

IUCrData

ISSN 2414-3146

Received 20 July 2021 Accepted 29 July 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; molybdenum; oxo; acetylacetonate; acac.

CCDC reference: 2100177

Structural data: full structural data are available from iucrdata.iucr.org

Bis(2,4-dioxopentan-3-ido- $\kappa^2 O, O'$)dioxidomolybdenum(VI): a redetermination

Dean H. Johnston,* Calvin King, Aileen Seitz and Mia Sethi

Department of Chemistry, Otterbein University, Westerville, OH 43081, USA. *Correspondence e-mail: djohnston@otterbein.edu

The title compound, $[Mo(C_5H_7O_2)_2O_2]$ or *cis*- $[MoO_2(acac)_2]$ (acac is acetylacetonate), contains a molybdenum(VI) atom coordinated by two acetylacetonate ligands and two doubly bonded oxido ligands in a distorted octahedral shape. The molecule is chiral and the asymmetric unit contains two independent molecules (one Δ , one Λ). Extensive C-H···O contacts are present throughout the structure. Data were collected at 100 K, providing higher precision of unit-cell parameters and atomic positions than previous determinations [Kamenar *et al.* (1973). *Cryst. Struct. Commun.* **2**, 41–44.; Krasochka *et al.* (1975). *Zh. Strukt. Khim.* **16**, 696–698].

Structure description

The title compound is a versatile starting material for the preparation of *cis*-dioxidomolybdenum complexes, including complexes containing organodinitrogen ligands (Bustos *et al.*, 1994) and molybdenyl adducts of platinum μ -S dimers (Henderson *et al.*, 2011). MoO₂(acac)₂ has also been used to prepare dioxidomolybdenum(VI) complexes with O,N,N' chelating ligands (Ceylan *et al.*, 2015) and an amine bis(phenolate) ligand (Bowen & Wile, 2021). Many of these complexes have been prepared and studied for their catalytic activities, including complexes with acylpyrazolonate ligands that catalyze the deoxygenation of epoxides (Hills *et al.*, 2013; Begines *et al.*, 2018) and dioxidomolybdenum(VI) complexes with salicylamide ligands for the epoxidation of olefins (Annese *et al.*, 2019). Molybdenum(VI) dioxido complexes with acetylacetonato ligands have also been investigated for their catalytic properties in the dehydrogenation of alcohols (Korstanje *et al.*, 2013). These complexes are of particular interest due to their close structural similarities to the active sites of several molybdoenyzmes such as sulfite oxidase, xanthine oxidase, and DMSO reductase (Sousa & Fernandes, 2015).

Table 1 Selected geometry	tric parameters (Å, °	°).
Mo1-O1	1.7029 (9)	Mo2-O7
Mo1 02	1 7001 (0)	Mo2 08

Mo1-O2	1.7001 (9)	Mo2-O8	1.7021 (9)
Mo1-O3	2.1825 (8)	Mo2-O9	2.1808 (8)
Mo1-O4	2.1921 (8)	Mo2-O10	2.1848 (9)
Mo1-O5	2.0060 (8)	Mo2-O11	1.9898 (8)
Mo1-O6	1.9897 (8)	Mo2-O12	2.0106 (8)
O2-Mo1-O1	105.40 (4)	O7-Mo2-O8	105.59 (5)

Two previous structural determinations of cisdioxidobis(acetylacetonato)molybdenum(VI) were published in the mid-1970s (Kamenar et al., 1973; Krasochka et al., 1975) based on photographic methods and room-temperature data collections. Additionally, Craven et al. (1971) cite an unpublished diffraction study that also confirms the cis coordination and includes additional structural information consistent with the current study. None of the previously published structure solutions attempted to locate the positions of any of the hydrogen atoms. Several closely related structures have been determined, including cis-dioxido-molybdenum complexes with 1,3-diphenylpropanedianoto ligands (Kojić-Prodić et al., 1974; Korstanje et al., 2013) and tert-butylacetylacetonato ligands (Nass et al., 2001). The structure of the product from the reaction of cis-[MoO₂(acac)₂] with the strong Lewis acid $B(C_6F_5)_3$ (Galsworthy et al., 1997) displays a nearly linear Mo=O-B arrangement $[171.2 (1)^{\circ}]$ and lengthening of the donating Mo=O bond by about 0.1 Å.

The asymmetric unit of the title compound contains two crystallographically independent *cis*-[MoO₂(acac)₂] molecules, one each of the Δ and Λ forms (Fig. 1). The molecular structure adopts a distorted octahedral arrangement around the Mo^{VI} atoms, with oxido ligands in a *cis* arrangement and oxido-molybdenum-oxido angles of 105.40 (4) and 105.59 (5)°. As observed previously (Krasochka, 1973; Kojić-Prodić *et al.*, 1974), the Mo–O bond distances *trans* to the molybdenum-oxygen double bonds are significantly lengthened [avg = 2.185 (5) Å] relative to the other molybdenum-oxygen distances [avg = 1.999 (11) Å] (see Table 1 for selected bond

Figure 1

Displacement ellipsoid (50% probability) diagram of the two independent molecules with the numbering scheme for the non-hydrogen atoms.

