPAV), which was recrystallized from the mixed solvents of acetonitrile and ether.

The mean plane of the pendant phenyl ring (C19–C23) is nearly orthogonal to the plane of the central telluroxanthene ring (C1/C6/C7/C8/C13/Te1), which subtends a dihedral angle of 70.40 (6)°. The amine bonds (C3–N2 and C11–N1) on either side of the nearly planar telluroxanthene core (r.m.s. deviation = 0.035 Å) are almost the same length [1.343 (3) and 1.347 (3) Å, respectively] indicating delocalization of the positive charge of the cation. The crystal packing is shown in Fig. 2. The telluroxanthene cations form centrosymmetric dimer pairs, which π -stack to form columns propagating parallel to [100]. Neighboring columns interact along [010] to form a herringbone pattern when viewed parallel to [001] (Fig. 3).

Asymmetric unit of the title compound with displacement ellipsoids drawn at 50%.

Synthesis and crystallization

The synthesis of title compound was previously reported (Calitree *et al.*, 2007). The title compound was dissolved in a solution of ethanol and water (70/30) and recrystallized by slow evaporation to give metallic green prisms suitable for X-ray diffraction.

Refinement

Crystal data, data collection, and refinement details are summarized in Table 1.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

References

Bedics, M. A., Kearns, H., Cox, J. M., Mabbott, S., Ali, F., Shand, N. C., Faulds, K., Benedict, J. B., Graham, D. & Detty, M. R. (2015). *Chem. Sci.* 6, 2302–2306.

Figure 2 Crystal packing of the title compound viewed along [001].

-	
Crystal data	
Chemical formula	$C_{23}H_{23}N_2Te^+ \cdot PF_6^-$
M _r	600.00
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	90
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.7763 (6), 23.9606 (17), 10.8738 (8)
β (°)	99.256 (2)
$V(Å^3)$	2256.8 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.45
Crystal size (mm)	$0.6 \times 0.5 \times 0.05$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2018)
T_{\min}, T_{\max}	0.689, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	56521, 8157, 6766
R _{int}	0.071
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.767
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.078, 1.02
No. of reflections	8157
No. of parameters	302
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.67, -0.59

Table 1

Experimental details.

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

- Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calitree, B., Donnelly, D. J., Holt, J. J., Gannon, M. K., Nygren, C. L., Sukumaran, D. K., Autschbach, J. & Detty, M. R. (2007). Organometallics, 26, 6248–6257.
- Detty, M. R., Merkel, P. B., Hilf, R., Gibson, S. L. & Powers, S. K. (1990). J. Med. Chem. 33, 1108–1116.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kryman, M. W., McCormick, T. M. & Detty, M. R. (2016). Organometallics, 35, 1944–1955.
- Leonard, K., Nelen, M., Raghu, M. & Detty, M. R. (1999). J. Heterocycl. Chem. 36, 707-717.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Crystal packing of the title compound viewed along [100].

full crystallographic data

IUCrData (2021). **6**, x210545 [https://doi.org/10.1107/S2414314621005459]

N-[6-(Dimethylamino)-9-phenyl-3*H*-telluroxanthen-3-ylidene]-*N*-methylmethanaminium hexafluorophosphate monoclinic polymorph

Shea Myers, Patrick Johnson and Jason B. Benedict

N-[6-(Dimethylamino)-9-phenyl-3*H*-telluroxanthen-3-ylidene]-*N*-methylmethanaminium hexafluorophosphate

F(000) = 1184

 $\theta = 2.5 - 30.3^{\circ}$

 $\mu = 1.45 \text{ mm}^{-1}$

T = 90 K

 $R_{\rm int} = 0.071$

 $h = -13 \rightarrow 12$ $k = -36 \rightarrow 36$ $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.766 {\rm Mg} {\rm m}^{-3}$