Table 2Hydrogen-bond geometry (Å, °).

1,6996 (9)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1-H1A\cdots O8^{i}$	0.93 (1)	2.62 (2)	3.4834 (16)	155 (2)
$C5-H5B\cdots O10^{ii}$	0.98(1)	2.50(1)	3.4652 (15)	170 (2)
$C6-H6A\cdots O8$	0.97(1)	2.51 (2)	3.3894 (15)	151 (2)
C8−H8···O7 ⁱⁱⁱ	0.91(1)	2.79(2)	3.4071 (14)	126(1)
$C10-H10A\cdots O6^{iv}$	0.95(1)	2.68 (2)	3.3334 (15)	127 (1)
$C10-H10C \cdot \cdot \cdot O1^{v}$	0.97(1)	2.50(2)	3.3126 (15)	141 (2)
$C11 - H11B \cdot \cdot \cdot O3^{i}$	0.99(1)	2.48(1)	3.4415 (14)	163 (2)
$C15-H15A\cdots O1^{ii}$	0.93(1)	2.55 (2)	3.4592 (15)	167 (2)
C15−H15C···O4	0.96(1)	2.53 (2)	3.4018 (15)	152 (2)
$C16-H16A\cdots O11^{vi}$	0.94(1)	2.66 (2)	3.3127 (15)	128 (2)
$C16-H16B\cdotsO8^{vii}$	0.96(2)	2.52 (2)	3.3971 (17)	153 (2)
C18−H18···O2 ^{viii}	0.92(1)	2.82 (2)	3.4646 (15)	128 (1)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 2, -z + 1; (v) x + 1, y, z; (vi) -x, -y, -z + 2; (vii) x - 1, y, z; (viii) -x, -y + 1, -z + 2.

distances and angles). The four molybdenum oxygen distances for the doubly-bonded oxido ligands average 1.7012 (16) Å, in agreement with the average distance found for over 140 similar *cis*-dioxido molybdenum complexes in the Cambridge Structural Database (Groom *et al.*, 2016). These metrics are also in agreement with relatively narrow distribution of molybdenum-oxygen distances observed by Mayer (1988) for *cis*-dioxido complexes.

All of the hydrogen-bonding contacts are weak $C-H\cdots O$ interactions with $D\cdots A$ distances between 3.3 and 3.5 Å (see Table 2 and Fig. 2). There are contacts between C-H atoms and all four of the oxido ligands, including two contacts to O1 and three contacts to O8. Additional C-H contacts are made to most of the acetylacetonate oxygen atoms as well.

Synthesis and crystallization

The title compound was prepared using the *Inorganic Syntheses* procedure (Chakravorti & Bandyopadhyay, 1992) with some modifications adapted from Arnáiz (1995). A sample of 3.0 grams of ammonium *para*-molybdate was dissolved in 6.0 ml of $24\%_{wt}$ aqueous ammonia. A syringe was used to add 7.0 ml of 2,4-pentanedione with stirring. Concentrated nitric acid (5.0 ml) was added and the solution was stirred for

Figure 2

Packing diagram (viewed along a), showing extensive weak C-H···O contacts (red dotted lines) throughout the crystal structure.

Table 3Experimental details.

Crystal data Chemical formula $[Mo(C_5H_7O_2)_2O_2]$ М., 326.15 Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 100 8.0111 (3), 12.4143 (4), 12.6847 (4) a, b, c (Å) α, β, γ (°) V (Å³) 75.649 (1), 89.272 (1), 87.072 (1) 1220.56 (7) Ζ 4 Radiation type Μο Κα μ (mm⁻¹) 1.09 Crystal size (mm) $0.28 \times 0.22 \times 0.14$ Data collection Diffractometer Bruker APEXII CCD Absorption correction Multi-scan (SADABS; Krause et al., 2015) 0.676. 0.747 T_{\min}, T_{\max} No. of measured, independent and 82074, 11855, 10556 observed $[I > 2\sigma(I)]$ reflections 0.035 R_{int} $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$ 0.835 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.023, 0.061, 1.04 11855 No. of reflections No. of parameters 391 No. of restraints 28 H-atom treatment Only H-atom coordinates refined $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 1.19, -1.11

Computer programs: *APEX3* (Bruker, 2020), *SAINT* (Bruker, 2020), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *CrystalMaker* (Palmer, 2019), *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

30 min. The product precipitated as a pale-yellow solid and was isolated by filtration and washed with deionized water $(2 \times 10 \text{ ml})$, followed by ethanol $(1 \times 10 \text{ ml})$, and diethyl ether $(1 \times 10 \text{ ml})$. Over multiple preparations the yield averaged around 90%. Characterization by ¹H NMR and FTIR agrees with previously reported values (Chakravorti & Bandyopadhyay, 1992; Arnáiz, 1995).