Plate, metallic green

 $0.6 \times 0.5 \times 0.05 \text{ mm}$

8157 independent reflections 6766 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 33.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9937 reflections

Crystal data

 $C_{23}H_{23}N_2\text{Te}^+\text{PF}_6^ M_r = 600.00$ Monoclinic, $P2_1/n$ a = 8.7763 (6) Å b = 23.9606 (17) Å c = 10.8738 (8) Å $\beta = 99.256$ (2)° V = 2256.8 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
$T_{\min} = 0.689, \ T_{\max} = 0.746$
56521 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0237P)^2 + 2.0434P]$
S = 1.01	where $P = (F_0^2 + 2F_c^2)/3$
8157 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
302 parameters	$\Delta ho_{ m max} = 0.67 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.59 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Te1	0.37770 (2)	0.57306 (2)	0.60576 (2)	0.01836 (4)	
P1	0.20110 (7)	0.81612 (2)	0.40997 (5)	0.02187 (11)	
F3	0.1105 (2)	0.77039 (8)	0.32013 (17)	0.0596 (6)	
F4	0.3481 (2)	0.80903 (9)	0.34268 (19)	0.0567 (5)	
N2	0.6606 (2)	0.74434 (7)	0.42304 (17)	0.0210 (3)	
F5	0.2897 (2)	0.86218 (8)	0.49805 (18)	0.0576 (5)	
F2	0.0542 (2)	0.82231 (11)	0.47618 (17)	0.0693 (7)	
F1	0.1372 (3)	0.86213 (8)	0.30973 (18)	0.0595 (5)	
F6	0.2649 (3)	0.77015 (8)	0.50973 (19)	0.0644 (6)	
N1	0.0763 (2)	0.37834 (8)	0.56622 (18)	0.0248 (4)	
C13	0.2664 (2)	0.50923 (8)	0.49838 (18)	0.0164 (3)	
C7	0.3079 (2)	0.55013 (8)	0.29042 (18)	0.0156 (3)	
C1	0.4416 (2)	0.61632 (8)	0.45709 (17)	0.0156 (3)	
C6	0.4000 (2)	0.59734 (8)	0.33084 (18)	0.0155 (3)	
C5	0.4606 (2)	0.63079 (8)	0.24046 (19)	0.0189 (4)	
Н5	0.441068	0.619248	0.155810	0.023*	
C12	0.2101 (2)	0.46640 (8)	0.56335 (19)	0.0191 (4)	
H12	0.225645	0.467975	0.651777	0.023*	
C11	0.1301 (2)	0.42024 (8)	0.5026 (2)	0.0190 (4)	
C19	0.1629 (2)	0.57900 (8)	0.08336 (19)	0.0188 (4)	
H19	0.119627	0.608620	0.124457	0.023*	
C18	0.2679 (2)	0.54247 (8)	0.15202 (17)	0.0154 (3)	
C4	0.5441 (2)	0.67792 (9)	0.26909 (19)	0.0199 (4)	
H4	0.580399	0.698301	0.204645	0.024*	
C3	0.5786 (2)	0.69747 (8)	0.39471 (19)	0.0171 (4)	
C9	0.1639 (2)	0.46274 (9)	0.30664 (19)	0.0207 (4)	
H9	0.145827	0.461284	0.218177	0.025*	
C8	0.2473 (2)	0.50933 (8)	0.36550 (18)	0.0163 (3)	
C2	0.5249 (2)	0.66452 (8)	0.48724 (19)	0.0186 (4)	
H2	0.546799	0.675927	0.571915	0.022*	
C10	0.1088 (3)	0.42026 (9)	0.3704 (2)	0.0231 (4)	
H10	0.055233	0.390205	0.325641	0.028*	
C20	0.1214 (3)	0.57237 (9)	-0.04422 (19)	0.0212 (4)	
H20	0.049254	0.597224	-0.090058	0.025*	
C23	0.3309 (2)	0.49957 (9)	0.08981 (19)	0.0195 (4)	
H23	0.402725	0.474487	0.135230	0.023*	
C22	0.2894 (3)	0.49323 (9)	-0.0381 (2)	0.0229 (4)	
H22	0.332861	0.463846	-0.079840	0.027*	
C17	0.7068 (3)	0.77967 (9)	0.3255 (2)	0.0259 (4)	
H17A	0.758035	0.756767	0.269628	0.039*	
H17B	0.778070	0.808576	0.363729	0.039*	
H17C	0.615117	0.797316	0.277811	0.039*	
C16	0.6824 (3)	0.76688 (10)	0.5492 (2)	0.0278 (5)	
H16A	0.582395	0.778526	0.569750	0.042*	
H16B	0.751810	0.799123	0.554501	0.042*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16C	0.727487	0.738145	0.608176	0.042*	
C21	0.1849 (3)	0.52966 (9)	-0.10492 (19)	0.0224 (4)	
H21	0.156722	0.525308	-0.192469	0.027*	
C15	0.0866 (3)	0.38130 (10)	0.7010 (2)	0.0307 (5)	
H15A	0.195362	0.381323	0.739952	0.046*	
H15B	0.034410	0.348939	0.730416	0.046*	
H15C	0.036942	0.415640	0.723435	0.046*	
C14	0.0003 (3)	0.32985 (10)	0.5022 (3)	0.0327 (5)	
H14A	-0.104010	0.340189	0.462121	0.049*	
H14B	-0.006029	0.299921	0.562561	0.049*	
H14C	0.059824	0.316883	0.438780	0.049*	

Atomic displacement parameters $(Å^2)$

	<i>L</i> /11	I /22	I /33	<i>L</i> /12	<i>L</i> /13	1/23
 Ta1	0.02524.(7)	0.01826 (7)	0.01140.(6)	_0.00151.(5)	0.00277.(5)	0.00012 (4)
D1	0.02324(7)	0.01830(7)	0.01140(0)	-0.00131(3)	0.00277(3)	0.00012(4)
	0.0231(3)	0.0232(3)	0.0192(3)	-0.0027(2)	0.0032(2)	0.0013(2)
F3	0.0821(14)	0.0652 (12)	0.0340 (9)	-0.0458 (11)	0.0166 (9)	-0.01/3(9)
F4	0.0367 (9)	0.0773(14)	0.0610 (12)	0.0056 (9)	0.0226 (9)	-0.0010 (10)
N2	0.0213 (8)	0.0186 (8)	0.0219 (9)	-0.0039 (6)	0.0003 (7)	-0.0002 (7)
F5	0.0738 (13)	0.0491 (11)	0.0467 (11)	-0.0247 (10)	-0.0002 (10)	-0.0150 (9)
F2	0.0339 (9)	0.146 (2)	0.0308 (9)	-0.0007 (11)	0.0147 (7)	-0.0149 (11)
F1	0.0782 (14)	0.0536 (11)	0.0438 (10)	0.0231 (10)	0.0010 (10)	0.0201 (9)
F6	0.0841 (15)	0.0490 (11)	0.0559 (12)	0.0037 (10)	-0.0014 (11)	0.0296 (9)
N1	0.0276 (9)	0.0207 (8)	0.0274 (9)	-0.0028 (7)	0.0082 (8)	0.0048 (7)
C13	0.0176 (8)	0.0161 (8)	0.0159 (8)	0.0018 (7)	0.0036 (7)	-0.0004(7)
C7	0.0162 (8)	0.0173 (8)	0.0130 (8)	0.0011 (7)	0.0015 (7)	0.0000 (7)
C1	0.0171 (8)	0.0174 (8)	0.0123 (8)	0.0022 (7)	0.0026 (7)	0.0021 (6)
C6	0.0154 (8)	0.0172 (8)	0.0136 (8)	0.0009 (7)	0.0016 (7)	0.0003 (7)
C5	0.0201 (9)	0.0219 (9)	0.0150 (9)	-0.0005 (7)	0.0041 (7)	-0.0002 (7)
C12	0.0235 (9)	0.0189 (9)	0.0156 (9)	0.0030 (7)	0.0052 (7)	0.0013 (7)
C11	0.0198 (9)	0.0166 (9)	0.0211 (9)	0.0011 (7)	0.0050 (7)	0.0030 (7)
C19	0.0217 (9)	0.0191 (9)	0.0157 (9)	0.0019 (7)	0.0030 (7)	0.0011 (7)
C18	0.0169 (8)	0.0164 (8)	0.0130 (8)	-0.0024 (7)	0.0024 (7)	0.0002 (6)
C4	0.0212 (9)	0.0218 (9)	0.0166 (9)	-0.0026 (7)	0.0032 (7)	0.0011 (7)
C3	0.0156 (8)	0.0166 (8)	0.0186 (9)	0.0010 (7)	0.0016 (7)	0.0003 (7)
C9	0.0233 (10)	0.0236 (10)	0.0146 (9)	-0.0043 (8)	0.0010 (7)	-0.0005 (7)
C8	0.0167 (8)	0.0166 (8)	0.0155 (8)	0.0004 (7)	0.0019 (7)	0.0005 (7)
C2	0.0223 (9)	0.0181 (9)	0.0149 (8)	0.0000(7)	0.0018 (7)	-0.0011 (7)
C10	0.0268 (11)	0.0212 (10)	0.0209 (10)	-0.0062(8)	0.0024 (8)	-0.0010 (8)
C20	0.0225 (10)	0.0251 (10)	0.0156 (9)	0.0014 (8)	0.0018 (7)	0.0031 (7)
C23	0.0207 (9)	0.0198 (9)	0.0179 (9)	0.0024 (7)	0.0029 (7)	0.0000 (7)
C22	0.0241 (10)	0.0252 (10)	0.0199 (10)	0.0004 (8)	0.0052 (8)	-0.0069 (8)
C17	0.0277 (11)	0.0231 (10)	0.0272 (11)	-0.0077 (8)	0.0056 (9)	0.0013 (9)
C16	0.0341 (12)	0.0243 (10)	0.0239 (11)	-0.0074 (9)	0.0012 (9)	-0.0056 (8)
C21	0.0242 (10)	0.0304 (11)	0.0125 (9)	-0.0024 (8)	0.0022 (7)	-0.0024(8)
C15	0.0397 (13)	0.0275 (11)	0.0291 (12)	0.0046 (10)	0.0188 (10)	0.0083 (9)
C14	0.0342 (12)	0.0215 (10)	0.0410 (14)	-0.0079 (9)	0.0015 (11)	0.0078 (10)

Geometric parameters (Å, °)