Three different crystallization methods were utilized: slow evaporation from a concentrated solution in 2,4-pentanedione, vapor diffusion (dichloromethane/diethyl ether), and layering (dichloromethane/diethyl ether) in a standard 5 mm NMR tube. All three methods produced crystals, but the highest quality crystals and those used in this study were produced from solvent layering.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Education and Human Resources (grant No. 0942850 to Dean Johnston); Otterbein University Student Research Fund (grant to Calvin King, Aileen Seitz, Mia Sethi).

References

- Annese, C., Caputo, D., D'Accolti, L., Fusco, C., Nacci, A., Rossin, A., Tuci, G. & Giambastiani, G. (2019). *Eur. J. Inorg. Chem.* pp. 221– 229.
- Arnáiz, F. J. (1995). J. Chem. Educ. 72, A7.
- Begines, E., Carrasco, C. J., Montilla, F., Álvarez, E., Marchetti, F., Pettinari, R., Pettinari, C. & Galindo, A. (2018). *Dalton Trans.* 47, 197–208.
- Bowen, C. L. & Wile, B. M. (2021). IUCrData, 6, x210516.
- Bruker (2020). *APEX3* and *SAINT*. Bruker AXS, Madison, Wisconsin, USA.
- Bustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). *Inorg. Chem.* **33**, 1427–1433.
- Ceylan, B. İ., Deniz, N. G., Kahraman, S. & Ulkuseven, B. (2015). Spectrochim. Acta A, 141, 272–277.
- Chakravorti, M. C. & Bandyopadhyay, D. (1992). *Inorganic Syntheses*, Vol. 29, edited by R. N. Grimes, pp. 129–131. New York: John Wiley & Sons.
- Craven, B. M., Ramey, K. C. & Wise, W. B. (1971). *Inorg. Chem.* 10, 2626–2628.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Galsworthy, J. R., Green, M. L. H., Müller, M. & Prout, K. (1997). J. Chem. Soc. Dalton Trans. pp. 1309–1313.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Henderson, W., Nicholson, B. K., Bridson, J. H., Kueh, J. T. & Andy Hor, T. S. (2011). *Inorg. Chim. Acta*, 375, 142–149.
- Hills, L., Moyano, R., Montilla, F., Pastor, A., Galindo, A., Álvarez, E., Marchetti, F. & Pettinari, C. (2013). *Eur. J. Inorg. Chem.* pp. 3352–3361.
- Kamenar, B., Penavic, M. & Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41–44.
- Kojić-Prodić, B., Rużić-Toroš, Ž., Grdenić, D. & Golič, L. (1974). Acta Cryst. B30, 300–305.
- Korstanje, T. J., Folkertsma, E., Lutz, M., Jastrzebski, J. T. B. H. & Klein Gebbink, R. J. M. (2013). *Eur. J. Inorg. Chem.* pp. 2195–2204.
- Krasochka, O. N., Sokolova, Yu. A. & Atovmyan, L. O. (1973). Zh. Strukt. Khim. 16, 696–698.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mayer, J. M. (1988). Inorg. Chem. 27, 3899-3903.
- Nass, M., Schürmann, M., Preut, H. & Krause, N. (2001). Z. Krist. New Cryst. Struct. 216, 461–464.
- Palmer, D. C. (2019). *CrystalMaker*. CrystalMaker Software Ltd, Begbroke, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sousa, S. C. A. & Fernandes, A. C. (2015). *Coord. Chem. Rev.* **284**, 67–92.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2021). **6**, x210778 [https://doi.org/10.1107/S2414314621007781]

Bis(2,4-dioxopentan-3-ido- $\kappa^2 O, O'$)dioxidomolybdenum(VI): a redetermination

Dean H. Johnston, Calvin King, Aileen Seitz and Mia Sethi

Bis(2,4-dioxopentan-3-ido- $\kappa^2 O, O'$)dioxidomolybdenum(VI)

Crystal data	
$\begin{bmatrix} Mo(C_{5}H_{7}O_{2})_{2}O_{2} \end{bmatrix} \\ M_{r} = 326.15 \\ \text{Triclinic, } P1 \\ a = 8.0111 (3) \text{ Å} \\ b = 12.4143 (4) \text{ Å} \\ c = 12.6847 (4) \text{ Å} \\ a = 75.649 (1)^{\circ} \\ \beta = 89.272 (1)^{\circ} \\ \gamma = 87.072 (1)^{\circ} \\ V = 1220.56 (7) \text{ Å}^{3} \end{bmatrix}$	Z = 4 F(000) = 656 $D_x = 1.775 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9760 reflections $\theta = 3.0-36.3^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.28 \times 0.22 \times 0.14 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.676, T_{\max} = 0.747$ 82074 measured reflections	11855 independent reflections 10556 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 36.4^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -20 \rightarrow 20$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.061$ S = 1.04 11855 reflections 391 parameters 28 restraints	0 constraints Only H-atom coordinates refined $w = 1/[\sigma^2(F_o^2) + (0.0307P)^2 + 0.524P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta\rho_{\text{max}} = 1.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -1.11 \text{ e} \text{ Å}^{-3}$
Special details	