Te1—C13	2.0711 (19)	C19—C20	1.386 (3)
Te1—C1	2.0723 (19)	C18—C23	1.393 (3)
P1—F3	1.5930 (17)	C4—H4	0.9500
P1—F4	1.5911 (18)	C4—C3	1.430 (3)
P1—F5	1.5813 (17)	C3—C2	1.418 (3)
P1—F2	1.5816 (18)	С9—Н9	0.9500
P1—F1	1.5877 (17)	С9—С8	1.429 (3)
P1—F6	1.5838 (18)	C9—C10	1.363 (3)
N2—C3	1.343 (3)	С2—Н2	0.9500
N2—C17	1.464 (3)	C10—H10	0.9500
N2—C16	1.458 (3)	C20—H20	0.9500
N1-C11	1.347 (3)	C20—C21	1.382 (3)
N1—C15	1.456 (3)	C23—H23	0.9500
N1-C14	1.460 (3)	C23—C22	1.388 (3)
C13—C12	1.382 (3)	C22—H22	0.9500
C13—C8	1.428 (3)	C22—C21	1.385 (3)
C7—C6	1.419 (3)	C17—H17A	0.9800
C7—C18	1.501 (3)	C17—H17B	0.9800
C7—C8	1.430 (3)	C17—H17C	0.9800
C1—C6	1.436 (3)	C16—H16A	0.9800
C1—C2	1.378 (3)	C16—H16B	0.9800
C6—C5	1.435 (3)	C16—H16C	0.9800
С5—Н5	0.9500	C21—H21	0.9500
C5—C4	1.355 (3)	C15—H15A	0.9800
C12—H12	0.9500	C15—H15B	0.9800
C12—C11	1.416 (3)	C15—H15C	0.9800
C11—C10	1.419 (3)	C14—H14A	0.9800
С19—Н19	0.9500	C14—H14B	0.9800
C19—C18	1.397 (3)	C14—H14C	0.9800
C13—Te1—C1	95.27 (8)	N2—C3—C4	121.10 (19)
F4—P1—F3	90.36 (11)	N2—C3—C2	122.01 (18)
F5—P1—F3	179.21 (12)	C2—C3—C4	116.88 (18)
F5—P1—F4	89.82 (11)	С8—С9—Н9	118.2
F5—P1—F2	90.94 (12)	С10—С9—Н9	118.2
F5—P1—F1	90.93 (11)	C10—C9—C8	123.63 (19)
F5—P1—F6	89.14 (11)	C13—C8—C7	125.81 (18)
F2—P1—F3	88.88 (11)	C13—C8—C9	114.86 (17)
F2—P1—F4	179.18 (13)	C9—C8—C7	119.29 (18)
F2—P1—F1	91.36 (12)	C1—C2—C3	121.47 (18)
F2—P1—F6	88.73 (12)	C1—C2—H2	119.3
F1—P1—F3	88.30 (12)	C3—C2—H2	119.3
F1—P1—F4	88.93 (11)	C11—C10—H10	119.5
F6—P1—F3	91.63 (12)	C9—C10—C11	121.0 (2)
F6—P1—F4	90.98 (12)	C9—C10—H10	119.5
F6—P1—F1	179.88 (14)	С19—С20—Н20	119.9