Refinement. All H atoms were located in a difference-Fourier map. Hydrogen atom positions were refined with C—H distances restrained to 0.98 (2) Å (CH₃) or 0.95 (2) Å (ring C) and with $U_{iso}(H) = 1.5U_{eq}(C)$ (methyl) or $U_{iso}(H) = 1.2U_{eq}(C)$ (ring).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mo1	0.19729 (2)	0.76693 (2)	0.56793 (2)	0.01071 (2)

01	0.01992 (11)	0.69604 (7)	0.57195 (8)	0.01646 (15)
O2	0.14825 (12)	0.86914 (7)	0.63247 (7)	0.01718 (15)
03	0.45296 (11)	0.82176 (7)	0.55088 (7)	0.01484 (14)
04	0.32120 (11)	0.65709 (7)	0.47653 (7)	0.01407 (14)
05	0.30012 (10)	0.65609 (7)	0.69609 (7)	0.01323 (13)
O6	0.17058 (11)	0.86448 (7)	0.41831 (7)	0.01522 (14)
C1	0.37036 (18)	0.55651 (10)	0.34261 (11)	0.0194 (2)
H1A	0.408 (2)	0.5708 (16)	0.2707 (13)	0.029*
H1B	0.457 (2)	0.5162 (15)	0.3884 (16)	0.029*
H1C	0.286(2)	0 5032 (14)	0 3486 (16)	0.029*
C2	0.30151(14)	0.65672(9)	0 37795 (9)	0.01315(17)
C3	0 21648 (16)	0.00012(9)	0.30091 (9)	0.01510(17) 0.01650(19)
Н3	0.215(10)(10)	0.7355(14)	0.30091(9)	0.020*
C4	0.209(2) 0.16005(14)	0.84288 (9)	0.2300(12) 0.32317(9)	0.020 0.01329(17)
C5	0.08566 (17)	0.01200(9) 0.93714(10)	0.32517(9) 0.23647(10)	0.01329(17) 0.0183(2)
Н5А	0.00000(17) 0.170(2)	0.9885(14)	0.23047(10) 0.2000(15)	0.0105 (2)
H5R	0.170(2)	0.9005(14) 0.9095(15)	0.2000(13) 0.1802(14)	0.028*
H5C	0.033(2)	0.9093(15)	0.1002(14)	0.028
115C C6	0.002(2) 0.42700(16)	0.9801(13) 0.58188(10)	0.2003 (10)	0.023
	0.42700(10)	0.5060(10)	0.80090(9)	0.0170 (2)
HOA HAR	0.410(2) 0.333(2)	0.5009(12) 0.5053(15)	0.8382(10) 0.0000(15)	0.026*
	0.333(2)	0.5755(15)	0.9090(15)	0.026*
	0.3274(19) 0.42270(14)	0.3/43(13)	0.9049(13)	0.020°
C7	0.42379(14)	0.00499(9)	0.73910(8)	0.01228(10)
	0.34477(13)	0.74177(10)	0.73039(9)	0.01541 (18)
H8	0.6317 (19)	0.7423 (14)	0.7754 (13)	0.018*
C9	0.56069 (13)	0.81282 (9)	0.624/3 (9)	0.01234 (17)
C10	0.71393 (15)	0.87800 (10)	0.59652 (11)	0.0180 (2)
HIOA	0.689 (2)	0.9523 (12)	0.5569 (15)	0.027*
HI0B	0.776 (2)	0.8840 (15)	0.6561 (13)	0.027*
HIOC	0.788 (2)	0.8426 (15)	0.5532 (15)	0.027*
Mo2	0.31234 (2)	0.23314 (2)	0.94971 (2)	0.01062 (2)
07	0.35933 (12)	0.13590 (7)	1.06697 (7)	0.01702 (15)
08	0.49058 (11)	0.30206 (7)	0.91316 (8)	0.01682 (15)
09	0.18784 (11)	0.33673 (7)	0.80520 (7)	0.01435 (14)
O10	0.05669 (11)	0.17773 (7)	0.96628 (7)	0.01557 (15)
011	0.33915 (11)	0.12896 (7)	0.85341 (7)	0.01430 (14)
012	0.20855 (11)	0.34966 (7)	1.01892 (7)	0.01405 (14)
C11	0.42605 (16)	0.05038 (9)	0.70948 (10)	0.01590 (19)
H11A	0.506 (2)	0.0052 (14)	0.7626 (15)	0.024*
H11B	0.481 (2)	0.0759 (15)	0.6381 (12)	0.024*
H11C	0.338 (2)	0.0040 (14)	0.6990 (15)	0.024*
C12	0.35213 (13)	0.14698 (9)	0.74799 (9)	0.01179 (16)
C13	0.29618 (16)	0.24372 (9)	0.67571 (9)	0.01583 (19)
H13	0.312 (2)	0.2494 (14)	0.6000 (11)	0.019*
C14	0.20743 (13)	0.33250 (9)	0.70739 (9)	0.01210 (16)
C15	0.13314 (16)	0.42696 (10)	0.62128 (10)	0.01670 (19)
H15A	0.095 (2)	0.4053 (15)	0.5610 (13)	0.025*
H15B	0.043 (2)	0.4672 (15)	0.6472 (16)	0.025*

H15C	0.219 (2)	0.4773 (14)	0.5942 (15)	0.025*
C10	-0.20230 (16)	0.12500 (11)	1.04/48(12)	0.0219 (2)
H16A	-0.178 (2)	0.0492 (13)	1.0454 (17)	0.033*
H16B	-0.280 (2)	0.1597 (16)	0.9911 (15)	0.033*
H16C	-0.265 (2)	0.1222 (16)	1.1124 (14)	0.033*
C17	-0.04876 (14)	0.18876 (9)	1.03822 (9)	0.01463 (18)
C18	-0.03130 (16)	0.26312 (11)	1.10536 (10)	0.0182 (2)
H18	-0.116 (2)	0.2651 (15)	1.1543 (14)	0.022*
C19	0.08525 (14)	0.34274 (9)	1.08878 (9)	0.01445 (18)
C20	0.07649 (18)	0.43275 (12)	1.14881 (11)	0.0220 (2)
H20A	0.087 (3)	0.5039 (13)	1.1019 (16)	0.033*
H20B	-0.027 (2)	0.4408 (16)	1.1843 (16)	0.033*
H20C	0.163 (2)	0.4253 (17)	1.1994 (15)	0.033*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Mo1	0.01212 (4)	0.01239 (4)	0.00833 (4)	-0.00019 (3)	-0.00151 (3)	-0.00391 (3)
01	0.0145 (3)	0.0165 (4)	0.0190 (4)	-0.0011 (3)	-0.0029 (3)	-0.0055 (3)
O2	0.0220 (4)	0.0167 (4)	0.0150 (4)	-0.0011 (3)	0.0008 (3)	-0.0078 (3)
03	0.0153 (3)	0.0185 (4)	0.0102 (3)	-0.0043 (3)	-0.0011 (3)	-0.0016 (3)
O4	0.0174 (4)	0.0143 (3)	0.0106 (3)	0.0010 (3)	-0.0004 (3)	-0.0037 (3)
05	0.0147 (3)	0.0152 (3)	0.0094 (3)	-0.0023 (3)	-0.0017 (3)	-0.0018 (3)
O6	0.0229 (4)	0.0129 (3)	0.0099 (3)	0.0008 (3)	-0.0041 (3)	-0.0031 (3)
C1	0.0265 (6)	0.0172 (5)	0.0161 (5)	0.0006 (4)	0.0036 (4)	-0.0079 (4)
C2	0.0152 (4)	0.0140 (4)	0.0111 (4)	-0.0026 (3)	0.0016 (3)	-0.0043 (3)
C3	0.0244 (5)	0.0163 (5)	0.0096 (4)	-0.0001 (4)	-0.0026 (4)	-0.0048 (3)
C4	0.0157 (4)	0.0138 (4)	0.0102 (4)	-0.0028 (3)	-0.0027 (3)	-0.0020 (3)
C5	0.0240 (5)	0.0165 (5)	0.0127 (4)	-0.0004 (4)	-0.0066 (4)	0.0000 (4)
C6	0.0228 (5)	0.0171 (5)	0.0096 (4)	0.0007 (4)	-0.0027 (4)	-0.0004 (3)
C7	0.0156 (4)	0.0126 (4)	0.0090 (4)	0.0017 (3)	-0.0015 (3)	-0.0037 (3)
C8	0.0176 (5)	0.0159 (4)	0.0126 (4)	-0.0016 (4)	-0.0050 (4)	-0.0029 (3)
C9	0.0133 (4)	0.0114 (4)	0.0134 (4)	0.0000 (3)	-0.0004 (3)	-0.0051 (3)
C10	0.0146 (5)	0.0172 (5)	0.0234 (6)	-0.0040 (4)	0.0003 (4)	-0.0070 (4)
Mo2	0.01235 (4)	0.01240 (4)	0.00711 (4)	0.00003 (3)	0.00073 (3)	-0.00262 (3)
O7	0.0226 (4)	0.0168 (4)	0.0105 (3)	-0.0003 (3)	-0.0010 (3)	-0.0013 (3)
08	0.0153 (4)	0.0165 (4)	0.0181 (4)	-0.0016 (3)	0.0027 (3)	-0.0033 (3)
09	0.0188 (4)	0.0146 (3)	0.0095 (3)	0.0024 (3)	-0.0003 (3)	-0.0034 (3)
O10	0.0151 (3)	0.0185 (4)	0.0147 (4)	-0.0040 (3)	0.0028 (3)	-0.0066 (3)
011	0.0214 (4)	0.0131 (3)	0.0083 (3)	0.0013 (3)	0.0016 (3)	-0.0029 (2)
O12	0.0161 (3)	0.0159 (3)	0.0115 (3)	-0.0007 (3)	0.0016 (3)	-0.0062 (3)
C11	0.0213 (5)	0.0137 (4)	0.0135 (4)	0.0010 (4)	0.0031 (4)	-0.0052 (3)
C12	0.0132 (4)	0.0124 (4)	0.0102 (4)	-0.0018 (3)	0.0025 (3)	-0.0037 (3)
C13	0.0244 (5)	0.0145 (4)	0.0085 (4)	0.0012 (4)	0.0011 (4)	-0.0031 (3)
C14	0.0146 (4)	0.0116 (4)	0.0100 (4)	-0.0021 (3)	-0.0006 (3)	-0.0020 (3)
C15	0.0233 (5)	0.0129 (4)	0.0127 (4)	-0.0002 (4)	-0.0046 (4)	-0.0009 (3)
C16	0.0159 (5)	0.0220 (5)	0.0248 (6)	-0.0044 (4)	0.0025 (4)	0.0002 (4)
C17	0.0139 (4)	0.0151 (4)	0.0127 (4)	0.0001 (3)	0.0004 (3)	0.0007 (3)