C3—N2—C17	121.19 (18)	C21—C20—C19	120.11 (19)
C3—N2—C16	120.66 (18)	C21—C20—H20	119.9
C16—N2—C17	117.25 (17)	C18—C23—H23	119.8
C11—N1—C15	120.73 (19)	C22—C23—C18	120.46 (19)
C11—N1—C14	121.3 (2)	С22—С23—Н23	119.8
C15—N1—C14	117.96 (19)	С23—С22—Н22	120.0
C12—C13—Te1	115.80 (14)	C21—C22—C23	120.09 (19)
C12—C13—C8	121.69 (18)	C21—C22—H22	120.0
C8-C13-Te1	122.50 (14)	N2—C17—H17A	109.5
C6—C7—C18	115.97 (16)	N2—C17—H17B	109.5
C6—C7—C8	127.88 (18)	N2—C17—H17C	109.5
C8—C7—C18	116.15 (17)	H17A—C17—H17B	109.5
C6—C1—Te1	121.88 (14)	H17A—C17—H17C	109.5
C2—C1—Te1	115.68 (14)	H17B—C17—H17C	109.5
C2—C1—C6	122.44 (18)	N2—C16—H16A	109.5
C7—C6—C1	126.39 (17)	N2—C16—H16B	109.5
C7—C6—C5	119.26 (17)	N2—C16—H16C	109.5
C5—C6—C1	114.35 (17)	H16A—C16—H16B	109.5
С6—С5—Н5	118.2	H16A—C16—H16C	109.5
C4—C5—C6	123.68 (19)	H16B—C16—H16C	109.5
C4—C5—H5	118.2	C20—C21—C22	120.00 (19)
C13—C12—H12	118.9	C20—C21—H21	120.0
C13—C12—C11	122.21 (19)	C22—C21—H21	120.0
C11—C12—H12	118.9	N1—C15—H15A	109.5
N1—C11—C12	122.1 (2)	N1—C15—H15B	109.5
N1—C11—C10	121.37 (19)	N1—C15—H15C	109.5
C12—C11—C10	116.57 (18)	H15A—C15—H15B	109.5
C18—C19—H19	119.7	H15A—C15—H15C	109.5
С20—С19—Н19	119.7	H15B—C15—H15C	109.5
C20—C19—C18	120.53 (19)	N1—C14—H14A	109.5
C19—C18—C7	119.16 (17)	N1—C14—H14B	109.5
C23—C18—C7	122.02 (17)	N1—C14—H14C	109.5
C23—C18—C19	118.82 (18)	H14A—C14—H14B	109.5