data reports

C18	0.0185 (5)	0.0222 (5)	0.0141 (5)	0.0002 (4)	0.0065 (4)	-0.0054 (4)
C19	0.0173 (4)	0.0173 (4)	0.0091 (4)	0.0039 (4)	-0.0006 (3)	-0.0050 (3)
C20	0.0263 (6)	0.0251 (6)	0.0181 (5)	0.0048 (5)	-0.0002 (4)	-0.0135 (5)

Geometric parameters (Å, °)

Mo1-01	1.7029 (9)	Mo2—O7	1.6996 (9)
Mo1—O2	1.7001 (9)	Mo2—O8	1.7021 (9)
Mo1—O3	2.1825 (8)	Mo2—O9	2.1808 (8)
Mo1—O4	2.1921 (8)	Mo2—O10	2.1848 (9)
Mo1—O5	2.0060 (8)	Mo2—O11	1.9898 (8)
Mo1—O6	1.9897 (8)	Mo2—O12	2.0106 (8)
О3—С9	1.2624 (13)	O9—C14	1.2623 (13)
O4—C2	1.2635 (13)	O10—C17	1.2632 (14)
O5—C7	1.3067 (13)	O11—C12	1.3036 (13)
O6—C4	1.3041 (13)	O12—C19	1.3104 (14)
C1—H1A	0.933 (14)	C11—H11A	0.984 (14)
C1—H1B	0.947 (15)	C11—H11B	0.988 (14)
C1—H1C	0.957 (14)	C11—H11C	0.962 (14)
C1—C2	1.5010 (16)	C11—C12	1.4961 (15)
C2—C3	1.4183 (16)	C12—C13	1.3761 (16)
С3—Н3	0.931 (14)	C13—H13	0.953 (14)
C3—C4	1.3782 (16)	C13—C14	1.4191 (16)
C4—C5	1.4971 (16)	C14—C15	1.4942 (16)
С5—Н5А	0.983 (14)	C15—H15A	0.932 (14)
С5—Н5В	0.975 (14)	C15—H15B	0.961 (14)
С5—Н5С	0.968 (15)	C15—H15C	0.957 (14)
С6—Н6А	0.973 (14)	C16—H16A	0.941 (14)
C6—H6B	0.946 (14)	C16—H16B	0.961 (15)
С6—Н6С	0.931 (14)	C16—H16C	0.955 (15)
C6—C7	1.4952 (16)	C16—C17	1.4944 (17)
C7—C8	1.3762 (16)	C17—C18	1.4152 (17)
С8—Н8	0.907 (14)	C18—H18	0.917 (14)
C8—C9	1.4184 (16)	C18—C19	1.3709 (17)
C9—C10	1.4955 (16)	C19—C20	1.4986 (17)
C10—H10A	0.948 (14)	C20—H20A	0.942 (15)
C10—H10B	0.931 (14)	C20—H20B	0.950 (15)
C10—H10C	0.965 (14)	С20—Н20С	0.935 (15)
O1—Mo1—O3	165.66 (4)	O7—Mo2—O8	105.59 (5)
O1—Mo1—O4	89.35 (4)	O7—Mo2—O9	164.58 (4)
O1—Mo1—O5	93.60 (4)	O7—Mo2—O10	87.98 (4)
O1—Mo1—O6	98.03 (4)	O7—Mo2—O11	95.53 (4)
O2-Mo1-O1	105.40 (4)	O7—Mo2—O12	96.98 (4)
O2—Mo1—O3	88.56 (4)	O8—Mo2—O9	89.81 (4)
O2—Mo1—O4	165.18 (4)	O8—Mo2—O10	166.15 (4)
O2—Mo1—O5	97.16 (4)	O8—Mo2—O11	97.67 (4)
O2—Mo1—O6	95.35 (4)	O8—Mo2—O12	94.14 (4)

Q3—Mo1—Q4	76.80 (3)	O9—Mo2—O10	76.68 (3)
O5—Mo1—O3	81.17 (3)	011—Mo2—09	81.38 (3)
O5—Mo1—O4	82.99 (3)	011—Mo2—010	83.47 (3)
06—Mo1—O3	83 63 (3)	$011 - M_0^2 - 012$	159.82 (4)
06—Mo1—04	80.95 (3)	$012 - M_0 2 - 09$	82.36(3)
06—Mo1—05	160.01.(4)	012 - Mo2 - 010	81.22 (3)
C9-O3-Mo1	127 94 (7)	C12 - Mo2 = 010	128 23 (7)
$C_2 = O_4 = M_0 I$	127.91(7) 128.41(7)	C17 - 010 - Mo2	120.29(7) 127.20(8)
C7-O5-Mo1	13040(7)	C12 - 011 - Mo2	127.20(0) 13147(7)
C4-O6-Mo1	130.40(7) 132.43(7)	C19 - O12 - Mo2	131.47(7) 129 74 (7)
HIA CI HIB	102.45(7) 108 5 (17)	H11A C11 H11B	129.74(7) 100.0(16)
HIA CI HIC	105.8(17)		109.9(10)
	103.0(17) 103.1(16)	HIIR CII HIIC	106.0(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.1(10) 115.0(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.3(13)
$C_2 = C_1 = H_1 P$	113.0(12) 112.2(12)	C_{12} C_{11} H_{11} H	111.4(11) 110.0(10)
$C_2 = C_1 = H_1 C_2$	113.3(13) 110.2(12)	C_{12} C_{11} $H_{11}C$	110.9(10)
C_2 — C_1 — HIC	110.2(12) 117.22(10)		109.4(11)
04 - 02 - 01	117.22(10) 122(7(10))	011 - 012 - 012	114.45(9)
04-02-03	123.07(10)	011 - 012 - 013	124.15(10)
$C_3 = C_2 = C_1$	119.10(10) 117.7(11)	C12 - C12 - C11	121.33(10)
$C_2 = C_3 = H_3$	11/./(11) 122.42(10)	C12—C13—H13	118.0(10)
C4 - C3 - C2	123.42(10)	C12 - C13 - C14	123.38(10)
C4—C3—H3	118.8(11) 124.17(10)	C14—C13—H13	118.3(10)
06 - 04 - 03	124.17 (10)	09-014-015	123.53 (10)
06-04-05	114.20 (10)	09-014-015	117.53 (10)
$C_3 - C_4 - C_5$	121.60 (10)	C13—C14—C15	118.93 (10)
C4—C5—H5A	112.3 (11)	CI4—CI5—HI5A	113.4 (12)
C4—C5—H5B	110.8 (11)	C14—C15—H15B	113.3 (12)
C4—C5—H5C	111.2 (12)	C14—C15—H15C	108.1 (11)
H5A—C5—H5B	106.9 (16)	H15A—C15—H15B	107.6 (16)
H5A—C5—H5C	107.7 (16)	H15A—C15—H15C	105.6 (16)
H5B—C5—H5C	107.8 (16)	H15B—C15—H15C	108.5 (15)
H6A—C6—H6B	105.2 (16)	H16A—C16—H16B	110.9 (18)
H6A—C6—H6C	101.7 (16)	H16A—C16—H16C	107.2 (17)
H6B—C6—H6C	112.9 (17)	H16B—C16—H16C	102.8 (17)
С7—С6—Н6А	110.9 (12)	C17—C16—H16A	112.3 (12)
С7—С6—Н6В	110.0 (12)	C17—C16—H16B	109.7 (12)
С7—С6—Н6С	115.2 (12)	C17—C16—H16C	113.5 (12)
O5—C7—C6	114.28 (10)	O10—C17—C16	117.36 (11)
O5—C7—C8	124.26 (10)	O10—C17—C18	123.12 (11)
C8—C7—C6	121.45 (10)	C18—C17—C16	119.44 (11)
С7—С8—Н8	121.1 (11)	C17—C18—H18	115.8 (12)
C7—C8—C9	123.91 (10)	C19—C18—C17	124.01 (10)
С9—С8—Н8	114.2 (11)	C19—C18—H18	119.2 (11)
O3—C9—C8	123.05 (10)	O12—C19—C18	124.32 (10)
O3—C9—C10	117.50 (10)	O12—C19—C20	114.39 (11)
C8—C9—C10	119.42 (10)	C18—C19—C20	121.27 (11)
C9—C10—H10A	112.2 (12)	C19—C20—H20A	112.1 (13)
C9-C10-H10B	114.7 (12)	C19—C20—H20B	114.9 (12)