C5—C4—H4	119.5	H14A—C14—H14C	109.5
C5—C4—C3	121.07 (19)	H14B—C14—H14C	109.5
C3—C4—H4	119.5		
Te1-C13-C12-C11	179.33 (15)	C18—C7—C6—C5	-6.0 (3)
Te1-C13-C8-C7	3.9 (3)	C18—C7—C8—C13	-177.95 (18)
Te1-C13-C8-C9	-178.28 (14)	C18—C7—C8—C9	4.3 (3)
Te1-C1-C6-C7	3.0 (3)	C18—C19—C20—C21	-0.5 (3)
Te1-C1-C6-C5	-176.93 (13)	C18—C23—C22—C21	0.0 (3)
Te1-C1-C2-C3	178.68 (15)	C4—C3—C2—C1	-0.9 (3)
N2—C3—C2—C1	-179.61 (19)	C8—C13—C12—C11	-0.2(3)
N1-C11-C10-C9	-179.8 (2)	C8—C7—C6—C1	-5.3 (3)
C13—C12—C11—N1	179.5 (2)	C8—C7—C6—C5	174.64 (19)
C13—C12—C11—C10	-0.6 (3)	C8—C7—C18—C19	108.2 (2)
C7—C6—C5—C4	177.11 (19)	C8—C7—C18—C23	-71.0 (2)

C7—C18—C23—C22	179.00 (19)	C8—C9—C10—C11	0.8 (3)
C1—C6—C5—C4	-3.0 (3)	C2-C1-C6-C7	-176.38 (19)
C6—C7—C18—C19	-71.2 (2)	C2-C1-C6-C5	3.7 (3)
C6—C7—C18—C23	109.6 (2)	C10-C9-C8-C13	-1.5 (3)
C6—C7—C8—C13	1.4 (3)	C10—C9—C8—C7	176.5 (2)
C6—C7—C8—C9	-176.38 (19)	C20-C19-C18-C7	-178.77 (19)
C6—C1—C2—C3	-1.9 (3)	C20-C19-C18-C23	0.5 (3)
C6—C5—C4—C3	0.4 (3)	C23—C22—C21—C20	-0.1 (3)
C5-C4-C3-N2	-179.61 (19)	C17—N2—C3—C4	5.2 (3)
C5—C4—C3—C2	1.6 (3)	C17—N2—C3—C2	-176.13 (19)
C12—C13—C8—C7	-176.66 (19)	C16—N2—C3—C4	174.0 (2)
C12—C13—C8—C9	1.2 (3)	C16—N2—C3—C2	-7.3 (3)
C12—C11—C10—C9	0.3 (3)	C15—N1—C11—C12	5.5 (3)
C19—C18—C23—C22	-0.2 (3)	C15—N1—C11—C10	-174.4 (2)
C19—C20—C21—C22	0.4 (3)	C14—N1—C11—C12	-177.2 (2)
C18—C7—C6—C1	174.05 (18)	C14—N1—C11—C10	3.0 (3)