C9—C10—H10C H10A—C10—H10B H10A—C10—H10C H10B—C10—H10C	109.6 (11) 105.2 (16) 108.5 (16) 106.2 (16)	C19—C20—H20C H20A—C20—H20B H20A—C20—H20C H20B—C20—H20C	112.8 (13) 102.8 (17) 104.7 (18) 108.6 (18)
$\begin{array}{c} Mo1-O3-C9-C8\\ Mo1-O3-C9-C10\\ Mo1-O4-C2-C1\\ Mo1-O4-C2-C3\\ Mo1-O5-C7-C6\\ Mo1-O5-C7-C8\\ Mo1-O6-C4-C3\\ Mo1-O6-C4-C5\\ O4-C2-C3-C4\\ O5-C7-C8-C9\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C6-C7-C8-C9\\ C1-C2-C3-C4-C5\\ C6-C7-C8-C9\\ C7-C8-C9\\ C7-C8-C9-O3\\ C7-C8-C9-C1\\ C7-C8-C9-C1\\ C7-C8-C9-C1\\ C7-C8-C9-C1\\ C7-C8-C9-C1\\ C7-C8-C9-C3\\ C7-C8-C9-C7-C8\\ C7-C8-C9-C3\\ C7-C8-C9-C7\\ C7-C8-C9-C7\\ C7-C8-C9-C7\\ C7-C8-C9-C7\\ C7-C8-C9-C7\\ C7-C8-C9-C7\\$	14.91 (16) -167.23 (8) -165.78 (8) 13.14 (16) 159.72 (8) -21.55 (16) -21.18 (18) 160.91 (8) 6.18 (19) -7.08 (18) -174.93 (11) -3.75 (19) 174.01 (11) 171.56 (11) 9.00 (18)	$\begin{array}{c} Mo2-O9-C14-C13\\ Mo2-O9-C14-C15\\ Mo2-O10-C17-C16\\ Mo2-O10-C17-C18\\ Mo2-O11-C12-C11\\ Mo2-O11-C12-C13\\ Mo2-O12-C19-C18\\ Mo2-O12-C19-C20\\ O10-C17-C18-C19\\ O11-C12-C13-C14\\ C11-C12-C13-C14\\ C12-C13-C14-O9\\ C12-C13-C14-O9\\ C12-C13-C14-C15\\ C16-C17-C18-C19\\ C17-C18-C19-O12\\ C17-C18-C19-C12\\ C17-C18-C19-C19-C12\\ C17-C18-C19-C19-C12\\ C17-C18-C19-C19-C12\\ C17-C18-C19-C19-C19-C19-C$	$11.74 (16) \\ -167.95 (8) \\ -167.33 (8) \\ 15.86 (16) \\ 160.69 (8) \\ -22.43 (17) \\ -20.31 (17) \\ 161.61 (8) \\ 10.74 (19) \\ -4.41 (19) \\ 172.26 (11) \\ 8.31 (19) \\ -172.00 (11) \\ -166.01 (12) \\ -10.0 (2) \\ 167.95 (12) \\ -10.0 (11) \\ -165.95 (12) \\ -10.0 (11) \\ -10.0 $
0,-00-09-010	100.02 (11)	C1/-C10-C17-C20	107.33 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1A····O8 ⁱ	0.93 (1)	2.62 (2)	3.4834 (16)	155 (2)
C5—H5 <i>B</i> ···O10 ⁱⁱ	0.98 (1)	2.50(1)	3.4652 (15)	170 (2)
C6—H6A…O8	0.97(1)	2.51 (2)	3.3894 (15)	151 (2)
C8—H8····O7 ⁱⁱⁱ	0.91 (1)	2.79 (2)	3.4071 (14)	126(1)
C10—H10A····O6 ^{iv}	0.95(1)	2.68 (2)	3.3334 (15)	127 (1)
C10—H10 <i>C</i> ···O1 ^v	0.97 (1)	2.50 (2)	3.3126 (15)	141 (2)
C11—H11 <i>B</i> ····O3 ⁱ	0.99(1)	2.48 (1)	3.4415 (14)	163 (2)
C15—H15A…O1 ⁱⁱ	0.93 (1)	2.55 (2)	3.4592 (15)	167 (2)
C15—H15 <i>C</i> ···O4	0.96(1)	2.53 (2)	3.4018 (15)	152 (2)
C16—H16A…O11 ^{vi}	0.94 (1)	2.66 (2)	3.3127 (15)	128 (2)
C16—H16B…O8vii	0.96 (2)	2.52 (2)	3.3971 (17)	153 (2)
C18—H18…O2 ^{viii}	0.92(1)	2.82 (2)	3.4646 (15)	128 (1)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*+2, -*z*+1; (v) *x*+1, *y*, *z*; (vi) -*x*, -*y*, -*z*+2; (vii) *x*-1, *y*, *z*; (viii) -*x*, -*y*+1, -*z*+2.